
Variability Management in Testing Architectures for Embedded Control Systems

Goiuria Sagardui, Leire Etxeberria and Joseba A. Agirre
Computer and Electronics department
Mondragon Goi Eskola Politeknikoa

Loramendi 4, Mondragón (Gipuzkoa), Spain
Email: {gsagardui, letxeberria, jaagirre}@mondragon.edu

Abstract— In recent years, embedded systems have
substantially increased their presence both in industry and in
our everyday lives. Hence, more and more effort is being
dedicated to the development of such systems. Since embedded
systems involve computation that is subject to physical
constraints, the development and validation of software for
such systems becomes a challenge. Moreover, the validation of
the embedded system within the environment increases the
complexity and cost of testing, so many efforts are being
devoted to perform testing activities from early phases of the
development. Testing by simulation of the system and its
environment is one of the most promising approaches to
reduce testing costs. In this paper, we present a proposal based
on model-based testing and variability management and
integrated in Simulink for ensuring the correctness of a
embedded control software. Variability management of
configurations helps managing different simulation
environments and allows less costly and time-consuming
testing.

Keywords - testing architecture; variability management;
simulation.

I. INTRODUCTION

Embedded systems are engineering artifacts involving
computation that is subject to physical constraints. The
physical constraints arise through two kinds of interactions
of computational processes with the physical world: (i)
reaction to a physical environment, and (ii) execution on a
physical platform [1]. Concentrating on software, embedded
system software characterizes itself, among others, by
heterogeneity, distribution (on potential multiple and
heterogeneous hardware resources), ability to react
(supervision, user interfaces modes), criticality, real-time and
consumption constraints [2]. The need to consider all these
factors in concert makes the development of software for
embedded systems a complex endeavour.

However, not only development poses a significant
challenge. Due to its complexity, the validation of embedded
software also becomes a cumbersome task. Embedded
software needs to cater for the variability on both the
physical environment and the physical platform it is executed
on apart from testing the software itself.

Moreover, when we consider that embedded systems are
often part of safety-critical systems (e.g., aviation or railway
systems), the validation of the software becomes essential
[3], which also raises testing cost.

Model Driven Engineering (MDE) is a paradigm that
promises a reduction in testing efforts. Models become the
central asset of the development so testing can be started
from early phases. Model-, software-, processor-, and
hardware-in-the-loop (MiL, SiL, PiL, and HiL) tests; called
X-in-the-loop tests provide four testing configurations [4].
“The model, software, processor, and hardware terms refer to
the different target system configurations in the testing
environment, each of which adds value to the verification
process” [4].

The MiL tests the model along with the plant model that
simulates the physical environment signals. For SiL testing,
the model of the MiL is replaced with the corresponding
software code. This source code can be autogenerated from
the model. PiL tests the source code executed on the target
processor machine. For HiL testing, the software is
integrated with the real software infrastructure and deployed
in the hardware processor or microcontroller. The
environment around the system is still a simulated one, but
the plan model is replaced by a dedicated hardware setup
specially designed for the simulation [4].

Each of the configurations has a different focus from the
validation point of view and following them allows detecting
errors early when they are easier to correct and to validate
incrementally different aspects of the system (functionality,
performance, etc.). Functionality and system behavior can be
tested at MiL and SiL level. Tests on PiL level can reveal
faults that are caused by the target compiler or by the
processor architecture [5]. HiL level is to reveal faults in the
low-level services and in the I/O services [5]; and to confirm
the real-time functionality and performance [4].

Embedded software for control systems usually has to
run in different environment conditions, and has to control
different number or/and types of sensors and actuators. This
increases the complexity of testing even in early phases of
the development. Testing the control system in different real
scenarios is very costly and time-consuming.

Taking into account variability in different aspects of the
validation from early testing architectures allows reducing
the testing complexity by considering all the possible
variants both in software, tests and the environment from
simulation. This ensures an increased coverage of the testing
in early phases of the development and a correct selection of
the most risky scenarios for testing the final system.

This paper proposes a systematic approach to X-in-the-
Loop validation considering the variability in the testing

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

architecture. The proposed variability management can be
reused along the testing process (MiL, SiL and PiL).

Simulink [6] was chosen as the simulation framework to
simulate the real environment in which software should be
integrated.

The paper is structured in the following way: Section II
presents the background and the state of the art, Section III
discusses about variability in testing architecture, Section IV
presents the variable simulation model and, to finish,
conclusion and future work are stated in Section V.

II. BACKGROUND

This section provides a brief introduction to the
background.

A. Embedded Systems Engineering

The function of Systems Engineering is to guide the
development of complex systems, understanding system as a
set of interrelated components working together toward some
common objective [7]. Embedded systems are a particular
type of system, where the system is embedded in its
enclosing device (e.g., elevators). There is an essential
difference between embedded and other computing systems
that makes their engineering particularly challenging. Since
embedded systems involve computation that is subject to
physical constraints, the separation of computation
(software) from physicality (platform and environment) does
not work for embedded systems. Instead, the design of
embedded systems requires a holistic approach that
integrates hardware design, software design, and control
theory in a consistent manner [1].

B. Model-based System Engineering

“Model-based Systems Engineering (MBSE) is the
formalized application of modeling to support system
requirements, design, analysis, verification and validation
activities beginning in the conceptual design phase and
continuing throughout development and later life cycle
phases” [8]. “MBSE is part of a long-term trend toward
model-centric approaches adopted by other engineering
disciplines, including mechanical, electrical and software”
[8]. In the particular case of software, MBSE can be seen as
part of Model Driven Engineering (MDE), a software
development paradigm where models are the central element
in the development process [9]. Hence, following MDE,
systems software does not only serve as documentation, but
can also be used to generate code or be executed for
validation purposes.

C. Variability Management

Variability is the ability to change or customize a system
[10]. Variability can also be understood as modifiability (to
allow variation or evolution over time) and configurability
(variability in the product space) to get a set of related
products or different configurations [11]. Variability and its
management are key aspects not only in software product
lines, but in other systems such as embedded systems. Many
variability modeling techniques have been developed.
Several of the approaches are based on feature modeling, one

of the most used technique for variability modeling:
[12][13][14], etc. There are other approaches that are based
on use cases [15] or approaches that use both feature models
and use cases such as [16] and [17]. Other approaches model
variation points such as [18][19] and [20]. There are also
approaches that integrate variability in ADLs (Architecture
Description Languages) such as Koalish [21] and [22].
Several techniques use UML (Unified Modelling Language)
that is the de facto notation standard in industry for software
modelling. UML profiles or extensions to UML are proposed
to introduce variability [23][24][25], etc.

 [26] presents an approach for managing variability in
Simulink models using Pure:variants for Simulink. Another
approach that addresses variability in Simulink models is the
approach for model-based embedded software product lines
of [27][28][29]. [30] also addresses variability in Simulink.

All these approaches address variability in Simulink
models. However, the focus is on managing the variability in
model-based embedded systems and product lines.

Our approach is more oriented towards testing and how
to manage variability in a test architecture; a Simulink model
is used for implementing a test architecture. In addition to
the variability in the simulation environment represented in
the Simulink model, variability in the Software under test
and test specifications is also considered.

Regarding variability management during validation,
[31] defines a software product line for validation
environments, to support variability in those environments
and to be able to test different applications in different
domains and technologies.

III. VARIABILITY IN TESTING ARCHITECTURES

Testing architectures are the base for a systematic testing
process. By defining the testing architecture from initial
phases, we ensure a correct definition of the tests and a
reutilization of them along the lifecycle.

We have defined the testing architecture in Simulink [6].
Simulink is a commercial tool for modeling, simulating and
analyzing multidomain dynamic systems that is integrated
into the MatLab programming environment. Its primary
interface is a graphical block diagramming tool and a
customizable set of block libraries [6]. Simulink block
diagrams define time-based relationships between signals
and state variables. Signals represent quantities that change
over time and are defined for all points in time between the
block diagram's start and stop time. The relationships
between signals (input and output) and state variables are
defined by a set of equations represented by blocks [32].

A testing architecture can be structured in four key
elements; each element and the implementation of those
elements using a Simulink model is explained:

-Sources: the inputs are the test cases to execute on the
system under test. A test case is a set of conditions or
variables under which a tester will determine whether an
application or software system is working correctly or not. In
Simulink, test cases will define the set of signals that
determine the simulation of the environment in which the
system has to run (plant). Usually a mixture of both signals
and plants ensures a correct X-In-The-Loop simulation

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

-System-Under-Test (SUT): at early phases of the
development, the SUT is a model of the system. Then the
code of the system can be simulated (S-Function in
Simulink) and in final stages of development, the code can
be tested within the running platform. The software can be
developed following an Software Product Line (SPL)
methodology or as a single system. A Software Product Line
is a set of software-intensive systems, sharing a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [33].
In this type of development, variability of the software is
instantiated at design time so the final software will have the
functions for the concrete configuration in which the
software will run. When the development follows a single
system development, it usual to have configurable software.
In this case, the software has all the functions in all
configurations, but by defining the values of some
parameters, the software will execute as expected in each
configuration.

-Metrics: the metrics automatically analyze the test
results for each test case. In Simulink, one can use
verification blocks associated with the output signals to
decide automatically on the correctness of the results of the
test.

-Test Control: In Simulink, it is a block that controls the
order of the test cases.

A. Case study: Door management control

The proposed approach has been applied in a door
management control system of an elevator. This system
controls the opening and closing of the doors (that include
sensors, motors, etc.).

The behavior of the control is specified using a state
machine where the states (Idle, Open, Opening, Closing,
Closed) and actions to be applied in each state are defined.
This state machine has been specified using Iar Visual State
tool [34] and the code has been automatically generated. This
code has been introduced in the Simulink model that
implements the testing architecture as a block (an S-function,
a computer language description of a Simulink block).

In Figure 1, the testing for the door management control
is described:

 Test sequences indicate the values of signals
over time. These sequences are automatically
generated from abstract behaviour models of the
software that are annotated with time aspects.

 Software-Under-Test is automatically generated
from models in Iar Visual State and transformed
to SFunction for integrating in Simulink.

 Model is simulated and results (output signals
over the time) are obtained. These results are
used to compare with expected ones.

Test sequences automatically
generated from models

1

Simulation results

3

Software‐Under‐Test: generated
with Iar VisualState and
integrated as SFucntion

2

SFunction

Figure 1. Simulation Environment

The simulation environment (the plant model that

simulated the physical environment signals) is valid only for
one concrete configuration. One of the factors that add more
complexity to testing of embedded software is the diversity
of environments in which software can execute. Embedded
software usually execute under different configurations. It
can be connected to different number of devices, etc. There
is a need to manage the variability in validation environment
due to: number and type of sensors, number and type of
actuators, communication mechanisms, etc.

In order to identify and model the environments in which
software should be validated, a feature model can be used.
A feature model is an and/or tree of different features. A
feature as “a prominent or distinctive and user-visible
aspect, quality, or characteristic of a software system or
systems” [12]. Features can be mandatory, optional or
alternative. Features are an effective way of identifying the
variability (and the commonality) among different products
in a domain. Moreover, features are a effective means of
communication among stakeholders and are a intuitive way
of expressing the variability [35] as features are distinctive

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

characteristics or properties of a product that differ from
others or from earlier versions.

The feature model contains the different elements that
should be considered when validating the software
depending on sensors, actuators, etc. of each configuration.
Some of the most relevant are:

 Different types of doors: Software must be
validated with different types of Doors:
articulated, non-articulated, etc.

 Different number of doors: Software must be
validated with one, two, three Doors. Doors can
operate independently or not.

 Different floor configuration: floors can have
different door configuration: depending on the
floor, doors require different behaviour.

 Different sensors: Optional obstacle and
presence sensor and optional limit switch.

Figure 2. Feature model for validation

Feature model containing the variability can be modelled

as a form in MatLab or using some specific tool for
variability management, such as pure::variants for Simulink.
To perform validation taking into account this variability, it
is necessary to manage the variability in the following
aspects of the simulation environment:

 Configuration of the Software-Under-Test. A
.xml file is automatically generated from
variability management form and indicates the
initialisation of the SUT for a concrete
configuration.

 Modelling of the simulation environment: In
Simulink, variability is on relations and blocks
that are required for simulation. Simulation
elements are contained in a library and are
connected automatically guided by the
variability form in order to create the simulation
model for a configuration.

 Tests’ specification: As not all the
configurations require the same requirements
for testing, variability in tests should be taken
into account too. Depending on the
configuration some functionalities are not active
or even, same functionalities could differ on
required response time.

The next section details this variable simulation model.

IV. VARIABLE SIMULATION MODEL

Simulation model includes the simulation of both
mechanicals elements and software that manages these
elements. Including variability in the simulation models
allows representing different configurations in which
software will run. This way it is possible to validate the
system taking into account different configurations in a less
costly and time-consuming way. The software is integrated
as a block in the model and is connected to the blocks
representing the mechanicals elements. Running the model
provides the simulation of the real system.

In order to get an effective simulation of different
configurations, variability management has been included in
Simulink. For this purpose, a variability form has been
developed in MatLab asking for the information that
represents the configurations: number and types of doors,
etc.

This information is used to develop dynamically the
simulation model of the configuration to be validated. In
order to develop the simulation model dynamically we have
created a library with the elements that can appear in the
simulation model: doors, code block, etc. Code is executed
for creating the simulation model with the features selected
in the variability form. See Figure 3 for simulation model
creation for a configuration containing two doors of
NormalType.

Figure 3. MatLab code for dynamic simulation model creation

This way, by selecting values in the variability form, we
obtain automatically simulation models that are specific for
the configuration we want to prove (See Figure 4). The same
test architecture is used and test cases may be also adapted
and reused as test cases will be also developed taking into
account variability. Thus, we obtain the advantage of getting
simulation models for different configurations with a
reduced cost. Therefore, tests could be easily performed in
different configurations obtaining greater test coverage of the
embedded system. In an initial development stage, the
simulation models may be automatically generated in an
exhaustive way to test all configurations. In later stages and
during maintenance, the generation of simulation models
may be used to test new configurations.

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 4. Instantiation of the testing architecture for an configuration

V. CONCLUSION AND FUTURE WORK

This paper has described a simulation environment for
embedded software based on model based testing and
variability management and using Simulink as simulation
tool. As embedded software usually runs under different
configurations, it is costly to test the software under real
conditions. Variability management of configurations helps
automating the simulation environment. This way, validation
is simplified and intensive testing can be performed.

In the case study, a variability management form has
been developed in MatLab. This option has been adequate
for our purpose, but as complexity increases it is
recommended to use a tool specific for variability
management. Pure::Variants is a tool integrated with
Simulink that could be adequate for this purpose [26]. Or, the
variability management approach for Simulink proposed by
[27][28][29] can be also used for plant instantiation part.
Those approaches can be used in a complementary way for
variability management and instantiation of the Simulink
models (plant). Those approaches are not oriented to manage
variability in validation architectures, but in general in
Simulink models, so they do not cover some specific needs
such as the configuration of Sfunctions in Simulink,
generation of test sequences, etc., that our approach covers.

It is always difficult to establish the coverage of the tests,
more when multiple configurations have to be validated.
Although tests cover 100% of transitions we can not ensure
that all configurations have been tested. In this case,
variability instantiation has been done manually. In order to
get a greater coverage, it is highly recommended to automate
the variability selection, generating the simulation

environment for all the configurations sequentially. Next
steps include analysing the feasibility of this option and the
coverage that is got this way.

The paper has focused on the simulation phase. However,
once a system has been validated in Simulink, software is
integrated in the real system. Test architecture and variability
management should be reused in subsequent phases. Our
next actions will consider the generation of tests from the
model for running in the software using python test scripts
[36].

ACKNOWLEDGMENT

This work is co-supported by the Basque Government
under grants UE2011-4 (COMODE Project). The project has
been developed by the embedded system group supported by
the Department of Education, Universities and Research of
the Basque Government.

REFERENCES
[1] T. A. Henzinger and J. Sifakis. “The Embedded Systems Design

Challenge,” In 14th International Symposium on Formal Methods
(FM 2006), Hamilton, Canada, volume 4085 of Lecture Notes in
Computer Science, pp. 1–15. Springer, 2006.

[2] OMG. “UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems”. Formal Specification, November 2009.
Online at: http://www.omg.org/spec/MARTE/1.0/PDF. [retrieved:
September, 2012].

[3] J. A. Stankovic. “Strategic Directions in Real-time and Embedded
Systems”. ACM Computing Surveys, 28, pp. 751–763, December
1996.

[4] H. Shokry and M. Hinchey. “Model-Based Verification of Embedded
Software”, IEEE Computer, vol. 42, no. 4, pp. 53-59, April, 2009

[5] E. Bringmann and A. Krämer. “Model-based Testing of Automotive
Systems” pp. 485–493, 2008 International Conference on Software
Testing, Verification and Validation, ICST, 2008.

[6] Simulink webpage. http://www.mathworks.com/products/simulink/.
[retrieved: September, 2012].

[7] A. Kossiakoff and W. N. Sweet. Systems Engineering. Principles and
Practice. Addison Wesley, 2003.

[8] International Council on Systems Engineering (INCOSE). “Systems
Engineering Vision 2020”. Technical Report INCOSE-TP-2004-004-
02, INCOSE, September 2007.

[9] R. France and B. Rumpe. “Model-Driven Development of Complex
Software: A Research Roadmap”. In Workshop on the Future of
Software Engineering (FOSE 2007), at ICSE 2007, Minneapolis,
Minnesota, USA, pp. 37–54, 2007.

[10] J. Van Gurp, J.Bosch, and M. Svahnberg. “On the notion of
variability in software product lines”. In WICSA ’01: Proceedings of
the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), Washington, DC, USA, 2001. pp. 45-54. IEEE
Computer Society.

[11] S. Thiel and A. Hein. “Systematic integration of variability into
product line architecture design”. In SPLC 2: Proceedings of the
Second International Conference on Software Product Lines, pp. 130–
153, London, UK, 2002. Springer-Verlag.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. “Feature-
oriented domain analysis (foda) feasibility study”. Technical Report
CMU/SEI-90-TR-21, November 1990.

[13] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, June 2000.

[14] K. Czarnecki, S. Helsen, and U. W. Eisenecker. “Staged
configuration using feature models”. In Robert L. Nord, editor, SPLC,

Generic Testing
Architecture

Testing Architecture
for a configuration

Signal selection Plant instantiation Sfunction configuration

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

volume 3154 of Lecture Notes in Computer Science, pp. 266–283.
Springer, 2004.

[15] G. Halmans and K. Pohl. “Communicating the variability of a
software-product family to customers”. Software and System
Modeling, 2(1): pp. 15–36, 2003

[16] M. Eriksson, J. Börstler, and K. Borg. “The pluss approach - domain
modeling with features, use cases and use case realizations”. In
J. Henk Obbink and Klaus Pohl, editors, SPLC, volume 3714 of
Lecture Notes in Computer Science, pp. 33–44. Springer, 2005.

[17] T. von der Maßen and H. Lichter, “Requiline: A requirements
engineering tool for software product lines”. In 5th International
Workshop on Product Family Engineering, PFE5, Proceedings, 2003,
pp. 168-180.

[18] H. Gomaa and D. L. Webber. “Modeling adaptive and evolvable
software product lines using the variation point model”. In HICSS
’04: Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) - Track 9,
p. 90268.3, Washington, DC, USA, 2004. IEEE Computer Society.

[19] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering : Foundations, Principles and Techniques. Springer,
September 2005.

[20] M. Becker. “Towards a general model of variability in product
families”. In Proceedings of the 1st Workshop on Software
Variability Management, 2003.

[21] T. Asikainen, T. Soininen, and T. Männistö. “A koala-based approach
for modelling and deploying configurable software product families”.
In Frank van der Linden, editor, Software Product-Family
Engineering, 5th International Workshop, PFE, Revised Papers,
volume 3014 of Lecture Notes in Computer Science, pp. 225–249.
Springer, 2003.

[22] A. van der Hoek. “Design-time product line architectures for any-
time variability”. Sci. Comput. Program., 53(3), pp.285–304, 2004.

[23] H. Gomaa. Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison Wesley,
2004.

[24] M.s Clauß. “Modeling variability with uml”. In Proceedings of
GCSE2001. Young Researchers Workshop, 2001.

[25] T. Ziadi, L. Hélouët, and J.M.c Jézéquel. “Towards a uml profile for
software product lines”. In Software Product-Family Engineering, 5th
International Workshop, PFE 2003, Siena, Italy, November 4-6,
Revised Papers, pp. 129–139, 2003.

[26] C. Dziobek, J. Loew, W. Przystas, and J. Weiland. “Model diversity
and variability - handling of functional variants in simulink-models”.
Elektronik automotive, February 2008, pp.33-37.

[27] A. Polzer, D. Merschen, A. Botterweck, G. Pleuss, J. Thomas, S.
Hedenetz, and B. Kowalewski. “Managing complexity and variability
of a model-based embedded software product line”. Innovations in
Systems and Software Engineering (ISSE), 8, pp.35–49, 2011.

[28] G. Botterweck, A. Polzer, and S. Kowalewski. “Using higher-order
transformations to derive variability mechanism for embedded
systems”. 2nd International Workshop on Model Based Architecting
and Construction of Embedded Systems (ACESMB 2009)
atMoDELS 2009, Vol-507, pp. 107 – 121, Denver, Colorado, USA,
September 2009.

[29] G. Botterweck, A.s Polzer, and S Kowalewski. “Variability and
evolution in model-based engineering of embedded systems”. In 6.
Dagstuhl-Workshop Model-Based Development of
EmbeddedSystems (MBEES 2010), pp. 87–96, Dagstuhl, Germany,
February 2010.

[30] D. Beuche and J. Weiland. “Managing flexibility: Modeling binding-
times in simulink”. In Proceedings of the 5th European Conference
on Model Driven Architecture - Foundations and Applications,
ECMDA-FA ’09, pp. 289–300, Berlin, Heidelberg, 2009. Springer-
Verlag.

[31] B. Magro, J. Garbajosa, and J. Pérez. “A software product line
definition for validation environments”. In Proceedings of the 2008

12th International Software Product Line Conference, SPLC ’08, pp.
45–54, Washington, DC, USA, 2008. IEEE Computer Society.

[32] Modeling Dynamic Systems, web page,
http://www.mathworks.es/es/help/simulink/ug/modeling-dynamic-
systems.html. [retrieved: September, 2012].

[33] P. Clements and L. Northrop. Software Product Lines - Practices and
Patterns. Addison-Wesley, 2001.

[34] IAR VisualState, Web page. http://www.iar.com/en/Products/IAR-
visualSTATE/, [retrieved: September, 2012].

[35] K. Lee, K. C. Kang, and J. Lee. “Concepts and guidelines of feature
modeling for product line software engineering”. In ICSR-7:
Proceedings of the 7th International Conference on Software Reuse,
pp. 62–77, London, UK, 2002. Springer-Verlag.

[36] Python official webpage. http://www.python.org/. [retrieved:
September, 2012].

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

