
GUI Failure Analysis and Classification
for the Development of In-Vehicle Infotainment

Daniel Mauser
Daimler AG

Ulm, Germany
daniel.mauser@daimler.com

Alexander Klaus
Fraunhofer IESE

Kaiserslautern, Germany
alexander.klaus@iese.fraunhofer.de

Ran Zhang
Robert Bosch GmbH
Leonberg, Germany

ran.zhang@de.bosch.com

Linshu Duan
AUDI AG

Ingolstadt, Germany
linshu.duan@audi.de

Abstract—Modern automotive infotainment systems have
sophisticated graphical user interfaces, leading to various
challenges in software testing. Due to the enormous amount
of possible interactions, test engineers have to decide which
test aspects to focus on. In this paper, we examine what
types of failures can be found in graphical user interfaces
for automotive infotainment systems and how frequently they
occur. A hierarchical classification for failures has been de-
veloped based on common concepts in software engineering,
such as Model-View-Controller and Screens. More than 3,000
failures, found and fixed during the development of automotive
infotainment systems at Audi, Bosch and Mercedes-Benz, have
been analyzed. Results show that 62% of reports describe
failures related to high and low level behavior, 25% of reports
describe failures related to contents and 6% of reports describe
failures related to design.

Keywords-failure reports; domain specific failures; GUI
based software; in-vehicle infotainment system.

I. I NTRODUCTION

In modern automotive infotainment systems the graphical
user interface (GUI) is an essential part of the software.
The so-called HMIs (human machine interface) provide the
system functionality to the user, whether it be the radio
system, the navigation, or system functionality, such as the
tire pressure monitoring system. According to Robinson and
Brooks [1], a GUI “is essential to customers, who must
use it whenever they need to interact with the system”.
Additionally, they “found that the majority of customer-
reported GUI defects had major impact on their day-to-day
operations, but were not fixed until the next major release”
[1]. As automotive infotainment GUIs are built into a car,
there is no easy possibility to upgrade the system or to
buy a new release, which renders the situation for such
systems even worse. Additionally, when the system does
not work correctly, drivers may get distracted from driving.
Therefore, special attention has to be drawn on finding and
fixing defects during development.

Figure 1 shows an example of a screen in an HMI. It
consists of a menu at the top of the screen, where all
available applications, e.g., navigation or audio, can be
accessed. Each application consists of an application area
at the middle of the screen, where the actual content is

Figure 1. Example for a graphical user interface of the Mercedes-Benz
infotainment system COMAND

displayed (here: information about the radio station and the
song played) and a sub menu for content specific options at
the bottom (here: “Radio”, “Presets”, “Info”, etc.). The HMI
is operated via a central control element (CCE) allowing the
user to set the selection focus by rotating or pushing the CCE
in a direction, and to activate options by pressing it down.
This interaction concept is common in modern in-vehicle
infotainment systems.

GUI based software, especially in the automotive domain,
is becoming more and more complicated - often, documents
with more than 2,000 pages are written to describe all the
functionality [2]. The reasons are the growing amount of
functions, which form more and more complex systems, as
well as the usage of more advanced graphical views and
elements (e.g., complicated animations or 3D-elements).

When testing GUIs, sequences of system interactions
are performed and the system reaction is compared to the
specified reaction in each step. It is obvious that for such
complicated systems, not all possible combinations can be
tested, and thus it is necessary to focus testing activities
on certain failure types. To be able to choose strategies
accordingly, several questions need to be answered:

• What types of failures can be found in GUI based
software today? Is it possible to build a classification
of these types?

• What are frequent failures in current GUI software?
Which are common, which are rare?

The article is structured as follows. In Section 2, we
discuss related work and show why we need to create a
new classification scheme. Section 3 describes our approach

79Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



for creating a scheme, which is then presented in Section
4. Section 5 discusses the results of our work. The article
ends with a discussion of the approach and future work in
Section 6.

II. RELATED WORK

In the literature, various types of defect classifications can
be found. However, many of them lack the practical usage
and empirical data in the form of distributions of defects
into the scheme, and thus it is hard to tell whether they are
a valuable addition. Other schemes for classification are used
frequently, or at least once. For our study, we concentrate on
those latter ones, and discuss why they are not fully suited
for our means. As described above, our context is black-box
testing of a GUI for automotive infotainment systems.

IBM created the so-called Orthogonal Defect Classifica-
tion (ODC) [3]. Since then, many companies have applied
this approach. It consists of several attributes, such as
triggers, defect types, impact, and others. A GUI-section
is included in the ODC Extensions V5.11. It contains
triggers, such as “Design Conformance”, “Navigation”, and
“Widget/GUI Behavior”. Compared to our classification (see
Section 4), some of the triggers match to our categories, but
not fully: “Navigation” is represented by “Screen Transition”
and “Widget Behavior”, which also maps to the “Widget
Behavior” trigger. Our “Design” category maps to “Icon
Appearance” and “Design Conformance”, while “Input De-
vices” are not covered by us. All in all, the scheme would
be spread across three levels of our classification.

Another scheme, which contains several categories for
GUI-related issues, was made by Li et al. [4]. It consists
of 300 categories, and is based on the ODC, but adapted for
black-box testing. It contains, e.g., categories for GUIs in
general, and for GUI control [4]. The GUI-related categories
do not fully fit, for example, there is a “Title bar” category,
but our systems do not have title bars, as desktop software
does. This scheme is created for regular desktop software,
as it also classifies keyboard or mouse related faults. Due to
the differences between desktop software and our systems,
we decided not to adapt this scheme.

Børretzen and Dyre-Hansen [5] created a scheme, which
is also based on the ODC. They target industrial projects. A
GUI fault category is included, but not further segmented.
The rationale for this is that, although “function and GUI
faults are the most common fault types”, they are most
often not severe, and thus, not as critical as other categories
[5]. This seems to be a contradiction to what was stated
in the introduction, but the criticalities of certain typesof
faults are subject to the application domain. As stated in the
introduction, in our application domain they are very critical,
and therefore, we focus on them to assure software quality.

Hewlett-Packard created a scheme based on three cate-
gories: origin, type, and mode [6]. Origin refers to where
the defect was introduced, the type can, e.g., be logic,

computation, or user interface. The mode refers to whether
something was missing, unclear, wrong, changed, or done
in a better way now. This scheme also does not differentiate
the various types of GUI-related failures.

Another well-known scheme has been developed by
Beizer [7]. The main categories are “requirements, fea-
tures and functionality, structure, data, implementationand
coding, integration, system and software architecture, and
testing” [7, p. 33], each having three levels of subcategories.
The scheme is very detailed, but there is no GUI-related
category.

An adaption of this scheme for GUI contexts has been
created by Brooks, Robinson and Memon [8]. The authors
emphasize that “defining a GUI-fault classification scheme
remains an open area for research” [8]. They simplified
Beizer’s scheme to create a two level classification and
added a subcategory for GUI-related issues, “to categorize
defects that exist either in the graphical elements of the GUI
or in the interaction between the GUI and the underlying
application” [8]. However, all of our failures would fit into
that category, and thus, we cannot use this scheme.

There also exists a fault classification scheme for auto-
motive infotainment systems [9], however, this scheme is
based on the network communication, and thus, it cannot
be used for our purposes of classifying software based GUI
failures. This scheme differs between hardware and software,
but does not differentiate the different possibilities of issues
in the software enough: “software based system faults can
be computational, data management and interface faults” [9].
This scheme again has many categories not usable by us, and
does not include different GUI-related categories.

Ploski et al. [10] studied several schemes for classifica-
tion, including approaches not presented here. Since there
was no matching scheme, we did not present them here.

Another approach has been created by the IEEE [11].
However, this approach is not very detailed, and just lists
a number of attributes to be filled out for each defect. But
the standard includes a scheme for distinguishing between
defects and failures. A defect is “an imperfection or defi-
ciency in a work product that does not meet its requirements
or specifications”, while a failure is “an event, in which a
system or system component does not perform a required
function within specified limits” [11]. So, when a defect
is present, and we perform GUI testing, we can observe
failures. They are caused by defects in the code, but since
we test by using the GUI, and not the code (i.e., black box),
what we can observe is the behavior, and this is why we do
not create a defect but a failure classification scheme.

The classification schemes available do not meet our
requirements. Since we employ block-box testing of GUIs,
we cannot use any code-related categories or schemes. We
focus only on GUI-related failures. The schemes presented
in [6][7] and [9] do not have GUI-related categories and
because of this, they cannot be used by us. Others ([3][5][8])

80Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



have GUI-related categories, but still do not meet very
well to our purposes. The scheme presented in [4] has
many GUI-related categories, but for desktop software. Due
to the differences of desktop and automotive infotainment
GUIs, we did not adapt it because we would then have to
either delete or change most of the categories. Therefore,
we created our own failure classification scheme. After
describing the approach we used, the categories of our
scheme are explained in Section 4.

III. M ETHODOLOGY

For this research, we analyzed databases of existing failure
reports. The data was collected during the development of
state of the art automotive infotainment systems. Testers
executed the System Under Test (SUT) manually, based on
specification documents, and used failure reporting tools to
keep records of anomalies. The reports were handed over
to developers who then rechecked and fixed the software.
In this context, failures are defined as mismatch between
the SUT and an explicit GUI specification, which can be
observed while operating the system. Any implicit require-
ments, such as general standards or guidelines, are not
subject of the study. Only reports that were accepted as
failures by both testers and developers were accounted.
Failures that are not referring to the GUI were sorted out.

For this study, Audi, Bosch and Mercedes-Benz provided
failure data. Hence the analyzed reports represent a broad
variety of contexts as they stand for different infotainment
systems (Audi MMI, Mercedes-Benz COMAND and sev-
eral projects, developed at Bosch), different steps in the
development process as well as different test strategies, test
personnel and test environments. In total, more than 3,000
reports were analyzed. One third of the reports have been
used as training data to construct the failure classification
which then was fine-tuned using the remaining reports as
test data.

As preparation of the analysis, the reports were exported
to an Excel document with one line for each report. Fur-
thermore, reports that describe more than one failure have
been split up in one line for each failure. Redundant reports
that describe exactly the same failure as already considered
ones were removed. The following information per report
was relevant for the analysis:

A Report ID identifies the reports uniquely. In theTitle
testers describe the essence of the report. TheProblem
description is a detailed statement on (a) the required setup
of the system under test, (b) the actions that lead to the
failure, (c) the behavior or result that has been observed,
(d) a description, what should have been displayed instead
and (e) how this failure could be bypassed. If failures were
ambiguous or hard to describe, screen shots were added.
Table I shows simple examples of reports.

We analyzed this data iteratively by hand to develop a
classification by clustering similar failures. To determine the

Table I
EXAMPLES OF THE ANALYZED GIVEN FAILURE REPORTS

ID Title Problem description
4711 Inserted music CDs Setup: Any state

are not played auto- Actions: Insert music CD
matically Observed result: Nothing happens

Expected result: System should display
CD play screen
Reference: R0026679
Workaround: Navigate to CD play
screen manually

4712 Cell phone icon on Setup: Connect cell phone
call screen obsolete Actions: Navigate to Call screen

Observed result: Placeholder icon for
cell phones is displayed
Expected result: Correct icon is dis-
played
Reference: R0026672
Workaround: —

similarity of failures, the classification is based on concepts
and patterns used in software engineering. For example, the
top level failure classes arebehavior, contents, anddesign,
according to the well-established Model-View-Controller
[12] design pattern. The structure of the classification and
related separation criteria are presented in Section 4.

A classification is needed that gives a good overview and
is flexible to extend for comprehensiveness. This should
be achieved by a hierarchical structure. As indication, how
many hierarchy levels have to be applied and whether
one category could be subdivided reasonably or several
categories should be combined, we defined the following
requirements for the failure classes: To scale the scope
of each classification level, an initial analysis of the data
indicates the necessity to limit the percentage of the lowest
level to 10% of the total numbers of failures. To develop a
clear and easy to use structure, the number of categories on
every level has to be 2 in minimum and 5 in maximum.

IV. FAILURE CLASSIFICATION

In this section, the GUI failure report classification is
described. Table II gives an overview of the entire classifica-
tion, including the failure distribution. As mentioned above,
the top level follows the Model-View-Controller pattern [12],
as this pattern proved to be an adequate abstraction for
GUI based software.Controllers (here:behavior) abstract
the observable behavior, indicating how input is processed.
Models (here:contents) define all contents that are displayed
by the system.Views (here: design) describe layout and
appearance of the contents to be displayed. As the SUT
was tested as a black box, the MVC pattern is not intended
to represent the actual software structure or to relate any
failures to implemented software modules.

In order to avoid enforced classifications of reports to
existing classes, one category “to be categorized” (TBC) has
been created. As for other categories, on the lowest level the
TBC failure class is limited to 10% of the total number of

81Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



Figure 2. Screen example: Telephone application

failures. Classifying more failures than that limit as TBC
would indicate, that the definition of an additional failure
class is necessary.

A. Behavior

The top level failure classbehavior contains all failure
reports describing that stimuli to the SUT do not result in
the specified output. In order to subdivide this failure class,
common abstractions in GUI development were applied:

Screens[13][14] represent the current state of the GUI
displayed. This state is defined by the options available
to the user. Figure 1 shows the radio screen, where the
current radio station and the song playing are displayed.
The options provided allow users to change waveband (FM
option) or adjust the sound setting (Sound option). Screens
are structured based on elementary GUI elements, so called
widgets. Widgets are either primitive (label, rectangle, etc.)
or complex, meaning that they are a composition of primitive
or again complex widgets. An example for widgets in Figure
1 would be the horizontal list in the top end that contains
button widgets for all available applications, such as “Navi”,
“Audio” or “Tel” (i.e., phone). In this classification, the
concepts of screens and widgets are used to differentiate
micro behavior that affects single elements on the display
(e.g., iterating list entries) and macro behavior that changes
the entire context of use.

1) Widget Failures:The GUIs of the automotive infotain-
ment systems analyzed mainly use various types of lists to
present options to the user. To activate an option, those lists
set a focus by turning or pushing the CCE and pressing the
CCE once the option wanted is focused. Potential failures
might be that the wrong option is focused on start or that
the focus changes not as specified. An example would be
that every time the main menu is entered, the element in the
middle should be focused automatically. A failure would
exist, if the first element would be focused instead. Those
failures are considered as deficientwidgets focuslogic.
Subcategories areinitial focus (the wrong option is focused
when a list is entered),implicit focus (the focus has to be
reset due to changing system conditions) orexplicit focus
(the user resets the focus by turning or pushing the CCE).

For widgets, often additional behavior is specified. One
example might be alphabetic scrolling to allow the user to

Table II
THE DISTRIBUTION OFFAILURES

1. level 2. level 3. level 4. level distr.
TBC - - - 7.6 %

Behavior

Screen missing - 5.8 %
Transition extra - 2.9 %

(Σ: 17.9%) wrong - 9.2 %
Pop-up missing - 3.6 %

Behavior extra - 3.2 %
(Σ: 11.7%) priority - 0.5 %

wrong - 4.4 %
screen missing 2.4 %

composition extra 0.9 %
(Σ: 5.4%) wrong 2.1 %

options missing 2.2 %
Screen offer extra 1.3 %

(Σ: 61.5%) Structure (Σ: 5.4%) wrong 1.0 %
(Σ: 13.8%) order 0.9 %

option missing 1.6 %
gray-out extra 1.0 %

(Σ: 3.0%) wrong 0.4 %
Behavior missing 5.1 %

(Σ: 14.7%) extra 0.9 %
Widget wrong 8.7 %

(Σ: 18.1%) focus initial 0.9 %
(Σ: 3.4%) implicit 1.5 %

explicit 1.0 %

Contents

missing 1.2 %
design time incomplete 0.3 %
(Σ: 5.9%) extra 0.5 %

Text wrong 3.9 %
(Σ: 15.1%) missing 2.2 %

run time incomplete 1.1 %
(Σ: 9.2%) extra 1.0 %

wrong 4.9 %
missing 0.4 %

design time extra 0.1 %
(Σ: 0.8%) wrong 0.2 %

Animation others 0.1 %
(Σ: 25.1%) (Σ: 1.8%) missing 0.4 %

run time extra 0.1 %
(Σ: 1.0%) wrong 0.3 %

others 0.1 %
design time missing 1.5 %

Symbols (Σ: 2.9%) extra 0.2 %
& Icons wrong 1.2 %

(Σ: 8.2%) run time missing 2.2 %
(Σ: 5.3%) extra 1.0 %

wrong 2.1 %

Design

color - - 1.0 %
font - - 0.4 %

dimension - - 0.7 %
(Σ: 5.8%) shape - - 0.4 %

position - - 2.7 %
other - - 0.6 %

jump to a subgroup of list entries starting with one specific
letter. Reports describing that such behavior is eithermissing
(specified behavior is not implemented),wrong (instead of
specified behavior, behavior not specified is implemented) or
extra(behavior not specified is implemented), are considered
as deficientwidget behavior.

2) Screen Structure Failures:In this failure class, reports
are clustered describing the logic to determine the widget ob-
jects the screens contain and what data they hold. In automo-
tive infotainment systems, the availability of options depends

82Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



on numerous conditions, such as available devices (e.g.,
radio tuner available, connected mobile phones, etc.), the
current environmental conditions (e.g., car is moving faster
than 6 km/h) or even previous interactions (e.g., activating
route guidance). These conditions affect, whether options
are displayed but cannot be selected (gray-out mechanism)
or whether options are listed at all. Failure reports describing
that the options are displayed incorrectly are considered as
deficientoption offeror option gray-out. The subclassscreen
compositionclusters failures related to deficient setup of
widgets on screen. Subclasses of this category arewrong
widget (the wrong widget is displayed),extra widget (an
unspecified widget is displayed) ormissing widget(widgets
that are specified are absent).Screen structurefailures are
distinguished from thewidget behaviorcategory as follows:
the former represents erroneous selection of widgets such
as horizontal or vertical lists, whereas the latter clusters
failures of widget behavior itself, such as the scrolling logic
or widget state change.

3) Screen Transition Failures:As described above,
screens represent one special usage context. The failure
classscreen transitionclusters failures occurring when those
usage contexts change. One indication for a screen transition
is that the widget composition and the displayed options are
replaced. With Figure 1 and Figure 2, a screen transition
is demonstrated: first, the Radio screen is shown; with
activating the option “Tel”, the context changes to the
telephone screen of the infotainment system. Subclasses of
this category aremissing transitions(a specified transition
does not take place),extra transitions(a transition that is
not specified takes place) orwrong transitions(instead of
screen A, screen B is displayed).

4) Pop-up Behavior Failures:With automotive infotain-
ment systems, messages are often overlaid over the regular
screen (Pop-up mechanism). Those messages inform users
about relevant events or change of conditions. For example,
those messages might state that the car has reached the
destination of an active route guidance or that hardware has
heated up critically. Subcategories aremissing(the pop-up is
not displayed although the respective conditions are active),
extra (pop-up appears although the respective conditions are
not active) andwrong (instead of pop-up A, pop-up B is
displayed). Additionally, with the pop-up mechanism the
priority system is important: a pop-up with higher priority
always has to be displayed on top of pop-ups with lower
priority. Those failures are clustered in the subclasspriority.

B. Contents Failures

The next top level category is related to contents. The
separation criterion is the type of the content:symbols &
icons, animations, or text. In Figure 1, a contents failure
would be, if the button for the “Audio” application would
have been labeled incorrectly with “Adio” or the globe
symbol in the upper right corner of the screen would be

a placeholder. In this classification, we distinguish content
that is known atdesign time(e.g., the labels of available
applications) and content that cannot be defined untilrun
time (e.g., displaying the names of available Bluetooth
devices). For each of those content types, subclasses for
wrong, missingandextra contenthave been defined.

This category might be confused with the screen structure
failure class in the behavior sub tree. For example, a failure
report describing that the second button in the main menu
is “Blind Text” instead of “Audio” could be categorized as
contentsor option provisionfailure. If pressing the button
still leads to a screen transition to the Audio context, the
report is considered as deficient contents. If another context
is displayed, for example the telephone screen, it would be
a deficient option provision.

C. Design Failures

The last top level category clusters reports, which describe
design failures. This includescolor (e.g., focus color is
red instead of orange),font (e.g., text font is Times New
Roman instead of Arial),dimension(e.g., a button is higher
or broader than specified),shape (e.g., a button should
be displayed with rounded instead of sharp edges) and
position(e.g., a label of a button is centered instead of left-
aligned). As design failures often were described vaguely,
a subcategory forother design failures was defined. Am-
biguous descriptions were, for example, that wrong arrows,
wrong Cyrillic letters or a wrong clock were observed. As it
became obvious early, that a low percentage of reports were
categorized as design failures, no additional work has been
done to clarify this category.

V. D ISCUSSION

The requirements defined in Section 3 were met for most
failure classes. We intended to cover at least 90% of all
defect reports analyzed. Only 7.6% of the reported failures
had to be classified as “to be categorized”. Furthermore, we
intended to limit the percentage of the classes on the lowest
level of the hierarchy to 10%. This could be achieved as
well: with 9.2%, the largest category wasbehavior- screen
transition - wrong. We intended to allow only 2-5 categories
on each hierarchy level. This could not be realized for the
design category (6 subclasses). However, due to a very small
number of failures classified as design related (5.8%), we did
not consider it necessary to restructure this category.

Further, we answered the question, what types of failures
are frequent in current GUI software. The results show that
the majority (61.5%) are failures related to behavior. This
points out the complicated macro and micro behavior in
modern infotainment systems. Most of the failure reports
are related to missing or wrong individual widget behavior
(13.8%), as well as missing or wrong screen transitions
(15.0%). The content category is the second biggest top level
failure class (25.1%), with erroneous text being the biggest

83Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



subcategory (15.1%). The majority (9.2%) is not known until
run time. Explanations are (a) that in most infotainment
systems information is mainly displayed textually and (b)
that testing texts is easier for human testers than comparing
symbols or animations in detail. Very few failures (5.8%)
describe erroneous design. One explanation might be, that
design is hard to test manually. For example, it is a problem
to differentiate shades of colors by eye. In addition, most
design errors are less critical and might even not be recog-
nized by users. Therefore, testing design might not be of
high priority to test planners.

VI. CONCLUSION AND FUTURE WORK

In this paper, we answered the question what types of
failures can be found in GUI based infotainment systems
in the automotive domain today. A failure classification has
been developed and applied to more than 3,000 failure re-
ports created during the development of modern automotive
infotainment systems at AUDI, Bosch and Mercedes-Benz.
62% of the reports describe failures related to high and
low level behavior, 25% of the reports describe failures
related to contents and 6% of the reports describe failures
related to design. We support not only testers, but the entire
GUI development process by pointing out pitfalls leading to
gaps between the specification and the implementation. The
classification indicates, what aspects need special attention
in specification documents and might need to be described
more explicitly than is usual today. For roles responsible for
the implementation of GUI concepts, this work points out
aspects that might be ambiguous and need clarification.

In future research, the suggested classification might be
scaled by reducing the maximum percentages of lowest level
categories. Thus, some categories have to be differentiated
further and additional failure classes have to be defined.
Moreover, additional parameters such as “failure criticality”,
“predicted number of affected users” or “costs for testing”
could be added to the classification. Those aspects are
not in focus at the current stage and might influence the
choice of test strategies significantly. One could then focus
or prioritize testing on those types of failures, which are
most critical, based on the frequency and these additional
parameters. For this, coverage criteria and prioritization
techniques are currently examined, to check, which of them,
if any, may be used for our purposes. This classification
could be applied to future automotive infotainment systems
to analyze change of the failure focus.

ACKNOWLEDGMENT

The authors would like to thank Krishna Murthy Murlid-
har, Sven Neuendorf and Jasmin Zieger for their contribu-
tions. The research described in this paper was conducted
within the project automotiveHMI. The project automo-
tiveHMI is funded by the German Federal Ministry of Eco-
nomics and Technology under grant number 01MS11007.

REFERENCES

[1] B. Robinson and P. Brooks, “An initial study of customer-
reported gui defects,” inSoftware Testing, Verification and
Validation Workshops, 2009. ICSTW’09. International Con-
ference on. IEEE, 2009, pp. 267–274.

[2] C. Bock, “Model-driven hmi development: Can meta-case
tools do the job?” inSystem Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on. IEEE,
2007, pp. 287b–287b.

[3] R. Chillarege, “Orthogonal defect classification,”Handbook
of Software Reliability Engineering, pp. 359–399, 1999.

[4] N. Li, Z. Li, and X. Sun, “Classification of software defect
detected by black-box testing: An empirical study,” inSoft-
ware Engineering (WCSE), 2010 Second World Congress on,
vol. 2. IEEE, 2010, pp. 234–240.

[5] J. Børretzen and R. Conradi, “Results and experiences from
an empirical study of fault reports in industrial projects,”
Product-Focused Software Process Improvement, pp. 389–
394, 2006.

[6] R. Grady,Practical software metrics for project management
and process improvement. Prentice-Hall, Inc., 1992.

[7] B. Beizer, “Software system testing techniques,”New York:
Van Norstrand Reinhold, 1990.

[8] P. Brooks, B. Robinson, and A. Memon, “An initial charac-
terization of industrial graphical user interface systems,” in
Software Testing Verification and Validation, 2009. ICST’09.
International Conference on. IEEE, 2009, pp. 11–20.

[9] M. Kabir, “A fault classification model of modern automotive
infotainment system,” inApplied Electronics, 2009. AE 2009.
IEEE, 2009, pp. 145–148.

[10] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring,
“Research issues in software fault categorization,”SIGSOFT
Software Engineering Notes, vol. 32, no. 6, pp. 1–8, Novem-
ber 2007.

[11] “Standard classification for software anomalies,”IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. C1 –15, 7
2010.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns. Reading, MA: Addison Wesley, 1995.

[13] S. Stoecklin and C. Allen, “Creating a reusable gui compo-
nent,” Softw. Pract. Exper., vol. 32, no. 5, pp. 403–416, Apr.
2002.

[14] J. Chen and S. Subramaniam, “Specification-based testing for
gui-based applications,”Software Quality Journal, vol. 10, pp.
205–224, 2002.

84Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle


