VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

GUI Failure Analysis and Classification
for the Development of In-Vehicle Infotainment

Daniel Mauser Alexander Klaus Ran Zhang Linshu Duan
Daimler AG Fraunhofer IESE Robert Bosch GmbH AUDI AG
Ulm, Germany Kaiserslautern, Germany Leonberg, Germany Ingolstadt, Germany

daniel.mauser@daimler.comalexander.klaus@iese.fraunhofer.dean.zhang@de.bosch.conlinshu.duan@audi.de

Abstract—Modern automotive infotainment systems have

challenges in software testing. Due to the enormous amount

sophisticated graphical user interfaces, leading to varias
of possible interactions, test engineers have to decide vahi
test aspects to focus on. In this paper, we examine what
types of failures can be found in graphical user interfaces
for automotive infotainment systems and how frequently thg
occur. A hierarchical classification for failures has been d-
veloped based on common concepts in software engineering,
such as Model-View-Controller and Screens. More than 3,000 Figure 1. Example for a graphical user interface of the MégseBenz
failures, found and fixed during the development of automotie ~ infotainment system COMAND

infotainment systems at Audi, Bosch and Mercedes-Benz, hav

been analyzed. Results show that 62% of reports describe

failures related to high and low level behavior, 25% of repots displayed (here: information about the radio station ared th
describe failures related to contents and 6% of reports desibe song played) and a sub menu for content specific options at

/// Dedication to my ex (Miss that) ///
Lloyd; André 3000; Lil'

failures related to design. the bottom (here: “Radio”, “Presets”, “Info”, etc.). The HM
Keywords-failure reports; domain specific failures; GUI is operated via a central control element (CCE) allowing the
based software; in-vehicle infotainment system. user to set the selection focus by rotating or pushing the CCE
in a direction, and to activate options by pressing it down.
|. INTRODUCTION This interaction concept is common in modern in-vehicle

In modern automotive infotainment systems the graphicalnfotainment systems.
user interface (GUI) is an essential part of the software. GUI based software, especially in the automotive domain,
The so-called HMIs (human machine interface) provide thdS becoming more and more complicated - often, documents
system functionality to the user, whether it be the radiowith more than 2,000 pages are written to describe all the
system, the navigation, or system functionality, such as thfunctionality [2]. The reasons are the growing amount of
tire pressure monitoring system. According to Robinson andunctions, which form more and more complex systems, as
Brooks [1], a GUI “is essential to customers, who mustWwell as the usage of more advanced graphical views and
use it whenever they need to interact with the system”€lements (e.g., complicated animations or 3D-elements).
Additionally, they “found that the majority of customer- When testing GUIs, sequences of system interactions
reported GUI defects had major impact on their day-to-dayare performed and the system reaction is compared to the
operations, but were not fixed until the next major release’sPecified reaction in each step. It is obvious that for such
[1]. As automotive infotainment GUIs are built into a car, cCOmplicated systems, not all possible combinations can be
there is no easy possibility to upgrade the system or tdested, and thus it is necessary to focus testing activities
buy a new release, which renders the situation for sucl®n certain failure types. To be able to choose strategies
systems even worse. Additionally, when the system doedccordingly, several questions need to be answered:
not work correctly, drivers may get distracted from driving « What types of failures can be found in GUI based
Therefore, special attention has to be drawn on finding and software today? Is it possible to build a classification
fixing defects during development. of these types?

Figure 1 shows an example of a screen in an HMI. It « What are frequent failures in current GUI software?
consists of a menu at the top of the screen, where all Which are common, which are rare?
available applications, e.g., navigation or audio, can be The article is structured as follows. In Section 2, we
accessed. Each application consists of an application arefiscuss related work and show why we need to create a
at the middle of the screen, where the actual content imew classification scheme. Section 3 describes our approach

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 79

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

for creating a scheme, which is then presented in Sectionomputation, or user interface. The mode refers to whether
4. Section 5 discusses the results of our work. The articlsomething was missing, unclear, wrong, changed, or done
ends with a discussion of the approach and future work irin a better way now. This scheme also does not differentiate
Section 6. the various types of GUI-related failures.
Another well-known scheme has been developed by
Beizer [7]. The main categories are “requirements, fea-
In the literature, various types of defect classificatioas ¢ tures and functionality, structure, data, implementaton
be found. However, many of them lack the practical usageoding, integration, system and software architecture, an
and empirical data in the form of distributions of defectstesting” [7, p. 33], each having three levels of subcateggori
into the scheme, and thus it is hard to tell whether they ar@he scheme is very detailed, but there is no GUI-related
a valuable addition. Other schemes for classification ag€ us category.
frequently, or at least once. For our study, we concentnate 0 An adaption of this scheme for GUI contexts has been
those latter ones, and discuss why they are not fully suitedreated by Brooks, Robinson and Memon [8]. The authors
for our means. As described above, our context is black-boemphasize that “defining a GUI-fault classification scheme
testing of a GUI for automotive infotainment systems. remains an open area for research” [8]. They simplified
IBM created the so-called Orthogonal Defect Classifica-Beizer's scheme to create a two level classification and
tion (ODC) [3]. Since then, many companies have appliecadded a subcategory for GUI-related issues, “to categorize
this approach. It consists of several attributes, such adefects that exist either in the graphical elements of thé GU
triggers, defect types, impact, and others. A GUI-sectioror in the interaction between the GUI and the underlying
is included in the ODC Extensions V5.11. It containsapplication” [8]. However, all of our failures would fit into
triggers, such as “Design Conformance”, “Navigation”, andthat category, and thus, we cannot use this scheme.
“Widget/GUI Behavior”. Compared to our classification (see There also exists a fault classification scheme for auto-
Section 4), some of the triggers match to our categories, buhotive infotainment systems [9], however, this scheme is
not fully: “Navigation” is represented by “Screen Transit ~ based on the network communication, and thus, it cannot
and “Widget Behavior”, which also maps to the “Widget be used for our purposes of classifying software based GUI
Behavior” trigger. Our “Design” category maps to “lcon failures. This scheme differs between hardware and soéwar
Appearance” and “Design Conformance”, while “Input De- but does not differentiate the different possibilities sflies
vices” are not covered by us. All in all, the scheme wouldin the software enough: “software based system faults can
be spread across three levels of our classification. be computational, data management and interface faults” [9
Another scheme, which contains several categories fofhis scheme again has many categories not usable by us, and
GUI-related issues, was made by Li et al. [4]. It consistsdoes not include different GUI-related categories.
of 300 categories, and is based on the ODC, but adapted for Ploski et al. [10] studied several schemes for classifica-
black-box testing. It contains, e.g., categories for GUis i tion, including approaches not presented here. Since there
general, and for GUI control [4]. The GUI-related categsrie was no matching scheme, we did not present them here.
do not fully fit, for example, there is a “Title bar” category, Another approach has been created by the IEEE [11].
but our systems do not have title bars, as desktop softwardowever, this approach is not very detailed, and just lists
does. This scheme is created for regular desktop software, number of attributes to be filled out for each defect. But
as it also classifies keyboard or mouse related faults. Due tthe standard includes a scheme for distinguishing between
the differences between desktop software and our systemdefects and failures. A defect is “an imperfection or defi-
we decided not to adapt this scheme. ciency in a work product that does not meet its requirements
Bgrretzen and Dyre-Hansen [5] created a scheme, whicbr specifications”, while a failure is “an event, in which a
is also based on the ODC. They target industrial projects. Aystem or system component does not perform a required
GUI fault category is included, but not further segmented function within specified limits” [11]. So, when a defect
The rationale for this is that, although “function and GUI is present, and we perform GUI testing, we can observe
faults are the most common fault types”, they are mosfailures. They are caused by defects in the code, but since
often not severe, and thus, not as critical as other categori we test by using the GUI, and not the code (i.e., black box),
[5]. This seems to be a contradiction to what was statedvhat we can observe is the behavior, and this is why we do
in the introduction, but the criticalities of certain types not create a defect but a failure classification scheme.
faults are subject to the application domain. As statedén th The classification schemes available do not meet our
introduction, in our application domain they are very cati requirements. Since we employ block-box testing of GUIs,
and therefore, we focus on them to assure software qualityve cannot use any code-related categories or schemes. We
Hewlett-Packard created a scheme based on three cat®cus only on GUI-related failures. The schemes presented
gories: origin, type, and mode [6]. Origin refers to wherein [6][7] and [9] do not have GUl-related categories and
the defect was introduced, the type can, e.g., be logichecause of this, they cannot be used by us. Others ([3])5][8]

II. RELATED WORK

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 80

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

. . Table |
have GUI-related categories, but still do not meet very EXAMPLES OF THE ANALYZED GIVEN FAILURE REPORTS
well to our purposes. The scheme presented in [4] has
many GUI-related categories, but for desktop software. Dug /D__| Title Problem description

. . . . 4711 Inserted music CDs| Setup Any state
to the differences of desktop and automotive infotainment are not played auto] Actions Insert music CD

GUIs, we did not adapt it because we would then have to matically Observed resultNothing happens
either delete or change most of the categories. Therefore Eépefted resultSystem should display
we created our own failure classification scheme. After play screen

o . ReferenceR0026679
describing the approach we used, the categories of oy Workaround Navigate to CD play

=

scheme are explained in Section 4. , screen manually
4712 Cell phone icon on | Setup Connect cell phone
I1l. METHODOLOGY call screen obsolete Actions Navigate to Call screen
' Observed resultPlaceholder icon for|
For this research, we analyzed databases of existingédailu cell phones is displayed

reports. The data was collected during the development af Eé’;’/‘;gted result Correct icon s dis-
state of the art automotive infotainment systems. Testers ReferenceR0026672
executed the System Under Test (SUT) manually, based dn Workaround —

specification documents, and used failure reporting tamls t

keep records of anomalies. The reports were handed over

to developers who then rechecked and fixed the softwaresimilarity of failures, the classification is based on cqtee

In this context, failures are defined as mismatch betweeAnd patterns used in software engineering. For example, the
the SUT and an explicit GUI specification, which can betop level failure classes atgehavior contents anddesign
observed while operating the system. Any implicit require-according to the well-established Model-View-Controller
ments, such as general standards or guidelines, are npt2] design pattern. The structure of the classification and
subject of the study. Only reports that were accepted akelated separation criteria are presented in Section 4.
failures by both testers and developers were accounted. A classification is needed that gives a good overview and
Failures that are not referring to the GUI were sorted out. is flexible to extend for comprehensiveness. This should

For this study, Audi, Bosch and Mercedes-Benz providede achieved by a hierarchical structure. As indication, how
failure data. Hence the analyzed reports represent a broadany hierarchy levels have to be applied and whether
variety of contexts as they stand for different infotainmen one category could be subdivided reasonably or several
systems (Audi MMI, Mercedes-Benz COMAND and sev- categories should be combined, we defined the following
eral projects, developed at Bosch), different steps in théequirements for the failure classes: To scale the scope
development process as well as different test strategiss, t of each classification level, an initial analysis of the data
personnel and test environments. In total, more than 3,00Mdicates the necessity to limit the percentage of the lowes
reports were analyzed. One third of the reports have beelevel to 10% of the total numbers of failures. To develop a
used as training data to construct the failure classifinatio clear and easy to use structure, the number of categories on
which then was fine-tuned using the remaining reports agvery level has to be 2 in minimum and 5 in maximum.
test data.

As preparation of the analysis, the reports were exported
to an Excel document with one line for each report. Fur- In this section, the GUI failure report classification is
thermore, reports that describe more than one failure haveescribed. Table Il gives an overview of the entire classific
been split up in one line for each failure. Redundant reportsion, including the failure distribution. As mentioned &0
that describe exactly the same failure as already conslderghe top level follows the Model-View-Controller patterr]|1
ones were removed. The following information per reportas this pattern proved to be an adequate abstraction for
was relevant for the analysis: GUI based softwareControllers (here:behavio) abstract

A Report ID identifies the reports uniquely. In thietle the observable behavior, indicating how input is processed
testers describe the essence of the report. Preblem Models (here:content} define all contents that are displayed
description is a detailed statement on (a) the required setufpy the system.Views (here: design describe layout and
of the system under test, (b) the actions that lead to thappearance of the contents to be displayed. As the SUT
failure, (c) the behavior or result that has been observedyas tested as a black box, the MVC pattern is not intended
(d) a description, what should have been displayed insteatb represent the actual software structure or to relate any
and (e) how this failure could be bypassed. If failures weredfailures to implemented software modules.
ambiguous or hard to describe, screen shots were added.In order to avoid enforced classifications of reports to
Table | shows simple examples of reports. existing classes, one category “to be categorized” (TBG) ha

We analyzed this data iteratively by hand to develop abeen created. As for other categories, on the lowest leeel th
classification by clustering similar failures. To detersmthe TBC failure class is limited to 10% of the total number of

IV. FAILURE CLASSIFICATION

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 81

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Table I

THE DISTRIBUTION OF FAILURES
RezdyjionBluctgothitelephony... 1. Tevel 2. level 3. Tevel 4. Tevel distr.
(no telephone authorised) - TBC - - - 76 %
; Screen missing - 5.8 %
Transition extra - 29 %
(3: 17.9%) wrong - 9.2 %
Pop-up missing - 3.6 %
Behavior extra - 3.2%
(2: 11.7%) priority - 0.5 %
Figure 2. Screen example: Telephone application wrong - 4.4 %
screen missing 2.4 %
composition extra 0.9 %
. e . L > 5.4% wron 21 %
fallures_. C_Iassﬁymg more fayIL_J_res than that _Il_mlt as TBC (Options) missi,?g WAL
would indicate, that the definition of an additional failure Behavior Screen offer extra I3 %
class is necessary. (X: 61.5%) | Structure (X: 5.4%) wrong 1.0 %
(2: 13.8%) order 0.9 %
. option missing 1.6 %
A. Behavior gray-out extra 1.0 %
. . . . (2: 3.0%) wrong 0.4 %
The top Ie\(e_l failure clgsb_ehaworcontams all failure . Sehavior missing || 5.1 %
reports describing that stimuli to the SUT do not result in _ (: 14.7%) extra 09%
the specified output. In order to subdivide this failure glas (E\(Vlldglig/) S— V.f.ﬁQ? g.;gﬁ)
. (] . (]
common abstractions in GUI development were applied: (S 3.4%) implicit 15%
Screens[13][14] represent the current state of the GUI explicit 1.0 %
displayed. This state is defined by the options available | missing] 1.2 %
. . design time | incomplete || 0.3 %
to the user. Flgu_re 1 shows the radio screen, where the) (S 5.9%) oxira 05 %
current radio station and the song playing are displayed. Text wrong 39%
The options provided allow users to change waveband (FM (3 15.1%) . missing || 2.2 %
. . . . run time incomplete [[1.1 %
option) or adjust the sound setting (Sound option). Screens (S 9.2%) oxira 0%
are structured based on elementary GUI elements, so calleg wrong 49 %
widgets Widgets are either primitive (label, rectangle, etc.) desion fime F—asing 8-‘1‘?
or complex, meaning that they are a composition of primitive (2:%_8%) Wrong 07 %
or again complex widgets. An example for widgets in Figure | Contents | Animation others 0.1%
1 would be the horizontal list in the top end that contains | (& 25.1%) | (3 1.8%) . missing || 0.4 %
. . . o run time extra 0.1 %
button widgets for all available applications, such as “Nav (=: 1.0%) wrong 03%
“Audio” or “Tel” (i.e., phone). In this classification, the others 01%
i i ; design time | missing 15%
cqncepts of screens and wu_jgets are used to dlffergntlate Symbols | (3 2.99%) R, e
mmro_behgwor. that affects single elements. on the display & Icons Wrong 1%
(e.g., iterating list entries) and macro behavior that ¢glean (3: 8.2%) run time missing || 2.2 %
the entire context of use. (3: 5.3%) VS;‘;LZ ;25’
. (]
1) Widget Failures:The GUIs of the automotive infotain- color . . 10%
ment systems analyzed mainly use various types of lists to font - - 0.4 %
; ; ; ; Design dimension - - 0.7 %
present options to Fhe user. Tq activate an option, thof&e lis ! 5_3%) shape - - o 0/‘;
set a focus by turn_lng or push|_ng the CCE and pressing the position . . > 7%
CCE once the option wanted is focused. Potential failures other - - 0.6 %

might be that the wrong option is focused on start or that

the focus changes not as specified. An example would be

that every time the main menu is entered, the element in theimp to a subgroup of list entries starting with one specific

middle should be focused automatically. A failure would letter. Reports describing that such behavior is eithissing

exist, if the first element would be focused instead. Thosdspecified behavior is not implementeajrong (instead of

failures are considered as deficiewidgets focuslogic. specified behavior, behavior not specified is implemented) o

Subcategories ariaitial focus (the wrong option is focused extra(behavior not specified is implemented), are considered

when a list is enteredjmplicit focus(the focus has to be as deficienwidget behavior

reset due to changing system conditions)esplicit focus 2) Screen Structure Failuredn this failure class, reports

(the user resets the focus by turning or pushing the CCE).are clustered describing the logic to determine the widbget o
For widgets, often additional behavior is specified. Onegjects the screens contain and what data they hold. In automo-

example might be alphabetic scrolling to allow the user totive infotainment systems, the availability of options degds

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 82

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

on numerous conditions, such as available devices (e.ga placeholder. In this classification, we distinguish conhte
radio tuner available, connected mobile phones, etc.), ththat is known atdesign time(e.g., the labels of available
current environmental conditions (e.g., car is movingdast applications) and content that cannot be defined until
than 6 km/h) or even previous interactions (e.g., actigatin time (e.g., displaying the names of available Bluetooth
route guidance). These conditions affect, whether optiondevices). For each of those content types, subclasses for
are displayed but cannot be selected (gray-out mechanismjrong missingandextra contenthave been defined.

or whether options are listed at all. Failure reports degugi This category might be confused with the screen structure
that the options are displayed incorrectly are considesed &ailure class in the behavior sub tree. For example, a filur
deficientoption offeror option gray-out The subclasscreen report describing that the second button in the main menu
compositionclusters failures related to deficient setup ofis “Blind Text” instead of “Audio” could be categorized as
widgets on screen. Subclasses of this categorywaosg contentsor option provisionfailure. If pressing the button
widget (the wrong widget is displayedgxtra widget(an still leads to a screen transition to the Audio context, the
unspecified widget is displayed) arissing widge{widgets report is considered as deficient contents. If another gbnte
that are specified are absenfcreen structurdailures are is displayed, for example the telephone screen, it would be
distinguished from thevidget behaviorcategory as follows: a deficient option provision.

the former represents erroneous selection of widgets such))

as horizontal or vertical lists, whereas the latter clsster C- Design Failures

failures of widget behavior itself, such as the scrollingito The last top level category clusters reports, which describ
or widget state change. design failures. This includesolor (e.g., focus color is

3) Screen Transition Failures:As described above, red instead of orangejont (e.g., text font is Times New
screens represent one special usage context. The failuRoman instead of Arial)dimension(e.g., a button is higher
classscreen transitiortlusters failures occurring when those or broader than specifiedghape (e.g., a button should
usage contexts change. One indication for a screen tramsiti be displayed with rounded instead of sharp edges) and
is that the widget composition and the displayed options ar@osition(e.g., a label of a button is centered instead of left-
replaced. With Figure 1 and Figure 2, a screen transitioraligned). As design failures often were described vaguely,
is demonstrated: first, the Radio screen is shown; witha subcategory fopbther design failures was defined. Am-
activating the option “Tel”, the context changes to thebiguous descriptions were, for example, that wrong arrows,
telephone screen of the infotainment system. Subclasses wfrong Cyrillic letters or a wrong clock were observed. As it
this category aremissing transitionga specified transition became obvious early, that a low percentage of reports were
does not take placegxtra transitions(a transition that is categorized as design failures, no additional work has been
not specified takes place) evrong transitions(instead of done to clarify this category.
screen A, screen B is displayed).

4) Pop-up Behavior FailuresWith automotive infotain-
ment systems, messages are often overlaid over the regularThe requirements defined in Section 3 were met for most
screen (Pop-up mechanism). Those messages inform usdeslure classes. We intended to cover at least 90% of all
about relevant events or change of conditions. For examplelefect reports analyzed. Only 7.6% of the reported failures
those messages might state that the car has reached thad to be classified as “to be categorized”. Furthermore, we
destination of an active route guidance or that hardware hastended to limit the percentage of the classes on the lowest
heated up critically. Subcategories anessing(the pop-up is level of the hierarchy to 10%. This could be achieved as
not displayed although the respective conditions are ejgtiv well: with 9.2%, the largest category whghavior- screen
extra (pop-up appears although the respective conditions arttansition- wrong We intended to allow only 2-5 categories
not active) andwrong (instead of pop-up A, pop-up B is on each hierarchy level. This could not be realized for the
displayed). Additionally, with the pop-up mechanism thedesign category (6 subclasses). However, due to a very small
priority system is important: a pop-up with higher priority number of failures classified as design related (5.8%), we di
always has to be displayed on top of pop-ups with lowemot consider it necessary to restructure this category.
priority. Those failures are clustered in the subclasasrity. Further, we answered the question, what types of failures
are frequent in current GUI software. The results show that
the majority (61.5%) are failures related to behavior. This

The next top level category is related to contents. Thepoints out the complicated macro and micro behavior in
separation criterion is the type of the contesymbols & modern infotainment systems. Most of the failure reports
icons animations or text In Figure 1, a contents failure are related to missing or wrong individual widget behavior
would be, if the button for the “Audio” application would (13.8%), as well as missing or wrong screen transitions
have been labeled incorrectly with “Adio” or the globe (15.0%). The content category is the second biggest top leve
symbol in the upper right corner of the screen would befailure class (25.1%), with erroneous text being the bigges

V. DISCUSSION

B. Contents Failures

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 83

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

subcategory (15.1%). The majority (9.2%) is not known until REFERENCES
run time. Explanations are (a) that in most infotainment [1] B. Robinson and P. Brooks, “An initial study of customer-

systems information is mainly displayed textually and (b) reported gui defects,” irSoftware Testing, Verification and
that testing texts is easier for human testers than congparin Validation Workshops, 2009. ICSTW'09. International Con-
symbols or animations in detail. Very few failures (5.8%) ference on |EEE, 2009, pp. 267-274.

des_crlb_e erroneous design. One explanatlon_n_wlght be, tha[Z] C. Bock, “Model-driven hmi development: Can meta-case
design is hard to test manually. For example, it is a problem™" = " " o job?” inSystem Sciences, 2007. HICSS 2007.
to differentiate shades of colors by eye. In addition, most 40th Annual Hawaii International Conference .on IEEE,
design errors are less critical and might even not be recog- 2007, pp. 287b—287b.

nized by users. Therefore, testing design might not be of[3] R Chil orth ! def (assificationfandbook
; P . Chillarege, “Orthogonal defect classificatiorandboo
high priority to test planners. of Software Reliability Engineeringp. 359-399, 1999.

VI. CONCLUSION AND FUTURE WORK . . e
[4] N. Li, Z. Li, and X. Sun, “Classification of software detec

In this paper, we answered the question what types of detected by black-box testing: An empirical study,” Soft-
failures can be found in GUI based infotainment systems ware Engineering (WCSE), 2010 Second World Congress on
in the automotive domain today. A failure classification has V0! 2. |EEE, 2010, pp. 234-240.
been developed gnd applied to more than 3,000 failure re; 5] J. Barretzen and R. Conradi, “Results and experienaas fr
ports created during the development of modern automotive’ * an empirical study of fault reports in industrial projetts,
infotainment systems at AUDI, Bosch and Mercedes-Benz. Product-Focused Software Process Improvememt 389—
62% of the reports describe failures related to high and 394, 2006.
low level behavior, 25% of the reports describe failures
related to contents and 6% of the reports describe failure
related to design. We support not only testers, but theeentir
GUI development process by pointing out pitfalls leading to [7] B. Beizer, “Software system testing techniqueNgw York:
gaps between the specification and the implementation. The Van Norstrand Reinhold1990.

.ClaSSIflqa.ltlor.] indicates, what aSpe.CtS need special [mem 0[8] P. Brooks, B. Robinson, and A. Memon, “An initial charac-
In spemﬂc_a'qon docqments and might need to be de_scrlbe terization of industrial graphical user interface systénrs
more explicitly than is usual today. For roles responsible f Software Testing Verification and Validation, 2009. ICST'0
the implementation of GUI concepts, this work points out International Conference on IEEE, 2009, pp. 11-20.
aspects that might be ambiguous and need clarification.

[9] M. Kabir, “A fault classification model of modern autoniat

Ir: f(;]i;“e r(;ase_arcg; the s_uggested ClatSS|f|cat|fo|n mlgﬂt bel infotainment system,” ilApplied Electronics, 2009. AE 2009
Scale Yy reducing the maximum percentages or lowest leve IEEE, 2009, pp. 145-148.

categories. Thus, some categories have to be differedtiate
further and additional failure classes have to be defined10] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasseibrin

S[6] R. Grady,Practical software metrics for project management
and process improvementPrentice-Hall, Inc., 1992.

Moreover, additional parameters such as “failure critig3l “Research issues in software fault categorizati®GSOFT
“predicted number of affected users” or “costs for testing” Sg:“g’gg% Engineering Notesol. 32, no. 6, pp. 1-8, Novem-

could be added to the classification. Those aspects are

not in focus at the current stage and might influence the11] “Standard classification for software anomaliefSEE Std
choice of test strategies significantly. One could then $ocu 1044-2009 (Revision of IEEE Std 1044-1993). C1 -15, 7
or prioritize testing on those types of failures, which are ~ 2010.

most critical, based on the frequency and these additiona? 2]
parameters. For this, coverage criteria and prioritizatio
techniques are currently examined, to check, which of them,

if any, may be used for our purposes. This classificatior13] S. Stoecklin and C. Allen, “Creating a reusable gui comp
could be applied to future automotive infotainment systems nent” Softw. Pract. Expervol. 32, no. 5, pp. 403-416, Apr.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign
Patterns Reading, MA: Addison Wesley, 1995.

to analyze change of the failure focus. 2002.
ACKNOWLEDGMENT [14] J. Chen and S. Subramaniam, “Specification-basedtekir
gui-based applicationsSoftware Quality Journalol. 10, pp.
The authors would like to thank Krishna Murthy Murlid- 205-224, 2002.

har, Sven Neuendorf and Jasmin Zieger for their contribu-
tions. The research described in this paper was conducted
within the project automotiveHMI. The project automo-
tiveHMI is funded by the German Federal Ministry of Eco-
nomics and Technology under grant number 01MS11007.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2 84

