
A Software Quality Framework for Mobile Application Testing

Yajie Wang, Ming Jiang, Yueming Wei

China Telecom Corporation Limited Beijing Research Institute

Beijing, China

Email: {wangyj, jiangming, weiym}@ctbri.com.cn

Abstract-With the explosion of mobile applications, all

application providers expect to work out a popular mobile

service. There are two features of a popular mobile service:

adapting for mobile device’s diversity and achieving high user

satisfaction. For Quality Assurance (QA) testers, the former

feature brings heavy testing workload and the latter claims

testers try their best for good quality and good usability of the

service. Therefore, improving work efficiency and test

completeness are critical for mobile application QA testers. In

this paper, a test framework for mobile applications is

proposed, which aims to help QA testers work with high

efficiency and contribute to good products with nice user

experience. Moreover, a case applying this framework is

presented for validating it.

Keywords-Quality assurance; QA Tester; Mobile application;

Usability

I. INTRODUCTION

At present, with the development of wireless networks
and the popularization of mobile devices, mobile
applications become more and more popular [1][2]. The
traditional desktop software developers are putting
considerable effort into the development of the mobile
applications gradually. Also, telecom operators are caring
more about the increase of business profits obtained from
mobile applications and try their best to seek some “killer”
mobile applications. With the rapid growth of mobile
applications market, demands on software quality rises
rapidly. The applications are expected to be stable, be quick
response and have good UI experiences [3][4]. To satisfy
these requirements, project team members, including
software designer, developer, tester, project leader and QA
member [5] should work together. Everyone should take
special care of the characteristics of mobile applications and
assure the typical quality of them in their working phase. In
this paper, we focus on mobile software quality [5][6] only
from the view of test and validation.

Most test concepts and principles of desktop software can
be adopted in mobile application testing [2]. However, there
are some obvious differences between software for mobile
devices and desktop software [3]. The characteristics of
mobile device and the complex application scenario of using
applications cause the difference. As another point of view,
adapting for mobile device’s diversity and achieving high
user satisfaction [4] are critical factors of a successful
application. In desktop software, the PC, browser,
connection, and context of use are so standard that even

researchers do not realize or remember to mention them
affecting software quality and user experience [7]. The
traditional test schema is not appropriate. There should be
new approaches and concerns fitting to these differences.
Therefore, as QA testers, we make extra emphasis on these
aspects: the mobile devices features and diversity, usage
scenario in real life and user experience.

This paper proposes a systematic framework for
improving software quality of mobile applications by
analyzing the characteristics from all its aspects and from
multiple perspectives. This paper is comprised of five
sections. In Section II, we give an overview of the
framework and make a brief description of its components.
Section III is dedicated to describing the implementation of
the components. In Section IV, a case study is presented to
valid the framework. Section V concludes this paper with a
summary and outlines the field of research for future work.

II. TEST FRAMEWORK ARCHITECTURE

An optimal quality assurance system for mobile software
means to work in an accurate and efficient way, and to
submit products with high user satisfaction. The framework
proposed in the paper is composed of four components: a
mobile devices information system, a defect system for
mobile applications, an aggregation of key test scenarios and
a mechanism for usability test.

A mobile devices

information system

A defect system for

mobile applications

An aggregation of key

test scenarios

A mechanism for

usability test

For high quality

and good user

experience

For high work

efficiency

A test

framework

for quality

of mobile

apps

Figure 1 Architecture of the framework
The first two parts contribute to providing an accurate

and efficient working condition. The mobile devices
information system includes a device database and a real
device management system. The database and the
management system can be accessed by the whole team
members. To QA testers, the database is an effective support
to choose test objects and to make contrasting test plan for
different devices; at the same time, the real device
management system assists testers to find available devices

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

as early as possible. The defect system for mobile
applications is distinguished from an ordinary defect system.
It defines some special types of defects and some special
attributes of a defect, which are peculiar to mobile
applications. QA testers apply the defect system to
accurately describe defects they found and then make it easy
to be understood and dealt with among every team of the
project.

The last two parts are dedicated to giving users high
satisfaction. According to the characteristics of mobile
device, the complex usage scenario of mobile applications
and the problems easy to be neglected in mobile software
testing, an aggregation of key test scenarios is defined. It
collects five parts: test scenarios related to resource
limitation [3], test scenarios related to imitating real usage
activities, test of the server portion of the application, test of
those related to charge, privacy and legacy [3], and test for
good user experience. Only a mobile application verified
from these five aspects can be called a valid application, not
just being a software meeting service logic. A mechanism for
usability test [4] describes an effective way to have a
usability test. It is used by QA tests to gain usability
challenge and advice from outside the application’s working
team, most of which are greatly valuable contributions.

III. IMPLEMENTATION OF THE FRAMEWORK

In this section, the implementation of four components
comprising this framework is described in detail.

A. Structuring a Mobile Devices Information System

Diversity of mobile devices makes great difference to
mobile application development and test. Unlike traditional
desktop software, a good mobile application should be
adapted for various devices. Large amount of work was
spent on the adaption. Creating a device database to keep
track of device information is a great way to improve work
efficiency.

Here “database” generally refers to anything from a
Microsoft Excel spreadsheet to a little SQL database [3], or
any other software or system, if practicable. Scale of the
database can vary according to the company’s scale and cost.
Devices information can be stored in the database during the
requirements phase of a project or later as a change in project
scope [3]. A record for a mobile device should at least
include the following items:

 Important device technical specification details
(screen resolution, OS version, hardware details,
supported media formats, input methods, localization,
any optional features, etc.)

 Any firmware upgrade or modification information,
especially those related to hardware modifications.

 Any known bugs and important limitations with the
device.

In addition, the information of how to get actual testing
device (such as available from real device library, purchased
or loaned through manufacturer or carrier loaner programs)
is suggested to be recorded in the database.

For real device management, two aspects are highlighted.
One is implementing a library check-in and check-out

system. Team members can reserve devices for testing and
development purposes. It facilitates sharing devices across
teams, and then improves work efficiency greatly. The other
is defining what device is a “clean” device [3] and how to
return to the same starting state. At present, there is no good
way to “image” a device; however, it is a basic testing policy
for QA testers. There are some common ways, such as a
specific uninstall process, some manual clean-up, or
sometimes a factory reset. If the detailed operation steps are
recorded, testers will save much time for learn and trial.

So, how do QA testers use the device information system?
First, they analyze the similarity of devices and divide them
into different groups, for example, grouping by the platform
OS. Next, they choose the target devices according to the
actual project and make test plan. Besides primary function,
test priority and special test scenarios for every device
should be included in the test plan. Then, QA testers use the
real device management system to get the real devices
rapidly. Finally, execute the test.

B. Building a Defect System for Mobile Applications

Almost all defects for desktop software may occur on
mobile applications. Some typical defaults are program
crashing and unexpected terminations, inadequate input
validation, features not functioning expected, responsiveness
problems and poor usability issues. We redefine the term
defect for mobile applications from a larger range which not
only includes these typical defects. Some types of defects
typical on mobile applications are highlighted:

 Using too much disk space/memory on the device,
not releasing memory or resources appropriately.

 Usability issues related to input methods, font sizes,
and cluttered screen real estate. Cosmetic problems
that cause the screen to display incorrectly [3].

 Application “not playing nicely” on the device [3],
such as not compatible with other applications,
overusing network resources, incurring extensive
user charges, etc.

 Not handling private data securely. This includes not
ensuring data safety of mobile device and server, or
not guaranteeing safety of data transmission on
network.

 Application not conforming to the third-party
agreements, such as Android SDK license agreement
(if involved), Google Maps API term (if involved),
or any other terms if applied to the application.

Most defect tracking systems can be customized to work
for the test of mobile applications. Whatever a system is
adapted; there are some important defect attributes to be
encompassed in the system, for the purpose of clarifying a
mobile software defect. These attributes are:

 The application version information, language, and
so on.

 Device configuration and state information including
device type, platform version, network state, and
carrier information.

 Steps to reproduce the problem. The steps should be
described exactly using predefined standardized

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

terms, such as clear versus back, click versus tap,
and so on.

 Device screenshots, which can be taken through
screenshots software developed for mobile devices.

C. Defining an Aggregation of Key Test Scenarios

1) Resource limitations of mobile applications
Although mobile devices experience a massive gain in

performance in recent years [2], resource limitation is still a
topic we have to talk about. These limitations include
devices limitations and network limitations. Devices
limitations vary in terms of memory, processing power,
screen type, battery level, storage capacity, platform version,
input method, etc., network limitations vary in terms of
accessibility and bandwidth.

To stand-alone applications, most core functions run in
local memory, so testing of these applications often focuses
on the limitations of the device itself. To network-driven
applications, it provides a lightweight client on the device
but relies on the network to provide a good portion of its
content and functionality, so besides devices limitation, we
also should focus network limitations when testing of these
applications.

2) Imitating real usage activities
QA testers should try doing anything impossible on the

mobile device, or imitating some “strange” activities when
testing the application. We divide these activities into two
aspects: whether compatible with other programs and how to
deal with accidents.

In the real world, your application is only one of many
installed on the device. You should check whether the
software works well together with other device functions or
applications. You should consider many things. Will your
application rely on other service or content provider? Will
your application act as a service or content provider? After
all, the recommended way is to install some other most
popular applications on the device and use them really,
which can reveal integration issues that don’t mesh well with
the rest of the device.

Testers need to imitate real use scenarios to decrease the
probability of problems found in real use. Testers must verify
the common events of operating system interrupt, such as
calls received, message arriving, device shutdown, etc. In
addition, testers should be creative to produce certain types
of events. For example, for a game, test low battery warning
popping up when playing the game. Another example, for an
application related to LBS (Location Based Service), step in
an elevator without signal when using the application. In
sum, the more you consider, the less potential problems will
remain.

3) Server and service testing
Testers often focus on the client portion of the mobile

application. In fact, most applications depend on a server or
remote service to operate. If so, make sure thorough server
and service testing is part of the overall test plan-not just the
client portion implemented on the device.

Some fundamental tests, such as performance test and
security test, should be covered for the application server. On
this basis, QA testers should make special concern on the

problems related to server upgrade, maintenance or service
interruptions, because users always expect applications to be
available any time. Testers should test if the users are
notified when the service is unavailable and if the
applications work well when the server is upgraded.

4) Related to charge, privacy and legacy
QA testers should test if an application complies with

policies, protocols and agreements which the application
must meet. These common agreements (if applicable) are
Android License Agreement Requirements, Mobile
Carrier/Operator Requirements (if applicable) and
Application Certification Requirements, etc. There are some
general and import rules in these agreements for QA concern:
do not interfere with device phone and messaging services;
do not break or exploit the device hardware and firmware; do
not abuse or cause problems on operator networks.

Protection of private user data is always included in the
above agreements. If your application accesses or uses
private data, it is a good way to include an End User License
Agreement [3] and a Privacy Policy with your application.
Testers will check if this information is stored in plain text,
and if it is transmitted without any safeguard.

If an application would cause the user to incur any fees,
testers should test if the charge information is striking
enough, if the delivery occurs when the user pays, otherwise
the entire transaction is rolled back.

5) For good user experience
The first concern is installation and upgrade. QA testers

should test installation on devices with low resources. If the
application is available from the marketplace, you should test
installation online or with the downloaded media. When a
new version of the platform is released, you must re-test your
application before your users are upgraded.

The second is user interface experience. QA testers may
be check if screens is filled sparingly, if size graphics
appropriately, and if the keys, clicks and glides are
convenient.

The third is stability and responsiveness [8]. QA testers
should test if the application start up fast and resume fast, if
users are informed during long operations by using progress
bars, and if resource consumption is reasonable.

 Finally, do not forget to test features that are not readily
apparent to the user, such as the backup/restore services, the
sync features, and the help information.

D. Establishing a Mechanism for Usability Test

It is well known that good user experience is crucial for
successful mobile applications. We just talked about test for
good user experience, which is mainly a reference for your
company’s own QA testers to do some related tests. In this
section, we introduce a mechanism for usability test which is
different with the above mentioned. It is a combination of
laboratory tests and field tests [9]. Laboratory tests are
traditional way for usability tests, which are usually
conducted in usability test laboratories, consisting of e.g. a
living room or office-like area connected to a monitoring
area with a one-way mirror [9]. While it is also concerned
that laboratory evaluations do not simulate the context where
mobile devices are used and lack the desired ecological

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

validity [9]. Interruptions, movement, noise, multitasking etc.
that could affect the users’ performance are not present in
laboratory tests [9]. Therefore, field tests are worthwhile for
mobile applications.

Both laboratory tests and field tests are through watching
people actually use the application. They have several same
key points in their procedures.

One is selecting of participated users. Generally,
representative users are more likely to experience the same
problems as the people who actually use the application [4].
So people who are representative of the target users
conveniently, please do it. However, it isn’t quite as
important as it may seem, because many of the most serious
usability problems are related to things like navigation, page
layout, visual hierarchy, and so on problems that almost
anybody will encounter [4]. So it’s not always necessary and
much more time-consuming and costly to find actual users.
Whatever, it is very vital that the recruiter should be with
reasonable common sense who’s comfortable taking. We not
only want to observe the user’s action, but also want to know
why to take the action.

Another is compiling test scenarios list. A good
description should clarify the things you want them to try to
do. Remember not to use research (unless search is being
tested, of course) in the steps [4]. A pilot test of test
scenarios should be done to find anything not clear in the
scenario.

During the test, the observer should try to get the
participants to externalize their thought process [4], and give
neutral prompt to participants when encountering difficulties.
Also, observers should be guaranteed to be able to observe
the participant’s action and words thoroughly.

Last, the debrief should take place as soon as possible
after the test sessions, while what happened is still fresh in
everyone’s mind. Every observer can present their problems.
These problems are summarized and arrayed by severity.
Finally the top serious problems are chosen to be concerned
primarily.

The greatest difference between laboratory tests and field
tests is the context within which people uses the application.
As a result, the time needed by field tests is more consuming.
In general, when performing a user interface evaluation of
mobile applications, laboratory tests can give sufficient
information to improve the user interface and interaction of
the system [9], not less than those found by field tests. While
the field test method is suitable for situations where not only
interaction with a system is tested, but also user behaviors
and environment are examined [9]. In addition,
confidentiality of the application or device in the industry
often drives the decision towards the laboratory testing;
especially in the beginning of the development cycle [9].

IV. CASE STUDY: TEST OF MOBILE APPLICATION OF

QUESTIONNAIR SURVERY USING THIS FRAMEWORK

This section presents how the framework can be used in
the mobile application of questionnaire survey.

We already have structured a devices database using
MySQL and had some real devices in our test lab. This
application was designed only for mobile phones of Android

platform. Using the database information, QA testers choose
two devices: MOTO XT800 with Android 2.0 and
SAMSUNG I929 with Android 2.3. When designing the test
plan, core function of the application are mainly filling the
survey, submitting the survey, redeeming points and reviews;
then additional test cases are designed because these two
devices are customized by china telecomm; finally, several
cases are designed for every device separately aiming at the
differences introduced by different mobile OS version.
According to a rough estimate, using the device system, we
shorten the time for designing the whole test plan about 35%.

A defect system using software BugFree [10] has been
built. The defects defined in Section III have been recorded
in the defect tracking system. All team members can access
the defect system. We also have received positive feedback
about the convenience and the clarity by using the defect
system.

We tested scenarios according to key points described in
Section III. The application consumed a small quantity of
local system resources, so no fatal problems were found
about resources limitations. As for server testing, we found
that if the service was closed unexpected and the client tried
to connect the server, there was no obvious notification and
the client kept waiting state. As to imitating real usage, an
important question was found, that was while a survey was
submitted, an incoming call failed. This phenomenon was
obviously unreasonable. About charge and legal related field,
the application is free; so, the test was simple and no
problems were found. In user experience case, it was found
that, in some survey, there were so many items that users had
to turn pages for too many times if each page only for each
item.

We invited six students to do usability test. As a final
result, two reasonable advices were presented; first, the
participants hoped to append progress bar or progress
indicator in every page if the survey had many pages, so that
the progress could be known at any time, and second,
besides UC browser and Opera mobile web browser we used
in the test, it was expected that QQ mobile browser [11],
which is very popular in China, was adopted.

V. CONCLUSION AND FUTURE WORK

In this paper, a framework for QA testers to test mobile
applications was proposed. This framework provides a
helpful method to solve the question of heavy workload
bought by mobile device’s diversity and defines a specific
defect system for mobile services to describe problems more
accurately. Through our preliminary test practices, they are
validated to be effective to shorten the time for designing test
plan and preparation, and improve communication efficiency.
Also, the framework suggests a set of test scenarios to be
attended to particularly and highlights a mechanism for
usability test. The benefit for product quality from them are
proved in our test.

As future work, the framework should be applied in more
testing of mobile applications. We should collect much more
statistics to prove the benefit of the framework for mobile
applications test. Also, we should refine and extend every
part of the framework.

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

REFERENCES

[1] V. L. L. Dantas, F. G. Marinho, A. L. da Costa, and R. M. C.
Andrade, “Testing Requirements for Mobile Applications”,
Computer and Information Sciences, 2009. ISCIS 2009. 24th
International Symposium on, Sept. 2009, pp. 555-560,
doi:10.1109/ISCIS.2009.5291880.

[2] D. Franke and C. Weise, “Providing a Software Quality
Framework for Testing of Mobile Applications”, 2011 Fourth
IEEE International Conference on Software Testing,
Verification and Validation, Mar. 2011, pp. 431-434, doi:
10.1109/ICST.2011.18.

[3] S. Conder and L. Darcey, “Android Wireless Application
Development (2nd edition)”, Addison-Wesley, 2011.

[4] S. Krug ,“Rocket surgery made easy”, New Riders, 2010.

[5] N. S. Godbole, “software quality assurance principles and
practice”, Alpha Science Intl Ltd, 2004.

[6] C. Woody, N. Mead and D. Shoemaker, “Foundations for
Software Assurance”, 2012 45th Hawaii International
Conference on System Sciences, Jan. 2012, pp. 5368-5374,
doi: 10.1109/HICSS.2012.287.

[7] V. Roto, “Web Browsing on Mobile Phones-Characteristics
of User Experience”, Doctoral Dissertation, TKK
Dissertations 49, Espoo 2006.

[8] R. Hoekman Jr., “Designing the Obvious: A Common Sense
Approach to Web & Mobile Application Design (2nd
Edition)”, New Riders Press, 2010.

[9] A. Kaikkonen, T. Kallio, A. Kekäläinen, A. Kankainen, and
M. Cankar, “Usability Testing of Mobile Applications: A
Comparison between Laboratory and Field Testing”, Journal
of Usability Studies, Issue 1, Vol. 1, Nov. 2005, pp. 4-16.

[10] http://www.bugfree.org.cn/ [retrieved: September, 2012].

[11] http://mb.qq.com/ [retrieved: September, 2012].

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

