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Abstract—Interactive theorem proving and model checking
are known as two formal verification techniques that have
complementary features and aims, but overlapping application
areas. In this paper, we investigate a procedure (methodology)
called Combined Falsification and Verification (CFV), by which
the benefits of both interactive theorem proving and model
checking could be enjoyed for formal analysis of software
systems against invariant properties. We have been developing
a SMT-based Bounded Model Checker called Garakabu2 for
falsification of HSTM designs. Interfaces necessary for enabling
the procedure CFV is planned to be introduced into Garakabu2
for providing an auxiliary functionality for users of Garakabu2
who are experts in formal methods.

Keywords-Interactive theorem proving; Bounded Model
Checking; Invariant Properties; State Transition Matrix.

I. INTRODUCTION

As software systems grow in scale and functionality,
there is an increasing demand that these systems should be
reliable. This is especially the case for those systems that
are safety-critical ones, such as banking systems, railway
systems and aircraft guidance systems, in which subtle errors
can cause fatal losses in economy and lives. One way of
improving reliability of software systems is by using formal
verification, which are mathematically-based techniques for
specifying and verifying systems.

Interactive theorem proving [1] and model checking [2]
are known as two formal-verification techniques that have
complementary features and aims, but overlapping applica-
tion areas. The main different characteristics between them
lie with the aspects of state space (infinite vs. finite), automa-
tion (limited vs. fully), and counterexample (not automatic
vs. automatic). There are no hard-and-fast answers to the
priority of one to the other. It is a common consensus that
the two techniques are equally effective and maintainable on
the whole for complex applications, while each technique
has specific strengths and weaknesses. By combining them,
attempts have been made to enjoy the best of both worlds,
but no comprehensive understanding exists.

In this paper, we pursue a better understanding about
the combination of the two techniques through a specific
combination that the OTS/CafeOBJ method [3] is backended
with Maude model checkers [4]. Specifically, we focus

on how the counterexamples automatically generated by
model checkers can help the interactive inductive verification
technique of theorem proving for invariant properties.

Particularly, regarding how to combine the two tech-
niques, we have previously proposed a procedure called
Induction-Guided Falsification (IGF) in [5]. IGF is a proce-
dure that can reveal logical errors (i.e., falsification) lurking
in the specifications for theorem proving as early as possible
by employing model checking during the interactive induc-
tive verification of invariant properties. As an extension of
IGF with respect to verification, we investigate a procedure
called Combined Falsification and Verification (CFV). CFV
is a more general procedure that combines interactive induc-
tive verification of invariant properties with model checking,
which is supposed to be followed by human verifiers.

We have been developing a SMT-based [6] Bounded
Model Checking (BMC) [7] tool called Garakabu2 [8], [9]
for formal analysis of designs specified in Hierarchical State
Transition Matrix (HSTM) [10], a set of State Transition
Matrices organized in a hierarchical structure. HSTM has
been widely accepted and used by particularly Japanese
embedded software industry, and been adopted as the mod-
eling language of commercial model-based tools. However,
one issue is that Garakabu2 only conducts falsification due
to that only a bounded state space is checked with BMC.
We plan to implemented interfaces necessary for enabling
the procedure CFV, and thus, make Garakabu2 usable for
conducting formal analysis of HSTM designs with both
interactive theorem proving and model checking.

The paper is organized as follows. Section II introduces
preliminary knowledge. Section III first reviews IGF and
then proposes the procedure CFV. Section IV investigates
briefly the feasibility/possibility of introducing CFV into
Garakabu2, and Section V concludes the paper.

II. PRELIMINARY

The procedures IGF and CFV are proposed and de-
scribed based on the combination of the OTS/CafeOBJ
method (for interactive theorem proving) and Maude Model
Checkers. In this section, we informally review these two
methods/techniques, while refer readers to [3] and [4] for
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their respective formal details. We use a simple mutual
exclusion algorithm using a queue to demonstrate how to use
the OTS/CafeOBJ method, and respectively, the Maude LTL
model checker to specify and verify invariant properties. The
pseudo-code executed by each process i repeatedly can be
described as follows:

l1 : put(queue, i);

l2 : repeat until top(queue) = i

critical section;
cs : get(queue);

queue is the queue of process IDs shared by all pro-
cesses. put(queue, i) puts a process ID i into queue at the
end, get(queue) deletes the top element from queue, and
top(queue) returns the top element of queue. Each iteration
of the loop at label l2 is supposed to be atomically processed.
Initially each process i is at label l1 and queue is empty.

A. The OTS/CafeOBJ Method

The OTS/CafeOBJ method [3] is a modeling, specification
and verification method. In the OTS/CafeOBJ method, a
system to be verified is first modeled as an observational
transition system (OTS), a transition system that can be
straightforwardly written in terms of equations. The OTS is
then written in CafeOBJ [11] as a behavioral specification
(Some basic data types used in the OTS, such as Nat and
Int are described as general algebraic specifications, which
are imported in this behavioral specification).

The OTS/CafeOBJ specification of the sample mutual
exclusion algorithm consists of three data type modules
(with the names LABEL, PID and QUEUE) and one OTS
module (with the name QLOCK). The three data type mod-
ules define sorts Label, Pid and Queue, respectively. We
show module LABEL as an example and the other two are
defined similarly. Label is written in CafeOBJ as:

mod! LABEL {
[Label]
ops l1 l2 cs : -> Label
op _=_ : Label Label -> Bool {comm}
var L : Label
eq (L = L) = true . eq (l1 = l2) = false .
eq (l1 = cs) = false . eq (l2 = cs) = false .

}

In the module LABEL, [Label] is the declaration of
the sort Label; l1, l2 and cs are declared constants; L is
a declared variable. Note that operator _=_ is the equality
predicate for sort Label.

The OTS module specifies behaviors (state transitions)
of the algorithm. The sort denoting states of the OTS is
declared as Sys. The operators denoting the observers and
transitions are declared as follows (where ‘--’ marks the
rest of the line as a comment):

-- observers
bop pc : Sys Pid -> Label

bop queue : Sys -> Queue

-- transitions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Pid, Label and Queue are the sorts denoting process
IDs, labels and queues of process IDs, respectively. The cor-
responding data type modules (LABEL, PID and QUEUE)
defining these three sorts are imported in the OTS module.

Let I, J be CafeOBJ variables for Pid, and S be a
CafeOBJ variable for the hidden sort Sys of the OTS.
Operator try is defined with the following equations:

-- for try
op c-try : Sys Pid -> Bool
eq c-try(S,I)

= (pc(S,I) = l2 and top(queue(S)) = I) .
--
ceq pc(try(S,I),J)

= (if I = J then cs
else pc(S,J) fi) if c-try(S,I) .

ceq queue(try(S,I)) = queue(S) if c-try(S,I) .
ceq try(S,I) = S if not c-try(S,I) .

c-try(S,I) denotes the effective condition of the
transition try, which checks whether process I’s label is
l2 and the top element of the queue is equal to I. If the
effective condition is satisfied, the transition try will be
executed, and the execution will change the return value of
observer pc to cs if the two processes I and J are the same.
The execution of transition try does not change the return
value of observer queue. If the effective condition does not
hold, the state is not changed, which is described by the last
equation. The other two operators want and exit could
be defined with CafeOBJ equations in a similar way, which
are not shown here.

In the OTS/CafeOBJ method, the verification of invariant
properties is mainly done by structural induction, which
means that what we need to do is to show firstly that the
predicate to be proven invariant holds on any initial state
(called the base case), and then to show that the predicate
is preserved by execution of all transitions of the OTS
(called the inductive case). In each inductive case, the case
is usually split into multiple sub-cases with basic predicates
(equations) declared in the CafeOBJ specification.

B. Maude Model Checker

Maude [4] is a high-performance language and system
supporting both equational and rewriting logic computation
for a wide range of applications. An important feature of
Maude is that it has model checking facilities such as the
search command and the Maude LTL model checker.

The basic units of Maude specifications are modules.
There are two kinds of modules: functional modules and
system modules. Maude functional modules define data
types and operations on them by means of equational theo-
ries. System modules specify the initial model of a rewrite
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theory, which are essentially transition systems. A rewrite
specification has rule statements: crl [Label] T1 => T2

if C1 /\ C2 /\ ... /\ Ck, in addition to the contents
of functional modules. The condition part can be omitted if
it is true. For a finite system, Maude search command
explores all possible execution paths from the starting term
(that represents an initial state) for reachable states satisfying
some property.

C. A Specification Translation Method

We have proposed in [12] a way of translating CafeOBJ
specifications for OTSs (the OTS/CafeOBJ specifications)
into Maude specifications of a kind of rewriting transition
systems for Bounded OTSs (the RWTS/Maude specifica-
tions). Bounded OTSs are the extension of OTSs to make it
possible for the model checkers to explore a finite reachable
state space of an OTS for counterexamples. To express
the OTS/CafeOBJ expressible invariant properties in Maude
forms, we have also proposed a simple way to generate
Maude search commands from OTS/CafeOBJ formulas
for invariant properties. We have proved that the proposed
way of translation is sound with respect to counterexamples,
namely that for any counterexample reported by Maude
model checkers for the translated RWTS/Maude specifi-
cations, there exists a corresponding one in the original
OTS/CafeOBJ specifications. We refer readers to [12] for
translation details.

III. THE PROCEDURE OF COMBINED FALSIFICATION
AND VERIFICATION (CFV)

In this section, we first give a brief review of the pro-
cedure Induction Guided Falsification (IGF) [5], and then
introduce our proposed procedure – Combined Falsification
and Verification (CFV), an extension of IGF.

A. A Review of Induction Guided Falsification (IGF)

As mentioned above, in the OTS/CafeOBJ method, al-
though some invariant properties may be proved by rewriting
and/or case splitting only, the generally used verification
technique for proving invariant properties is structural in-
duction [3]. The general procedure of structural induction
is that: first, checking the base case, to show whether the
state predicate to be proven invariant holds on any initial
state, and second, checking the inductive case, to show
whether the state predicate is preserved by the execution of
any transition of the system. During proving the inductive
case, we may have to discover and use other state predicates
(called auxiliary state predicates) to strengthen the inductive
hypothesis. Finding suitable state predicates to strengthen
the inductive cases may be the most critical and difficult
part of formal verification using theorem proving.

Structural induction works well when a state predicate to
be proven invariant is indeed an invariant. However, it is
quite often that we are trying to prove some state predicates

that are essentially not invariants. Following structural induc-
tion, the usual way to know that a state predicate p under
proving is not an invariant, is to show that p does not hold
on any initial state, or to find some auxiliary state predicate,
which is needed to prove p, but does not hold on any initial
state. However, to find such an auxiliary state predicate,
a lot of proof efforts are usually needed to manifest the
problem. Such proof efforts can be extremely painful. Thus
it is preferable that there exists some way, by which finding
out errors lurking in the specifications can be easier and as
earlier as possible.

Induction Guided Falsification (IGF) is a procedure that
can reveal logical errors lurking in the specifications for
theorem proving (falsification) as early as possible by em-
ploying model checking during the inductive verification of
invariant properties, and the inductive verification can be
used to reduce the state space needed for model checking to
search a counterexample. The key concept that IGF lies on is
necessary lemmas, which are obtained by applying effective
case splits.

Definition 1: Effective case splits and Necessary lemmas.
Consider proving a state predicate p to be invariant (i.e.,
to show p(υ) holds in any reachable state υ ∈ RS)
by structural induction on the set of all reachable states
RS . In an inductive case where a transition τy1,...,yn is
taken into account, basically all we have to do is to prove
P (υc, cl1 , . . . , clα) ⇒ P (τc1,...,cn(υc), cl1 , . . . , clα), where
υc is a constant denoting an arbitrary state and each ck is
a constant denoting an arbitrary value of data type Dk. We
suppose that a proposition q1∨ . . .∨qL is a tautology, where
each ql is in the form Ql(υc, c1, . . . , cn, cl1 , . . . , clα). The
case characterized by ql is called a sub-case with respect to
the inductive case. If the truth value of P (υc, cl1 , . . . , clα) ⇒
P (τc1,...,cn(υc), cl1 , . . . , clα) can be determined assuming
each ql, then q1∨ . . .∨qL is called an effective case split for
this inductive case. Moreover, if the truth value is false, then
∀υ : RS . ∀y1 : D1, . . . , yn : Dn, ∀xl1 : Dl1 , . . . , xlα : Dlα .
¬Ql(υ, y1, . . . , yn, xl1 , . . . , xlα) is called a necessary lemma
of p(υ).

Note that this necessary lemma can surely make the induc-
tive case true. If this necessary lemma is an invariant, then
it means that the arbitrary state characterized by the sub-case
is not reachable, and thus the false case is discharged and p
is possibly an invariant; otherwise if this necessary lemma
is not an invariant, then it means that the arbitrary state
characterized by the sub-case is reachable, and thus p is not
an invariant.

The procedure IGF is constructed based on two
lemmas as its theoretical foundations. In the following,
let q(υ) be ∀y1 : D1, . . . , yn : Dn, ∀xl1 : Dl1 , . . . , xlα :
Dlα . ¬Q(υ, y1, . . . , yn, xl1 , . . . , xlα), and let ql be
Q(υc, c1, . . . , cn, cl1 , . . . , clα) where υc is a constant
denoting an arbitrary state and each ck is a constant
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denoting an arbitrary value of Dk.

Lemma 1: Let ∀υ : RS . q(υ) be a necessary lemma
of ∀υ : RS . p(υ). If there exists a counterexample
ceq ∈ CXS,q and depth(ceq) = N , then (1) ceq ∈ CXS,p,
or (2) there exists a counterexample cep ∈ CXS,p such that
depth(cep) = N + 1.

Lemma 2: If CX S,p is not empty and
depth(cemin

S,p ) = N + 1 , then there exists a necessary
lemma ∀υ : RS .q(υ) of ∀υ : RS .p(υ) such that CXS,q is
not empty and depth(cemin

S,q ) = N .

Following the theories described in the above two
lemmas, especially in lemma 2, we know that if a state
predicate p to be proven invariant has counterexamples,
then we can surely find and systematically construct some
necessary lemmas. In turn, to prove these constructed
necessary lemmas, if they do hold on any initial states,
it is surely that we can find and systematically construct
other necessary lemmas, and so on. As with this recursive
process goes on, the depths of counterexamples of these
necessary lemmas decrease. And from Lemma 1, we can
conclude that if counterexamples exist for some necessary
lemma, then p has counterexamples. This relieves us from
traversing all needed necessary lemmas until we found one
does not hold on any initial state.

Definition 2: Procedure IGF.
Input: an OTS and a state predicate p to be proven invariant.
Output: Success or Fail.

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.

(a) Choose a state predicate q from P and P := (P−{q}),
where q ∈ min-level(P).

(b) Model checking q in a finite reachable state space.
If found a counterexample, terminate and return Fail.

(c) Prove ∀υinit : I. q(vinit).
If it reduces to false, terminate and return Fail.

(d) Find a set G of necessary lemmas such that
∀υ.[((

∧
g∈G g(υ))∧q(υ)) ⇒ ∀τy1,...,ynq(τy1,...,yn(υ))]

reduces to true.
(e) Q := Q∪ {q} and P := P ∪ (G −Q).

3. Terminate and return Success.

The basic idea of the procedure IGF is that: whenever
trying to prove a state predicate, which is either the state
predicate concerned (say p) or a constructed necessary
lemma, model checking it first. Since model checking only
checks a finite reachable state space, we use structural
induction to prove p even if model checking did not find any
counterexample. The falsifying and verifying is conducted
in a breadth-first order with respect to the proof tree (to be

introduced later), which is guaranteed by selecting a state
predicate of minimal level in each loop described in step
2.(a).

B. The Algorithm of CFV

We have proved in [5] that IGF is sound and complete
with respect to falsification, and is sound but not complete
with respect to verification. This implies that IGF may work
well for proving a state predicate with counterexamples,
namely that for falsifying it. But in the situation that a given
state predicate is indeed an invariant (no counterexample),
the procedure may not terminate and successfully prove the
state predicate due to using necessary lemmas as the only
way to strengthen inductive hypothesis.

As an extension of IGF for enhancing the verification
capability, Combined Falsification and Verification (CFV)
is a more general procedure that aims at both falsification
and verification. The main difference between the proce-
dures IGF and CFV lies on using what kind of lemmas
to strengthen the inductive hypothesis. In the procedure
IGF, we always construct and use necessary lemmas to
strengthen inductive hypothesis, but in the procedure CFV,
we systematically use some other stronger lemmas (we say
a state predicate p is stronger than another q if p ⇒ q)
that may be more simple and appropriate, and until no such
stronger lemmas suffice to strengthen inductive hypothesis,
the necessary lemmas are used at last, which are the weakest
lemmas.

The algorithm of the procedure CFV is shown in Defi-
nition 3. Basic idea of the procedure CFV is almost same
as the procedure IGF. But since the state predicates used
to strengthen the inductive hypothesis are sometimes not
necessary lemmas, we need to consider more (rather than
directly concluding that the state predicate concerned is not
an invariant, as done in IGF) when a counterexample is
reported for a state predicate, or the state predicate does
not hold on any initial state, because in both cases, what we
know is only that the state predicate itself is not an invariant.

The key operation or function in the procedure CFV
is process. When a counterexample is found by model
checking for a state predicate, or the state predicate does not
hold on any initial state, operation process is called and it
returns different values according to the category of the state
predicate. The possible output of operation process is either
F, which means the procedure CFV should be terminated
and return Fail; or (X,Y), where X denotes a set of state
predicates that are not appropriate or correct and should
be removed from P and Q, and Y denotes a set of state
predicates that are possibly appropriate or correct and should
be added to P .

The primary part (except the details of the operation
process) of the verification procedure CFV can be repre-
sented as a flow chart as shown in Figure 1.
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We now explain the basic idea of the procedure CFV by
using some examples. Assume a tree-like structure shown
in Figure 2.(a) that represents the proof of a state predicate
p. The tree structure is rooted, unordered, and labeled.
The tree is supposed to be constructed using a breadth-
first manner. The root of the tree is p, and all the other
offspring nodes are constructed lemmas (state predicates)
to strengthen certain inductive hypothesis for proving their
respective parent nodes (state predicates), where the nodes
with superscript n are necessary lemmas and those without
superscript n are not necessary lemmas.

Assume that we find a counterexample for state predicate
z by model checking, or z does not hold on any initial state,
which means that z is not an invariant. Since z is not a
necessary lemma (without the superscript n), the procedure
CFV will then use a systematical way (to be introduced later)
to generate and use another state predicate, say s instead of
z, to strengthen an inductive hypothesis (characterized by
the label l8) to prove rn2 , which is shown in Figure 2.(b).
And the state predicate z (and also all its children nodes, if
any) will be removed from P and Q, and s will be added
to P .

We now assume that the state predicate z is a necessary
lemma (denoted by zn shown in Figure 3.(a)), and we know
z is not an invariant by either model checking or checking
any initial state, then the procedure CFV will try to find,
in its parent list, the nearest state predicate to zn that is
not a necessary lemma (assume this state predicate is x),
and try to generate and use other lemmas, instead of x, to
strengthen the inductive hypothesis denoted by label(x). Let
us see the example in Figure 3.(a), since the nearest state
predicate to zn that is not a necessary lemma is q2, then
we know that q2 should be replaced by some other state
predicates. Note that since q2 is also used to strengthen the
inductive hypothesis characterized by l4 to prove qn1 , then
the procedure will construct two lemmas, say s1 and s2, to
strengthen the inductive hypothesis characterized by l4 and
l2, which is shown in Figure 3.(b). The state predicate q2
and all its recursive children nodes should be removed from
P and Q, and the two newly constructed state predicate s1
and s2 will be added to P .

As another example, let us see Figure 4 (see below). If
we find a counterexample for the state predicate zn, or zn

does not hold on any initial state. Since zn is a necessary
lemma, and there exists a parent list of zn, say rn2 qn2 , where
any state predicate in this list is a necessary lemma. Then
the procedure CFV is terminated and returns Fail, which
means that the state predicate p to be proven invariant is not
an invariant. This situation is exactly same as the procedure
IGF, which is based on the theory defined in Lemma 1.

After introducing the procedure CFV, another thing left
unexplained is how the procedure systematically constructs
other state predicates when a state predicate, which is not
a necessary lemma, is not appropriate, as mentioned in
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Figure 4. The third sample tree of proving p with CFV

the above examples. To explain this, let us first see more
exactly what is the form of a sub-case. The sub-case is
characterized by a set of equations, say E. When CafeOBJ
system reduces to false for this sub-case, a necessary lemma
in the form ¬(

∧
e∈E e) can be constructed. Note that from

this set of equations E, we can also systematically construct
other state predicates, and each such state predicate is in
the form ¬(

∧
e′∈E′ e′), where E′ ∈ 2E , and these state

predicates are stronger than the necessary lemma since
¬(

∧
e′∈E′ e′) ⇒ ¬(

∧
e∈E e). Basically, all of these state

predicates are candidates that can be used, instead of the
necessary lemma, to strengthen inductive hypothesis. How-
ever, only if they satisfy two conditions, they become the
real candidates that will be used by the procedure CFV. The
first condition is of course they should be able to make the
inductive case true; and the second condition is that by
model checking them, no counterexample should be found.

Let us consider proving ∀υ : RS . p(υ) is an invariant. In
an inductive case denoted by a transition τy1,...,yn , CafeOBJ
system returns false for a sub-case characterized by a set
of equations e1, e2, e3, e4. Then all the lemmas we can
construct from these equations are shown below:

One equation ¬e1, ¬e2, ¬e3, ¬e4
Two equations ¬(e1 ∧ e2), ¬(e1 ∧ e3), ¬(e1 ∧ e4)

¬(e2 ∧ e3), ¬(e2 ∧ e4), ¬(e3 ∧ e4)
Three equations ¬(e1 ∧ e2 ∧ e3), ¬(e1 ∧ e2 ∧ e4)

¬(e1 ∧ e3 ∧ e4), ¬(e2 ∧ e3 ∧ e4)
Four equations ¬(e1 ∧ e2 ∧ e3 ∧ e4)

After the procedure CFV filtered some of them according
to the two conditions, CFV will use the remaining lemmas
to strengthen the inductive cases in an order from “One
equation” to “Four equations”, and the “Four equations”
lemma is the necessary lemma.

IV. TOWARDS FORMAL ANALYSIS OF HSTM DESIGNS
WITH THE PROCEDURE CFV

Hierarchical State Transition Matrix (HSTM) [13] is a
table based modeling language for developing designs of
software systems. A HSTM design, namely a design devel-
oped with HSTM, consists of multiple STMs organized in
a hierarchical structure. Each STM models a component of
the design in the form of a table and specifies behaviors
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of the component when certain events are dispatched in
certain states. A simple sample STM is shown below for
demonstration purpose. The informal meaning of the STM is
that: the STM has two states S1 and S2; there are two events
e1 and e2 that may happen to the STM; if, for example, e1
is dispatched when the STM is in states S1, action1 will
be executed and then the STM switches to states S2. The
other cells have similar meanings.

S1 S2

e1
S2 S1

action1 action2

e2
S2 S1

action3 action4

HSTM has been widely accepted and used by particularly
Japanese embedded software industry, and has been adopted
as the modeling language of commercial model-based tools
such as ZIPC [10]. However, despite of its popularity,
there is still lack of mechanized formal verification supports
for conducting rigorous and automatic analysis to improve
reliability of HSTM designs. Based on this need, we have
been developing a HSTM model checker called Garakabu2
[8], [9].

Garakabu2 implements SMT-based [6] Bounded Model
Checking (BMC) [7] algorithms for verification of HSTM
designs. In addition, specific considerations for its practical
usabilities for non-experts in formal methods have been
taken into account during its development. However, one
issue is that Garakabu2 only conducts falsification due to that
only a bounded state space is checked with BMC. This is
sufficient for normal users like software engineers who wish
to explore bugs in HSTM designs. But for expert users like
those who have sufficient knowledge on inductive theorem
proving, it may be desirable that verification functionality
(i.e., proving correctness) is also available in Garakabu2.

Due to the fact that each STM is essentially a state
transition system and a HSTM is just a set of STM organized
in a hierarchical structure, it is possible that a HSTM
design could be represented with OTS and thus be formally
analyzed with the procedure CFV. One key issue in using
CFV to analyze HSTM designs is to translate a HSTM
design into an OTS (which is to be specified in CafeOBJ
specification). This is not difficult since a parser for HSTM
designs has been implemented in Garakabu2 and is ready to
be used. We have been formalizing the translation rules from
HSTM designs into OTSs and the details will be reported
in another opportunity.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first briefly reviewed the procedure
IGF [5], and then described our proposed procedure CFV,
which is an extension of IGF for both falsification and
verification of systems specified in CafeOBJ specification
(with OTS as the background concept). Note that although

the proposed procedure CFV relies on some specific features
of the OTS/CafeOBJ method and Maude model checkers, it
may be revised and extended to combinations of inductive
verification techniques of other theorem proving and other
model checking techniques while remaining the basic idea
of the procedure.

Furthermore, we simply investigated the possibility of
applying the procedure CFV to formal analysis of HSTM
designs. We have been formalizing translation rules from
HSTM designs into OTSs. In the future, we plan to imple-
ment this translation in Garakabu2, and implement interfaces
to connect Garakabu2 with CafeOBJ and Maude systems,
by which Garakabu2 could be used by formal methods
experts for conducting formal analysis of HSTM designs
with both interactive theorem proving and model checking
by following the CFV procedure.
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Definition 3: Procedure CFV.
Input: an OTS and a state predicate p to be proven invariant.
Output: Success or Fail.

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.
(1) Choose a state predicate q from P and P := (P − {q}), where q ∈ min-level(P).
(2) Case [Model checking q in a finite reachable state space] of:

(a) Counterexample: case [process(p, q)] of:
(I) F, then terminate and returns Fail.
(II) (X,Y), then Q := (Q−X), P := ((P −X) ∪ (Y −Q)).

(b) No counterexample, case [prove ∀υinit : I. q(vinit)] of:
(I) reduces to false, case [process(p, q)] of:

(1◦) F, then terminate and returns Fail.
(2◦) (X,Y), then Q := (Q−X), P := ((P −X) ∪ (Y −Q)).

(II) reduces to true, then G := valid(q); Q := Q∪ {q}; P := P ∪ (G −Q).
3. Terminate and return Success.

where:

process(m,n):
Input: two state predicates m and n.
Output: either F or a tuple (X,Y), where X and Y are two sets of state predicates.

1. X := ∅ and Y := ∅.
2. Case [n = m] of:
(1) true, then terminate and return F.
(2) false, case [n is a necessary lemma] of:

(a) true, then case [(parentList(n) = ∅) ∨ (∃List ∈ parentList(n), where any
node in List is a necessary lemma)] of:

(I) true, then terminate and return F.
(II) false, then For each List ∈ parentList(n) do

(1◦) X := X ∪ childrenSet(z), Y := Y ∪ tc-valid(previous(z), z),
where z is the nearest state predicate in List to n that is
not a necessary lemma;

(2◦) return (X,Y).
(b) false, then

(I) X := {n} ∪ childrenSet(n);
(II) For all z ∈ parent(n) do

(1◦) Y := Y ∪ tc-valid(z, n);
(2◦) return (X,Y).

valid(m) = {G | ∀v : Υ.[((
∧

g∈G g(v)) ∧m(υ)) ⇒ ∀τy1,...,yn : T . m(τy1,...,yn(v))]}.

tc-valid(m,n) = n′, where under the case denoted by label(n), which includes the inductive case denoted by a transition
τy1,...,yn := lt(label(n)), and a sub-case denoted by lc(label(n)), such that: ∀υ : Υ.[n′(υ)∧m(υ) ⇒ m(τy1,...,yn(υ))]
reduces to true.
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Figure 1. Flow chart representation of the procedure CFV
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Figure 2. A sample tree of proving state predicate p with CFV
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Figure 3. Another sample tree of proving state predicate p with CFV
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