
Software Architectural Drivers for Cloud Testing

Etiene Lamas, Luiz Alberto Vieira Dias, Adilson Marques da Cunha
Computer Science Division

Aeronautics Institute of Technology, ITA

Sao Jose dos Campos, Brazil

{etiene, vdias, cunha}@ita.br

Abstract—This paper focuses on the research issues that Cloud

Computing imposes on Software Testing. For this purpose,

Cloud Testing can be defined as a Software Testing method

based on Cloud Computing technology. Software Testing has

been an important component within the development process.

In order to face the rapid growth of Cloud Computing,

Reference Architectures provide a simple and organized

environment for applications development. The outage on

Cloud Services must be considered an exception not a rule.

This research emphasizes the complexity of Cloud Testing, in

order to prevent services disruption, as it happened, for

example, with the Amazon in April 2011. This research aims to

investigate, design, implement, and propose key Software

Architectural Drivers for Cloud Testing, focusing on

monitoring the quality. Cloud Testing integration may allow

monitoring products and services with efficient deliverables.

The main advantage that arises from these proposed drivers is

the provision of Cloud Testing Reference Architectures to be

applied in practice. The main contribution of software

architectural drivers is the quantitative monitoring of quality

for both end products and services.

Keywords-cloud testing; software architectural drivers;

testing of cloud services; testing of cloud products; reference

architectures

I. INTRODUCTION

In general, Cloud Computing changes the way
Information Technology (IT) services are delivered. To
monitor these changes, Cloud Testing can be defined as a
Software Testing method based on Cloud Computing
technology [1].

Parveen and Tilley [2] show that not all applications are
suitable for testing in the Cloud and nor all types of testing
are suitable for the Cloud.

The outage on Cloud Services must be considered an
exception not a rule. This research emphasizes the
complexity of Cloud Testing, in order to prevent services
disruption, as it happened, for example, with the Amazon in
April 2011 [3]. This research aims to investigate, design,
implement, and propose key Software Architectural Drivers
for Cloud Testing (SADCT), focusing on monitoring quality.
Thus, an investigation about the generic and the specific
theory has been conducted.

The drivers proposed by the authors for Reference
Architectures (RAs) are set in order to quantitative monitor
Quality of Products (QoP) and Quality of Services (QoS) in
the Cloud. The main advantage arising from these proposed

drivers is to provide Cloud Testing Reference Architectures
to be applied in practice. The main problem is how to
monitor and evaluate quantitatively the quality of the Cloud
Testing. The main contribution of software architectural
drivers is the quantitative monitoring of quality for both end
products and services.

This article is organized as follows. Section 2 introduces
Reference Architectures. Section 3 describes basic Cloud
Computing concepts. Section 4 emphasizes the importance
of Cloud Testing and presents the testing of Cloud Services.
Section 5 specifies the Cloud Testing Reference
Architectures. Section 6 proposes its key architectural
drivers. Section 7 includes a Proof of Concept (PoC) study.
Finally, Section 8 highlights some conclusions and future
works.

II. REFERENCE ARCHITECTURES

In order to face the rapid growth of Cloud Computing,

Reference Architectures provide a simple and organized

environment for applications development.

A Reference Architecture (RA) is the generalized

architecture of several end systems that share one or more

common domains. The Reference Architecture defines the

common infrastructure to the end systems and also the

interfaces of components that will be included in the end

systems. The Reference Architecture is then instantiated to

create software architecture of a specific system [4].

The principles governing the design and evolution of a

system and also the relationships between their components

and the environment can be found in a Reference

Architecture, which represents its fundamental organization

[5].

To facilitate the understanding of the operational

intricacies in Cloud Computing, the overview of its

Reference Architecture will be presented in the following

section.

III. BASIC CLOUD COMPUTING CONCEPTS

Given the rapid growth in its use, it is necessary to define
Cloud Computing and Cloud Computing Reference
Architectures.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

A. Cloud Computing Definition

According to the National Institute of Standards and
Technology (NIST) [6], Cloud Computing consists of service
models, deployment models, and essential characteristics.

This definition is widely accepted as a valuable
contribution toward providing a clear understanding of
Cloud Computing technologies and Cloud Services.

It provides a simple and unambiguous taxonomy of three
service models available to Cloud Consumers: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS).

It summarizes the four deployment models describing
how the computing infrastructure that delivers these services
can be shared: Private Cloud, Community Cloud, Public
Cloud, and Hybrid Cloud.

Finally, the NIST definition also provides a unifying
view of five essential characteristics that all Cloud Services
exhibit: on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service [6].

The three service models identified by the NIST, i.e.,
SaaS, PaaS, and IaaS, offer to the consumers different types
of service management operations and expose different entry
points into Cloud Systems.

B. Cloud Computing Reference Architecture

The overview of the NIST Cloud Computing Reference

Architecture [7] is a logical extension to the NIST

Definition of Cloud Computing.

According to Liu et al. [7], it is a generic high-level

conceptual model that is an effective tool for discussing the

requirements, structures, and operations of Cloud

Computing. Also, according to [7], it defines a set of actors,

activities, and functions that can be used in the process of

developing cloud computing architectures. It describes five

major actors with their roles and responsibilities, using the

newly developed Cloud Computing Taxonomy. The five

major participating actors are: (i) Cloud Consumer - a

person or organization that maintains a business relationship

with, and uses service from, Cloud Providers; (ii) Cloud

Provider - a person, organization, or entity responsible for

making a service available to interested parties; (iii) Cloud

Broker - an entity that manages Cloud Services; (iv) Cloud

Auditor - a party that can conduct independent assessment

of Cloud Services; and (v) Cloud Carrier - an intermediary

that provides connectivity and transport of Cloud Services.

Each actor is an entity (a person or an organization) that

participates in a transaction or process and/or performs tasks

in Cloud Computing [7].

The NIST Cloud Computing Reference Architecture [7]

focuses on the requirements of “what” Cloud Services

provide, not on “how to” design solutions and

implementations.

In order to improve the quality of Cloud Services, the

interactions between the actors in Cloud Testing scenarios

will be discussed in the following section.

IV. TESTING OF CLOUD SERVICES

Software Testing has been an important component

within the development process. This paper focuses on the

research issues that Cloud Computing imposes on Software

Testing.

The architecture described by Blokland and Mengerink

[8] consists of detailed risks that may occur when one starts

using Cloud Computing, grouped into themes. Next to these

risks, in their book, there are sets of test measures. Some

measures do exist, like load testing, but polished to fit the

new needs for applying performance testing in the Cloud.

The important asset of [8] is the link made from each

individual risk to the different measures needed to cover the

risk.

According to Blokland and Mengerink [8], there are also

new measures that stretch the definition of test, like test in

production. These measures are new because they are Cloud

specific and present the complexity of testing in the Cloud.

It should be emphasized that some aspects of quality can

be tested “on live” and it is very wise to continuously test

them, because of the ever-changing situation in the Cloud

Environment.

Testing activities must continue even after the system

has gone live. But, there are other aspects that should be

‘more traditionally’ tested, before a new version of the

system is put into the live Cloud Environment. Testing is

not done only under the main implementation phases (Unit

Testing; Integration Testing; System Testing; and

Acceptance Testing) as it used to be, but it will be done also

during selection (when the Cloud Services are selected). The

criteria for selection are chosen for mitigating risks.

Because once in Cloud production everything might

change, it is needed to continuously test the software under

production. Some measures are specific for the Cloud, like

how to deal with rules and regulations in different countries

[7], like Migration Testing.

When software is running “in house”, most of the

failures are under control; but when “in the Cloud”

everything is different, because failures are not under

control any more. Due to the mutability of the Cloud

Environment, it is necessary to verify if the services are still

working after the deployment. The testing under production

will validate the functionalities in this environment.

V. CLOUD TESTING REFERENCE ARCHITECTURE

Architectural Drivers are defined as the major quality
attribute goals that shape the Cloud Reference Architectures
[9]. This research aims to investigate, design, implement,

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

and propose key Software Architectural Drivers for Cloud
Testing, focusing on monitoring quality.

Aiming to understand Reference Architecture roles for
Cloud Testing, Figure 1, adapted from [10], presents the
interaction of the software tester role (Cloud Tester) with
the Cloud Environment specified for this research. Figure 1
also highlights those that provide and consume services.

Notice that IaaS supports PaaS that, in turn, supports
SaaS.

The main characteristics that distinguish Cloud Testing
from regular Software Testing are related to risks across all
three layers of the Cloud stack (IaaS, PaaS, and SaaS), as
seen in Figure 1. It is important to keep this basic stack in
mind as the building blocks of the Cloud Computing
system.

Figure 1. The Reference Architecture roles for Cloud Testing.

The Cloud Provider is responsible for providing,
managing, and monitoring the entire structure to the solution
of Cloud Computing, freeing the Cloud Tester and the Cloud
Consumer from these types of liability. To do this, the Cloud
Provider provides services for Cloud Consumers.

According to Veras [10], this organization in roles helps
to define the actor and their different interests on Cloud
Computing. Actors can assume different roles at the same
time, according to their interests, and only the Cloud
Provider supports all three functions of Cloud Services (IaaS,
PaaS, and SaaS). From the viewpoint of interaction, among
the three functions of service, IaaS provides computing
resources (hardware or software) to PaaS. In its turn, PaaS
provides resources, technologies, and tools for the
development and the delivery of services to be implemented,
becoming available as SaaS.

It is important to mention that an organization that
provides Cloud Services needs does not necessarily provide
all three-service functions. That is, a Cloud Provider can
provide the option IaaS without necessarily also providing a
PaaS [10].

This actor/role-based model is intended to serve the
expectations of the stakeholders by allowing them to
understand the overall view of roles and responsibilities, in
order to assess and assign risks [7].

VI. THE KEY ARCHITECTURAL DRIVERS

According to Kazman et al. [9], the project manager
describes what business goals are motivating the
development effort and hence what will be the primary
Architectural Drivers (e.g., high availability, time to market,
or high security).

Aiming to understand the key architectural drivers for
Cloud Testing Reference Architecture, the purpose of
Figure 2, suggested by the authors, is to provide the
guidance for the Cloud Testers to acquire knowledge on all
needed testing categories.

Some proposed drivers for Cloud Testing Reference
Architectures were based on traditional concepts that allow
products with recognized quality (QoP), and another
proposed drivers, specific for the Cloud, that allow better
quality for Cloud Services (QoS).

These drivers were defined based on concepts from the
traditional testing management environment, as seen in the
bottom side of Figure 2, and also on concepts and elements,
for the Cloud Testing management environment, as seen in
the upper side of Figure 2.

A. Traditional testing management environment

The most important concepts for traditional test

management environment can be clustered in two groups.

The first group of concepts involves a set of definitions to

support the Cloud Testing with Noncloud standards. These

definitions relate to the guidelines for Software product

Quality Requirements and Evaluation (SQuaRE) [11] and

the appropriate breadth and depth of test documentation.

The second group of concepts involves a set of methods

supporting Cloud Testing with Noncloud methodologies.

These definitions relate to effective methods for Software

Testing [12] and these specific methods are listed below.

The authors suggest the use of an Agile Software

Development Methodology, in order to deliver as much

quality software as possible, within a series of short time

boxes called Sprints, which last about a month. This

methodology is characterized by short, intensive, and daily

meetings involving the whole developers’ team [13]. Agile

is iterative and incremental. This means that the testers must

test each increment of coding as soon as it is finished [14].

Finally, the second group of concepts involves also a set

of techniques supporting Cloud Testing with Noncloud

techniques. These are related to functional and structural

techniques for Software Testing. These groups are:

a) Noncloud Standards: In this group of drivers, as

seen in the bottom left side of Figure 2, the standards

ISO/IEC 25000 named Software product Quality

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Requirements and Evaluation (SQuaRE) should be applied

[11], and the IEEE Std 829-2008, named IEEE Standard for

Software and System Test Documentation, should be also

applied [15]; and

b) Noncloud Testing Methodologies and Techniques:

In this group of drivers, in the bottom right side of Figure 2,

traditional phased software agile methodologies and

effective methods for Software Testing should be applied.

Traditionally, most of the test effort occurs after the

requirements have been defined and the coding process has

been completed. But, in the Agile approaches [14], most of

the test effort is on-going. Newer development models, such

as Agile, often employ Test Driven Development (TDD)

and place an increased portion of the testing in the hands of

the developer, before it reaches a formal team of testers. In a

more traditional model, most of the test execution occurs

after the requirements have been defined and the coding

process has been initiated [14]. Also, in this group of

drivers, in the bottom right side of Figure 2, the techniques

can be divided into functional and structural. The main

functional system testing techniques are: (i) Requirements -

system performs as specified; (ii) Regression - verifies that

anything unchanged still performs correctly; (iii) Defects

Handling - defects can be prevented or detected, and then

corrected; (iv) Manual support - the people-computer

interaction works; (v) Control - controls reduce system risk

to an acceptable level; and (vi) Parallel - old system and

new system run and their results are compared to detect

unplanned differences [12]. The main structural testing

techniques are: (i) Stress - system performs with expected

volumes; (ii) Execution - system achieves desired level of

proficiency; (iii) Recovery - system can be returned to an

operational status after a failure; (iv) Operations - system

can be executed in a normal operational status; (v)

Compliance - system is developed in accordance with

standards and procedures; and (vi) Security - system is

protected in accordance with the importance to organization

[16].

Figure 2. Software Architectural Drivers for Cloud Testing (SADCT).

B. Cloud Testing management environment

The most important concepts and elements for the Cloud
Testing management environment can be clustered in five
groups. The first group is a set of definitions to support the
Cloud Testing with standards. These are related to adoption,
development, and provision of testing and security for Cloud
Computing. The second group is the set of best practices
supporting Cloud Testing with collaboration and relevant
factors. These are related to the Cloud Environment and
essential characteristics for Cloud Services. The third group
is a set of techniques supporting Cloud Testing with
challenges. These are related to the testing techniques. The
fourth group is a set of concepts supporting Cloud Testing
with architectural principles. These are related to the
technologies comprised in the Cloud Infrastructure. In the
Cloud, not all applications are equally created. Finally, the
fifth group is a set of steps supporting Cloud Testing with
strategy for porting applications to the Cloud. These steps are
related to Cloud Migration strategies. These groups are:

a) Cloud Standards: In the grey group of drivers, in

Figure 2, the NIST Definition of Cloud Computing should

be applied [6]; the NIST Guidelines on Security and Privacy

in Public Cloud Computing should be applied [16]; the

NIST Cloud Computing Synopsis and Recommendations

should be applied [17]; and the NIST Cloud Computing

Reference Architecture should be also applied [7]. The

logical step to take after the formation of the NIST Cloud

Computing definition is to create an intermediate reference

point from where one can frame the rest of the discussion

about Cloud Computing and begin to identify sections in the

Reference Architecture in which standards are either

required, useful, or optional [7];

b) Testing Factors, Collaboration, and Best Practices

for the Cloud: In the yellow group of drivers, in Figure 2, it

is important to mention that testing for Cloud-based

applications presents its own specific challenges.

Understanding how these applications are structured goes a

long way in designing and executing appropriate test plans

for them. These tests are done in addition to the usual Unit;

Integration; System; Acceptance, and Performance. For

example, the Performance should be achieved in the Cloud

by testing for bandwidth, connectivity, scalability, and

quality of the end-user experience. When testing Cloud

applications, it is needed to validate and verify specific

Cloud functionalities such as redundancy, failover, and

performance scalability. Also, in the yellow group of

drivers, suggested by the authors, it is important to mention

that the Cloud provides an environment that supports global

collaboration and knowledge sharing, as well as, group

decision-making. Shared sites can be easily set up,

replicated, and torn down as needed to meet the

collaboration requirements of a given project. For

collaboration, the best practices are to: (i) continuously

monitor from users’ perspective and end-user response time;

(ii) implement end-to-end diagnostics; (iii) design for fault-

tolerance; and (iv) load test to determine the breaking point.

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

For performance, the best practices are to: (i) understand

where all bottlenecks are; (ii) mitigate bottlenecks; (iii) test

performance for understanding normal and peak load to

baseline “normal”; and (iv) continuously monitor

performance from users’ perspective. For scalability, the

best practices are to: (i) architect for elasticity; (ii) use an

elastic platform to scale services and data; (iii) isolate

functions to scale them separately; (iv) implement a Cloud

bursting strategy for load balancing between Clouds [17];

(v) automate scaling to quickly scale-up and down; and (vi)

execute the load test in your application;

c) Testing techniques: In the green group of drivers,

in Figure 2, Kannan [18] exemplifies challenges for: (i)

browsers testing; (ii) service provisioning/de-provisioning

testing; (iii) distributed Cloud Testing; (iv) multi-tenancy

testing; (v) Cloud Portability Testing; among others. Cloud-

based software applications have some additional

characteristics compared to Noncloud-based ones. These

pose additional challenges but with a systematic and

comprehensive approach to test planning, to be

appropriately handled;

d) Cloud infrastructure and architectural principles:

In the pink group of drivers, in Figure 2, also suggested by

the authors, it is important to mention that Cloud

infrastructure should never go down for a day. Clouds are

characterized by various technologies including: (i)

virtualization (hypervisor); (ii) automation; (iii) monitoring;

and (iv) service portal/service catalog. Currently, there are

Cloud architectural principles for high availability: (i)

monitoring; (ii) fault tolerance; and (iii) fixable.

e) Migration strategies: In the blue group of drivers,

in Figure 2, it is important to mention that in the Cloud, not

all applications are created equal, and some are completely

wrong for the infrastructure model. To make the right

decision about which applications to move, it is needed a

solid migration strategy. It is also needed to consider the

application portfolio and the business requirements to

prevent problems such as poor application performance and

latency, data leakage, or issues with compliance or other

regulations [19]. Here is how to develop a foolproof strategy

for moving the right applications to the cloud, which starts

by outlining clear objectives, then focuses on your

application portfolio’s characteristics and business

requirements to determine the best fit. These steps ensure

that moving to the Cloud will be possible.

VII. PROOF OF CONCEPT (POC)

A Proof of Concept (PoC) is an exercise to test a design
idea or assumption. Software developers tend to utilize PoCs
instinctively when they experiment with technology.

The presented drivers could be used in a PoC to quantify
the quality monitoring throughout the key Software
Architectural Drivers for Cloud Testing (SADCT). This will
be elaborated using the Multi-Attribute Global Inference of
Quality (MAGIQ) technique for Software Testing [20]. The

MAGIQ technique uses Rank Order Centroids (ROC) [21] to
convert system comparison drivers into normalized numeric
weights, and then computes an overall measure of quality as
a weighted (by comparison drivers) sum of system ratings.

The PoC was applied to an academic project named
“Fraud Detection and Unauthorized Access (FDUA)”,
developed at the Brazilian Aeronautics Institute of
Technology (Instituto Tecnologico de Aeronautica - ITA)
aiming to evaluate the feasibility of the Software
Architectural Drivers for Cloud Testing propositions.

Given the FDUA Test Scenario and the Software
Architectural Drivers for Cloud Testing Hierarchical
Diagram, as seen in Figure 3, suggested by the authors, the
students (Cloud Testers), all seasoned testers, were asked to
rank the Software Architectural Drivers for Cloud Testing
items.

At this point, the Software Architectural Drivers for
Cloud Testing Hierarchical Diagram was performed as a
hierarchical decomposition of the proposed Software
Architectural Drivers for Cloud Testing by using MAGIQ
technique for Software Testing [20].

In the MAGIQ analysis technique, after the attributes of
the systems under evaluation have been determined, rank
order centroids are used to assign relative weights to each
comparison attribute [20].

The Cloud Testers examine the comparison attribute set
at each level of the hierarchical decomposition of the
attributes, and ranks the Software Architectural Drivers for
Cloud Testing in the set from most important to least
important, and then assigns relative weights to each Software
Architectural Drivers for Cloud Testing using rank order
centroids [21].

For each item, the Cloud Testers should assign a weight
(in the range 0 to 1), which will be composed with the
MAGIQ coefficients, in order to evaluate quantitatively QoP
and QoS.

Figure 3. The SADCT Hierarchical Diagram.

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Numerically, the quality of Cloud Testing is obtained by
Software Architectural Drivers for Cloud Testing.

Equation (1), proposed by authors, quantitatively
monitors the quality of Cloud Testing:

SADCT = QoP + QoS. (1)

Figure 4. The Q1 Results.

The drivers for traditional concepts will focus on Quality
of Products (QoP), and the additional drivers, specific for the
Cloud, will focus on the Quality of Services (QoS).

VIII. POC RESULTS

The Proof of Concept (PoC) was applied in four different
Agile Testing Quadrants or phases (Q1, Q2, Q3, and Q4) of
the Cloud Testing [14].

Figure 4, suggested by the authors, is a data sheet in
order to calculate values for Quality of Products (QoP) and
Quality of Services (QoS), applied to the Software
Architectural Drivers for Cloud Testing, as in (1):

a) Q1 – In the Unit Testing, the results are obtained

through the calculations from the data sheet presented in

Figure 4. Summarizing, the value for the obtained Software

Architectural Drivers for Cloud Testing is 0.910, because

QoP is 0.719 and QoS is 0.191;

b) Q2 – In the Integration Testing, the results are

obtained through similar calculations. Summarizing, the

value for the obtained Software Architectural Drivers for

Cloud Testing is 0.715, because QoP is 0.563 and QoS is

0.151;

c) Q3 – In the System Testing, the results are obtained

through similar calculations. Summarizing, the value for the

obtained Software Architectural Drivers for Cloud Testing

is 0.830, because QoP is 0.682 and QoS is 0.149; and

d) Q4 – In the Acceptance Testing, the results are

obtained through similar calculations. Summarizing the

value for Software Architectural Drivers for Cloud Testing

obtained is 0,901 because QoP is 0,226 and QoS is 0,675.

Figures 5 and 6, suggested by the authors, show
numerically the Quality of Products (QoP) and Quality of
Services (QoS) for each Cloud Testing phases.

Figure 5. The QoP Results for each Cloud Testing phases.

Figure 6. The QoS Results for each Cloud Testing phases.

IX. CONCLUSION AND FUTURE WORK

This research has provided the investigation, design, and
implementation of some key Software Architectural Drivers
for Cloud Testing, focusing on monitoring the quality for
both end products and services.

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

The Software Architectural Drivers for Cloud Testing,
proposed by the authors, was evaluated through priorities
and weights assigned to them, by seasoned testers. Other
drivers could have been included and theirs effects measured
for Cloud Testing. However, in this research, the proposed
drivers have been proved appropriated, based on the above
criteria.

The drivers, prioritized and weighted by experts, have
allowed the quantitative monitoring of quality on Cloud
Testing.

As a result of this research, it was obtained a way to
numerically calculate the quality of Cloud Testing.

From this research, it is possible to evaluate the influence
of each Software Architectural Drivers for Cloud Testing, by
prioritizing and weighting each driver. It is also possible to
measure the influence of each individual driver on the overall
quality of Cloud Testing, by assigning it a numerical value.

Within the Cloud, the test must start earlier (in a very
early stage); the test scope is widened because of its
nonfunctional requirements; and the test must never stop
(due to the fact that there are a lot of continuous services to
be performed and also due to constant environment changes).
This assures that the software is tested thoroughly.

The authors recommend the continuation of this research
in the Cloud Production. A question that arises from this
work is: “Software Architectural Drivers for Cloud Testing
in production can be applied?”

The answer to this question can be obtained through
further experiments.

As future works, it is suggested the application of these
drivers into other experiments and a statistical in-depth
evaluation about its effects on Cloud Testing.

This would foster better QoS, as end products, by
fulfilling some existing gaps of knowledge within the Cloud
Computing environment.

REFERENCES

[1] W. Jun and F. Meng, “Software Testing Based on Cloud Computing,”
International Conference on Internet Computing and Information
Services, 2011.

[2] T. Parveen, and S. Tilley, “When to Migrate Software Testing to the
Cloud?,” In proc. 2nd International Workshop on Software Testing in
the cloud (STITC), 3rd IEEE International Conference on Software
Testing, Verification and Validation (ICST), April 2010, pp. 424-427.

[3] A.W.S. Team, “Summary of the Amazon EC2 and Amazon RDS
Service Disruption,” Amazon Web Services [Online]. Available:
<http://aws.amazon.com/pt/message/65648/> 10.18.2012.

[4] B. Gallagher, "Using the Architecture Tradeoff Analysis Method to
Evaluate a Reference Architecture: A Case Study," Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Note CMU/SEI-2000-TN-007, 2000.

[5] B.Batke and P. Didier, “The importance of Reference Architecture in
Manufacturing Networks,” CIP Networks Conference, 2007.
Available:<http://www.odva.org/Portals/0/Library/CIPConf_AGM/O
DVA_12_AGM_The_Importance_of_Reference_Architectures_Didie
r_Batke.pdf> 10.18.2012.

[6] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
SP 800-145, National Institute of Standards and Technology's, U.S.,
2011.

[7] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,
“NIST Cloud Computing Reference Architecture,” SP 500-292,
National Institute of Standards and Technology's, U.S., 2011.

[8] K. Blokland and J. Mengerink, “Cloutest®: Testen van
cloudservices,” Uitgeverij Tutein Nolthenius, 2012.

[9] R. Kazman, M. Klein, and P. Clements, "ATAM: Method for
Architecture Evaluation," Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-2000-TR-004, 2000.

[10] M. Veras, “Virtualização: Componente Central do Datacenter,”
Brasport, Sérgio Martins Oliveira, 2011.

[11] ABNT, “NBR ISO/IEC 25000. software quality requirements and
evaluation,” Associação Brasileira de Normas Técnicas, 2008.

[12] W. E. Perry, “Effective Methods for Software Testing,” N.Y.: Wiley,
2006.

[13] M. Cohn, "Succeeding with Agile: Software Development Using
Scrum," Addison-Wesley Professional, 2009.

[14] L. Crispin and J. Gregory, “Agile Testing: A Practical Guide for
Testers and Agile Teams,” Addison-Wesley Professional, 2009.

[15] IEEE Std 829-2008, “IEEE Standard for Software and System Test
Documentation,” Institute of Electrical and Eletronics Engineerd,
2008.

[16] W. Jansen and T. Grance, “Guidelines on Security and Privacy in
Public Cloud Computing, “ SP 800-144, National Institute of
Standards and Technology's, U.S., 2011.

[17] L. Badger, T. Grance, R. Patt-Corner and J. Voas, “Cloud Computing
Synopsis and Recommendations - SP800-146,” National Institute of
Standards and Technology's (NIST), 2012.

[18] N. Kannan, “Ten tests for software applications in the cloud,”
SearchCloudComputing, TechTarget, Inc. 275 Grove St. Newton,
MA 02466, 2011.

[19] M. Laverick, “Private Cloud e-zine,” vol. 1, SearchCloudComputing,
TechTarget, Inc. 275 Grove St. Newton, MA 02466, 2011.

[20] J. D. McCaffrey, “Using the Multi-Attribute Global Inference of
Quality (MAGIQ) Technique for Software Testing,” Information
Technology: New Generations, 2009. ITNG '09. Sixth International
Conference on, 2009, pp. 738-742.

[21] J. Jia, G. W. Fischer and J. S. Dyer, “Attribute weighting methods and
decision quality in the presence of response error: a simulation
study,” Journal of Behavioral Decision Making, 1998, vol. 11, no. 2,
pp. 85-105.

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

