
Data Model Based Test Case Design

Model-driven Information System Testing

Federico Toledo Rodríguez

Abstracta

Montevideo, Uruguay

e-mail: ftoledo@abstracta.com.uy

Beatriz Pérez Lamancha

Software Testing Center,

University of the Republic,

Montevideo, Uruguay

e-mail: bperez@fing.edu.uy

Macario Polo Usaoloa

Alarcos Research Group,

University of Castilla-La Mancha,

Ciudad Real, Spain

e-mail: macario.polo@uclm.es

Abstract—Software testing is a challenging task, but frequently

the time is wasted in interactions between development team

and testing team due to simple errors related with the data

structure and neither with the complex business rules. That

highlights that it is very important to verify that the

application can handle correctly the data structure and the

data types, and for this we consider to generate test cases based

on the data model. We are developing a framework to generate

executable test cases from a data model, to test information

systems that use databases. In this article, we will present the

test case design approach, based on the data model, in order to

verify the correctness of the application layers that manage it.

Keywords-test data; information system testing; model driven

testing; automated test case generation

I. INTRODUCTION

The design of many applications starts with a conceptual
modeling which is then used to define the database schema
and the classes’ structure of the domain tier of the
application to be developed. Domain classes are then
enriched with both methods to deal with the business goals,
and with methods to deal with the persistence of their
instances. Considering that the database structure is well
designed, according to the requirements and the performance
needs, then, it is necessary to verify that the application layer
over it can manage correctly the particularities of the defined
structure. Moreover, the same database structure could be
accessed by different applications, such as a Web application
for the customers, a desktop application as a backend, or a
layer exposing Web Services in order to provide an
integration mechanism with other systems. Thus, there is a
correspondence between the logic components (e.g. classes,
servlets and services) and the data structures (generally in a
relational database). As the basic operations to manipulate
data structures are the CRUD operations (create, read,
update, delete) and almost any business method changing the
state of a persistent instance will do a call to a CRUD
operation, we will pay special attention on these methods on
each entity.

Model-Driven Testing (MDT) [1] implies the automatic
test case generation from models through model
transformation. Our methodology follows a model-driven
testing approach to automatically generate test cases from

the data model, obtained from the database metadata. The
generated test cases permit to verify the correctness of the
CRUD operations of the entities defined in the system,
according with certain coverage criteria. The methodology is
supported with a framework that is based in the most
important standards, mainly in the Unified Modeling
Language (UML) [2].

In this article, we present how we design the test cases
for information systems with databases. In Section II, the
general framework is introduced. Then, in Section III, we
present the main contribution of this article which is the test
case design strategy. Section IV shows the state of the art
regarding with test cases generation for database-driven
applications. Finally, Section V draws some conclusions and
future lines of work.

II. FRAMEWORK FOR INFORMATION SYSTEM TESTING

The methodology has three main phases (Figure 1). Each
step we fits into different standards mainly from the Object
Management Group (OMG), especially UML, in order to use
general UML modeling tools. These three phases are:

 Phase 1: Reverse Engineering. Initially some
reverse engineering techniques and tools are used in
order to obtain the corresponding data model, from
the physical schema of the database.

 Phase 2: Model to Model Transformation. The
data model is processed looking for certain patterns
and then generating automatically test cases for each
pattern through model transformations. As a result,
test cases for the data structures are generated, thus
obtaining a test model.

 Phase 3: Model to Text Transformation. Last but
not least, the test models are transformed into test
code, obtaining executable test cases.

In order to represent the data model we use the UML
Data Modeling Profile (UDMP) [3], that is an UML class
diagram extension developed by IBM to design databases
using UML, with the expressive power of an entity-
relationship model. It defines concepts at a physical level and
architecture (Node, Tablespace, Database, etc.), and the ones
required for the database design (Table, Column, etc.).
Several proposals use this profile to model the database
structure [4-6].

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

For more detail on the framework, refer to [7]. In the
following section, we focus on the test case design that is the
most important part of the design of the second phase.

III. DATA MODEL CENTERED DESIGN

Given that in our case we generate test cases from a
UDMP class diagram corresponding to the system data
model, we will consider some coverage criteria as adequate
to those artifacts, as for example some of the proposed by
Andrews et al. [8] UML class diagrams:

 Class Attribute (CA): the test suite should make
use representative values for each attribute in each
class.

 Association end Multiplicity (AEM): the test suite
should make use every representative pair of
multiplicities for the associations of the model.

These coverage criteria were designed for the context of
testing a method or use case, where an object oriented model
defines the behavior of the system. In our case we will apply
the criteria for a data model instead of an object model, so
we adjusted some aspects in order to make it applicable. The
most important consideration is that the operations that we
will be testing are create, read, update and delete of each
entity. This is important to determine the oracle, because the
expected results of these operations are well-known. Another
consideration related with the multiplicity of the
associations: according with the definitions given in the
foreign keys we could have different kinds of association
multiplicities, and for each one we have to considerate a
special situation about the boundaries of the association end
multiplicities.

To apply these criteria the framework will generate test
cases to cover these situations for every substructure of the
data model that matches any of the criterion, what means that
for each class it will generate test cases according with CA

criterion and for each association will generate test cases
according with AEM criterion.

We designed the patterns, and the corresponding test
cases to be generated, according with the characteristics of
the relations and tables involved. In the rest of this section
we present an initial design for patterns with one table, two
tables and three, describing the different situations and the
test cases that will be generated in order to reach the defined
coverage criteria.

A. One-table Patterns

First, we designed test cases to test the most basic
patterns: based on one table, which means to pay special
attention to the attributes and the different combinations of
their representative values, according to CA criterion.

For each attribute we can categorize in valid data and
invalid data, according with the data type obtained from the
column metadata, and from business rules (extracted for
example from the Check constraints defined in the database).
This way, we are defining representative test data for each
attribute. In this step, we define categories and values for
each one, even considering boundaries. For instance,
according with the example of the Figure 2 (one table to
store the name, id and age of people), the table Persons has
an integer attribute age, and imagine that it is defined a check
that verifies that the value is greater than zero, then, a set of
interesting values could be: {-100, -1, 0, 1, 100}. Another
interesting example is related with varchar variables, as the
id attribute of Persons, as it is defined with a length of 50,
we could try with a string with 50 or fewer characters, and
one with more.

Once we have interesting values for each column, we
combine them with pair-wise algorithms, using our own tool
called CTWeb [9]. By this way we obtain a reduced set of
tuples with higher probability to find errors. If we take the
Cartesian product of the different interesting values, as
suggested by Andrews et al. for the CA criteria, we will have
too many values, so, we decided to reduce the test set by this
way.

If any of the different attributes’ values used by the test
case is invalid, the expected result is a fail. If we test the
create operation then we have to check that the instance was
not created, and if all the values were valid, the expected
result is a pass, and we should check that the instance was
created correctly with the values used in the parameters. The

same with the update operation, if all the input values are
valid, we have to check that the values were updated, and if

Figure 1 - Methodology and framework

Figure 2 – Example with one table

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

any of the input values were invalid, we have to check that
the operation failed, and all the attributes in the database
keep their original value.

The interesting operations are create, read, update and
delete for each entity. The read operations are used to give
support to the validation actions: if any assert fail, the error
could be in the tested operation or in the read operation.
Regarding update operation, there will be one for each
attribute. Taking into account the previous considerations,
we will apply the CRUD pattern [10] to considerate the
whole life cycle of an instance, which implies to test the
operation in the sequences that can be obtained expanding
the regular expression: C · R · (Ui · R)* · D · R, where the Ui
represents each operation that updates a different attribute.
This is equivalent to generate test sequences according to the
state machine presented in Figure 3, where there is an
invocation to read operation in each state, in order to verify
that the actual state is the expected.

Applying the CRUD pattern to the example of the entity
Person we could generate the following test sequence:

1. Create Person
2. Read Person
3. Update Id Person
4. Read Person
5. Update Age Person
6. Read Person
7. Update Full Name Person
8. Delete Person
9. Read Person / should fail
Note that the final state of the database is the same one

than the initial, what is convenient in order to have
independent test cases: the execution order does not affect
the expected result.

The same test sequence, which is the test behavior, can
be executed with different test data, that it is going to be
stored in a separated structure of the test model called data
pool. This is known as data-driven testing approach [11],
and the main advantage is that we can add easily new test
cases just adding new rows to the data pool, indicating new
interesting situations to cover with the data inputs. Therefore,

the data pool will have the combination of the representing
values, obtained from CTWeb.

B. Two-table Patterns

For this pattern, we will show as an example the one of
Figure 4: the table Journal stores the different journals
relating the editor responsible, whose information is stored in
the table Persons.

Regarding the data inputs, we apply in each table the
same process that for one table, except for those attributes
included in the foreign key: first we define representative
values and then we combine them with CTWeb in order to
fill the data pools. For the foreign keys, we will have into
account the AEM criterion, what means that we will try to
associate instances in a way that covers the different
representative multiplicities. The association ends of two
tables (a referencing and a referenced table) could have
multiplicity of 0..1 (in the referenced table side if the foreign
key allows nulls, or in the referencing table side if the
foreign key is unique), 1 (in the referenced table side if the
foreign key does not allow nulls) or 0..* (in the side of the
referencing table). Therefore, we can have the following
combinations:

 0..1 → 0..1

 0..1 → 1

 0..* → 0..1

 0..* → 1
We are only considering the ones that can be

implemented in a database schema with foreign keys,
because for example the relation 1 → 1 it is not possible to
implement with foreign keys between two tables.

The example of Figure 4 corresponds with the last
situation: 0..* → 1, from Journal to Person.

For each situation, we want to cover AEM criterion, and
for this it is necessary to test associating entities with
representative multiplicities, what is the boundaries of the
defined ranges. For this, we consider to try each instance
associated with 0, 1 and 2 instances of the other table. We
consider that associating two instances is good enough to test
the multiplicity “*”.

According with this idea, different states of the database
are defined, and considering the example of Figure 4 some
of these states are:

 One journal referencing one person (rel.: 1 – 1)

 Two journals with the same person (rel.: 2 – 1)

 One person that is not referenced (rel.: 1 – 0)
As we have 3 possibilities (0, 1 and 2) for each

association end, we have 9 combinations. Some of these

Figure 4 – Example with two tables

Figure 3 - State machine for 1 table

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

combinations are invalid according with the relation, as for
example: in a relation 0..1 → 0..1, we cannot associate 2
registers with the same register of the other table. So, the
expected result is defined by the validity of the data inputs
and the validity of the number of instances to associate
according with the foreign key.

The operations of create, update and delete force a
change in the database state, only when we execute them
with valid data. If we execute them with invalid data then the
state should not change. The update operation also includes
the update of the foreign key, considering that the valid data
is the existing keys in the referenced table and invalid data
when it does not, and similarly for create operation (it is
interesting to test the creation of a Journal which references
a Person that does not exist). If the foreign key has more
than one attribute, it is necessary to considerate the update of
them in the same operation.

With all these considerations, we defined a state
machine, with the different states and transitions already
described. The test cases that we design for this kind of
patterns are based on the state machine coverage, for
example trying to reach all paths, or all states and transitions.
Figure 5 shows an excerpt of the state machine for the
example with Journals and Persons, and from this excerpt
we present a possible test sequence generated from it
(remember that after each operation there is a Read to verify
the expected state):

1. Create Journal (without association) / should fail
2. Read Journal
3. Create Person
4. Read Person
5. Update Person (for each attribute)
6. Read Person
7. Create Journal with Person
8. Read Journal
9. Update Journal (for each attribute)

10. Read Journal
11. Update Person (for each attribute)
12. Read Person
13. Create Journal with Person (rel.: 2 – 1)
14. Read Journal
15. Delete Journal
16. Read Journal
17. Delete Person / should fail
18. Read Person
19. Delete Journal
20. Read Journal
21. Delete Person
22. Read Journal
Note that also, in this case we preserve at the end of the

test case execution the original state of the database. On the
other hand, this criterion subsumes the previous with one
table, because the states of the table Person are part of the
states of this pattern, and all the transitions of the first
example are also included in this one. That means that if we
find and generate test cases for a two tables’ relation, it is not
necessary to worry about generating test cases for each table
apart.

C. Three-table Patterns

In the previous subsection, we are not including a type of
binary relation at a conceptual level, which are the many to
many relations, because at a database level it is implemented
with three tables: two tables with the data of the entities, and
another auxiliary table to store the relations, referencing the

Figure 6 - Example with 3 tables

Figure 5 - Excerpt of the State Machine for Journal and Person

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

primary keys of the entities, defining its own primary key as
the addition of the primary keys’ attributes. Also, could be
more attributes in the auxiliary table to store data related
with the association. Paying attention to Figure 6, we can see
the relation between Authors and Articles, where the same
author can have many articles, and the same article can have
many authors. The relation table ArticleAuthor has some
attributes to store information about the relation between the
Article and Author, for example indicating if this this author
is corresponding author for this article.

This particular case imposes some considerations. We
should add some valid states to the previous state machine,
including association ends: 2 – 1 and 1 – 2, and 2 – 2. Also,
the update of the relation table has two foreign keys,
therefore there will be two special update operations that
have to consider to reference valid (existent) and invalid
(inexistent) tuples in the referenced tables.

In this example is interesting to mark something else that
is that the tester has the possibility to add extra information
to the data model, in order to validate some aspects of the
logic that cannot be represented in the database schema. In
the relation between Article and Author, perhaps it does not
make sense to have an article without any authors, but this
cannot be implemented in the schema, it must be managed in
the logic, therefore, we want to check it. So, after the reverse
engineering process we could modify the data model in order
to generate test cases that can verify this kind of situations,
just changing the association end multiplicity from “0 – *” to
“1 – *”.

IV. RELATED WORK

Regarding test data generation for systems with
databases, Tuya et al. [12] define a coverage criteria based
on SQL queries, applying a criteria similar to Modified
Condition/Decision Coverage [13] but considering the
conditions of FROM, WHERE and JOIN sentences,
generating test data to cover this criterion. There are some
approaches (from Haller et al. [14] and Emmi et al. [15])
where the code coverage criteria are extended in order to
consider the embedded SQL sentences, generating database
instances to cover the different scenarios proposed as
interesting. Arasu et al. [16] propose to specify in some way
the expected results of each SQL included in the test, and
then they can generate test data to satisfy this specification.
The proposal from Chays et al. [17], called AGENDA, takes
as input the database schema and categorized test data given
by the user, whereby generates test cases and initial database
states, and validating after the test case execution the outputs
and the final database state. Neufeld et al. [18] generate
database states according to the integrity restrictions of the
relational schema, using a constraint solver. As far as we
know, many proposals for test data generation exist, but none
of them focuses on automated test model generation using
model transformations.

There are various proposals to generate test cases
automatically from UML models, as the ones described by
Offut et al. [19] and Brucker et al. [20], but as far as we
known, only Fujiwara et al. [21] proposed a special
consideration for information systems with databases. In this

work, they propose to generate test cases considering a UML
class diagram to represent the data model, and another to
represent the screens. The data restrictions (foreign keys,
relations between data inputs and database fields, etc.) and
pre and post conditions of the methods under test are
represented with Object Constraint Language (the OMG’s
standard rules definition language). The whole test model
must be specified manually, and therefore, maintained. The
test cases generated are centered on the given restrictions,
while in our proposal we pay attention on the data model
automatically obtained, without maintenance costs.

V. CONCLUSION AND FUTURE WORK

This paper has presented a method for test case design
based on the data model, what is useful for our framework to
test information systems with databases. From a well-
designed database we can validate, with few extra effort, that
the logic that manages the structures does it correctly.

This approach could be applied for any kind of system
that uses a data base. We are developing the first group of
patterns in order to put it into practice and validate our ideas,
and to compare with other approaches. We believe that we
can save time and effort detecting many errors before to
deliberate a version to the testing team. Doing so, we can let
a tester concentrate in the hard and more interesting task of
testing the complex business rules of a system.

Another important point within the future work is related
with complex objects types for the columns, as well as
complex rules taken from checks or from the source code.

We also want to validate the scalability of the idea. For
each entity it is necessary to implement some adaptation
layer, but then the test cases executes completely
automatically, independently of the amount of patterns
defined.

Moreover, as a future work, we plan to experiment with
different kind of model-driven development tools, as
GeneXus [22] or OOH4RIA [23], because this kind of tools
generate the system code from data models in a structured
way, what could permit us to generate automatically the
adaptation layer, in order to generate executable test cases
with no extra cost.

ACKNOWLEDGMENT

This work has been partially funded by the Agencia
Nacional de Investigación e Innovación (ANII, Uruguay), by
DIMITRI project (Desarrollo e Implantación de
Metodologías y Tecnologías de Testing, TRA2009_0131,
Spain) and by MAGO/Pegaso project (Mejora Avanzada de
Procesos Software Globales, TIN2009-13718-C0201,
Spain).

REFERENCES

[1] P. Baker, Z.R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and

C. Williams, Model-Driven Testing: Using the UML Testing Profile.

2007: Springer-Verlag New York, Inc.

[2] OMG. Unified Modeling Language. 1997 [retrieved: october, 2012];

Available from: http://www.uml.org/.

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

http://www.uml.org/

[3] D. Gornik, UML Data Modeling Profile. 2002, IBM, Rational

Software.

[4] S. Yin and I. Ray. Relational database operations modeling with

UML in AINA'05: Advanced Information Networking and

Applications. 2005. Vol. 1 pp. 927-932.

[5] G. Sparks, Database modeling in UML, in Methods & Tools. 2001.

pp. 10-22.

[6] K. Zieliriski and T. Szmuc, Data modeling with UML 2.0. Software

engineering: evolution and emerging technologies, 2006. Vol. 130:

pp. 63.

[7] F. Toledo, B.P. Lamancha, and M.P. Usaola. Towards a Framework

for Information System Testing - A model-driven testing approach in

ICSOFT. 2012. Rome, Italy.

[8] A. Andrews, R. France, S. Ghosh, and G. Craig, Test adequacy

criteria for UML design models. Software Testing, Verification and

Reliability, 2003. Vol. 13 (2): pp. 95-127.

[9] M.P. Usaola and B.P. Lamancha. CTWeb. [retrieved: october, 2012];

Available from: http://alarcosj.esi.uclm.es/CombTestWeb/.

[10] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon, TMap

Next, for result-driven testing. 2006: UTN Publishers.

[11] M. Fewster and D. Graham, Software test automation: effective use of

test execution tools. 1999: ACM Press/Addison-Wesley Publishing

Co.

[12] J. Tuya, M.J. Suárez-Cabal, and C. De La Riva, Full predicate

coverage for testing SQL database queries. Software Testing

Verification and Reliability, 2010. Vol. 20 (3): pp. 237-288.

[13] J.J. Chilenski and S.P. Miller, Applicability of modified

condition/decision coverage to software testing. Software

Engineering Journal, 1994. Vol. 9 (5): pp. 193-200.

[14] K. Haller. White-box testing for database-driven applications: A

requirements analysis. 2009: ACM, pp. 13.

[15] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation

for database applications in ISSTA'07: Software Testing and

Analysis. 2007, pp. 151-162.

[16] A. Arasu, R. Kaushik, and J. Li. Data generation using declarative

constraints in International conference on Management of data.

2011: ACM, pp. 685-696.

[17] D. Chays and Y. Deng. Demonstration of AGENDA tool set for

testing relational database applications. 2003: IEEE Computer

Society, pp. 802-803.

[18] A. Neufeld, G. Moerkotte, and P.C. Loekemann, Generating

consistent test data: Restricting the search space by a generator

formula. The VLDB Journal, 1993. Vol. 2 (2): pp. 173-213.

[19] J. Offutt and A. Abdurazik, Generating tests from UML

specifications. «UML»’99—The Unified Modeling Language, 1999:

pp. 76-76.

[20] A. Brucker, M. Krieger, D. Longuet, and B. Wolff, A specification-

based test case generation method for UML/OCL. Models in

Software Engineering, 2011: pp. 334-348.

[21] S. Fujiwara, K. Munakata, Y. Maeda, A. Katayama, and T. Uehara,

Test data generation for web application using a UML class diagram

with OCL constraints. Innovations in Systems and Software

Engineering, 2011: pp. 1-8.

[22] Artech. GeneXus. 1988 [retrieved: october, 2012]; Available from:

http://www.genexus.com

[23] S. Meliá, J. Gómez, S. Pérez, and O. Díaz. A model-driven

development for GWT-based Rich Internet Applications with

OOH4RIA. 2008: Ieee, pp. 13-23.

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

http://alarcosj.esi.uclm.es/CombTestWeb/
http://www.genexus.com/

