
Software Validation

When ‘Pure Mathematical Objectivity’ is no Longer Enough

Isabel Cafezeiro
Instituto de Computação

Universidade Federal Fluminense
Niterói/

Programa de História das Ciências e das Técnicas e
Epistemologia (HCTE-UFRJ)

Brasil
e-mail: isabel@dcc.ic.uff.br

Ivan da Costa Marques
Programa de História das Ciências e das Técnicas e

Epistemologia (HCTE-UFRJ)
Universidade Federal do Rio de Janeiro

Rio de Janeiro,
Brasil

e-mail: imarques@ufrj.br

Abstract— By focusing on systems that can be trusted to
operate as required, software validation offers a rich field to
study how far one can go with the support of mathematical
certainty, that is, to identify when evidence (a non formal
entity) must come into play to dismiss the possibility of critical
errors. First, this article highlights that the view of
mathematics as a source of accuracy supported by a purified
and rational chaining of reasoning persists until the present
days. Resorting to historical controversies of the 1970's
regarding software validation, it is possible to indicate local
(social) elements that necessarily participate in what is usually
considered 'technical' or 'objective', showing therefore that
there is no way to establish rigid or fixed boundaries delimiting
what is considered 'exact'. Regarding software correctness, the
sociotechnical approach adopted in this paper leads to a
intertwined frame where social (collaborative) mechanisms act
in ways that are inseparable from those mechanisms that are
considered 'technical' or 'objective', which are, in this case,
formal methods. This paper discusses software validation in
the light of Sociology of Mathematics and Social Studies of
Science and Technology.

Keywords- formal specification; collaborative development;
objectivity; sociology of mathematic.

I. INTRODUCTION

‘The only effective way to raise the confidence level of a
program significantly is to give a convincing proof of its
correctness’ [1]. Edsger Dijkstra, a spokesman of formal
methods for software reliability in the seventies, argued in
favor of a more rigid way to develop software, as a reaction
to the just before denounced software crisis in the 1968
Conference on Software Engineering, Garmisch, reported in
[2]. He defended that programs should be constructed 'hand-
in-hand', module by module, with their formal proof.
Dijkstra opposed his proposition to the traditional technique,
'to make a program and then to test it', which, in his view,
was an effective way to detect the presence of errors but did
not guarantee their absence. [1]

Dijkstra allied himself with a powerful partner:
mathematics. Among mathematicians, and also in the
common sense, there is a widespread culture of objectivity
and accuracy of mathematics [3], which is strong enough to

stifle dissenting voices, those sympathetic to non-formal
mechanisms [4].

A. The strengthening of mathematics to support the trust

'Why are mathematical certainty and the evidence of
demonstration common phrases to express the very highest
degree of assurance attainable by reason?' [5]

It is not the purpose of this section to present an
exhaustive historical account of the extensively expanded
relations between mathematics and trust and certainty. Much
more modestly, it brings in for discussion some historical
moments over the last few centuries where those relations
were under debate. The above quotation is a milestone: John
Stwart Mill, in 'A System of Logic' (mid-nineteenth century)
took a stand against the association of the highest degree of
safety reachable by reason 'to mathematical certainty' and
'the evidence of demonstration'. This triggered intense
objection by Gottlob Frege (Die Grundlagen der Arithmetik
– 1884) [6], today considered one of the founders of modern
logic, a spokesman for the strengthening of rationalist trend.
The 'peculiar certainty' attributed to so-called 'deductive
science' gained momentum in early twentieth century,
through the Vienna Circle, where the logical positivists,
declared their rejection to what they called theological and
metaphysical speculation [7]. At the same time, amid the
movements of mathematical foundations, in particular,
David Hilbert's formalist program came to the fore. It
conceived mathematics as a purely formal system, consisting
of symbols devoid of meaning or interpretation: 'In a sense,
mathematics has become a court of arbitration, a supreme
tribunal to decide fundamental questions — on a concrete
basis on which everyone can agree and where every
statement can be controlled.' [8] The 1930s revealed
surprises to these approaches, especially to the formalist
program, with the publication of Gödel Theorems [9], which
demonstrated the existence of statements that, although they
could be written in a formal system of a certain kind, could
not be proved in it. This exposed the inability of mathematics
to decide any mathematically expressed matter maintaining
its consistency. The publication of Gödel’s theorems put into
question the role of mathematics as a 'court of arbitration' as
envisioned in the Hilbert’s formalist program. Moreover, in

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

the 1940s some mathematicians have realized the need to
consider factors then considered 'extra-mathematical' for
understanding the configuration of mathematics itself. For
example, the Dutch mathematician Struik proposed a
'Sociology of Mathematics' to be concerned 'with the
influences of forms of social organization on the origin and
growth of mathematical conceptions and methods' [10].

However, it is noteworthy that in the 1970s, Dijkstra
proposed a program of mathematization of software by
mobilizing arguments in bases that were very similar to those
that David Hilbert had proposed in the formalist approach:
the effort in the pursuit of mathematical truth and accuracy
and consistency of mathematical methods. Even today, it is
to be highlighted, the discourse of the search for security and
reliability is widely supported by confidence in mathematics
and formal systems. An illustrative example can be found in
the general terms that conducted the formulation of 'The
Grand Challenge Project' in 2005 attesting an enthusiastic
view of formal methods: 'Programmers of the future will
make no more mistakes than professionals in other
disciplines. Most of their remaining mistakes will be
detected immediately and automatically, just as type
violations are detected today, even before the program is
tested. An application program will typically be developed
from an accurate specification of customer requirement; and
the process of rational design and implementation of the
code will be assisted by a range of appropriate formally
based programming tools, starting with more capable
compilers for procedural and functional programming
languages.' [11]

The Sociology of Mathematics [12][10] allows us to
question the 'objectivity' that is sought in mathematics and
formal methods, highlighting that in its own conformation,
mathematical entities are inseparably mixed with local or
temporal elements, and are therefore historically situated.
Such viewpoint takes social mechanisms for collaboration on
a par with formal methods in the validation of software
systems and reinforces the role of inductive reasoning, tests,
empirical approaches as allies in the process of software
validation.

B. Organization of the next sections

In Section II, we analyze the spreading of formal
methods as a guarantee of software correctness since the 60's
until today. In this process, we point out the inevitable
presence of personal choices and subjectivities that the
formal methods are unable to eliminate and the power of
speech that relies on a so-called 'objectivity' of mathematics
to enhance the trust in formal methods and the promise of a
software free of errors.

In Section III, we present a case study relating
mathematics and computers that reinforces the view that,
when mathematics is requested to be applied in real-world
situations, not only local issues are modified as a result of
interaction with mathematics, but also mathematics changes
as result of interactions with local issues. This view collapses
with the general conception that math is unique and
immutable as a 'language of Gods', a conception that persists
not only in common sense, but also among mathematicians
by cultural reasons. As expressed in David Hilbert's Radio
Broadcast, in 1930: 'Already Galileo declared: "To

understand nature, we must learn the language and the signs
through which nature speaks to us." But this language is
mathematics, and these signs are mathematical figures!'

In the case analyzed here, we report a new arithmetic -
one that is remodeled by requirements of a computer
hardware, what shows that in mathematics there is room for
subjectivity. This example is a contribution to the
understanding of how social elements come to be inseparable
from the setting of mathematics, becoming part of it.

Then, in Section IV we return to the subject of software
correctness. We consider arguments that emerged in the
1970s, in response to the mathematization of software. These
reactions emphasized the importance of considering social
mechanisms in the development of secure software and
software verification. These social mechanisms gain a new
dimension when we consider the new capabilities of
interaction provided by the Internet, new techniques of
software development considering collaboration and reuse
and the speed of technology nowadays. Furthermore, we also
consider a recent testimony in favor of the association
between formal methods and empirical mechanisms. These
are allies with whom formal verification can go far beyond.

We conclude this article indicating the Sociology of
Mathematics and Social Studies of Science and Technology
as emerging areas that consider the interweaving of
mathematical knowledge and social and subjective issues.
This kind of research supports mixed approaches in which
recent mechanisms of collaboration can be taken in to build
solutions to problems that were previously treated as purely
technical.

II. FORMAL METHODS FOR SOFTWARE CORRECTNESS (FROM THE
SEVENTIES TO TODAY)

It was in terms of trust in mathematics in the late 1960s
and early 1970s, when computer programs had become too
long and were used in applications involving safety-critical
situations, that the U.S. Department of Defense (DoD)
initiated a series of debates that pointed to the
mathematization of systems as a guarantee of correctness. At
that time, the aim was to create a systematic methodology for
building systems, to question the effectiveness of empirical
tests and to bet on formal specifications as a means to enable
secure programming in two ways: first, since the
specification languages are more ‘abstract’ (more distant
from the code that activates the hardware) than the
programming languages, they can be closer to the problem
domain, thus facilitating the correct understanding and ease
of expression of the solution; and, second, since the
specification languages are formal, they would be suitable to
prove properties of programs, ensuring correctness. In 1985,
the U.S. DoD published the Orange Book whose 'purpose
[was] to provide technical hardware/firm-ware/software
security criteria and associated technical evaluation
methodologies', mandatory for use by all DoD Components
in carrying out ADP (Automatic Data Processing) system.
[13]

The establishment of these kinds of standards continued.
In 1999 an arrangement of international organizations called
Common Criteria (CC) created a basis for evaluating the
security of information technology products, which then
replaced the Orange Book. The CC defined seven levels of

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

assurance, (EAL), establishing a degree of trust directly
proportional to an adherence to formal methods:

TABLE I. The Common Criteria Evaluation Assurance
Levels: the more formal, the more reliable.

EAL1: Functionally Tested,
EAL2: Structurally Tested,
EAL3: Methodically Tested and Checked,
EAL4: Methodically Designed, Tested, and Reviewed,
EAL5: Semiformally Designed and Tested,
EAL6: Semiformally Verified Design and Tested,
EAL7: Formally Verified Design and Tested.

The role of formal methods in the view of Common
Criteria can be understood from the report [14]: to earn
certification the developer chooses and formalizes the
properties he considers indispensable for safety, provides a
formal specification of the parts of the software he considers
critical and a proof that the chosen properties meet the
specification. The last step is then to prove that the program
is indeed a refinement (an implementation) of the given
specification, and thus meets the properties proved at the
formal level. These documents are then analyzed by the
‘evaluation authority’ – a team of specialists whose name
reveals the sense of authority provided by mathematics.

As an example, we refer to [15], which describes 'how
formal methods were used to produce evidence in a
certification, based on the Common Criteria, of a security-
critical software system'. This experience report makes clear
that even being extremely formal the process always starts
from choices, and these are inevitably subjective. As this
report shows, the software developer chooses the pieces of
code that are 'security-relevant software behavior'. He also
decides which are the properties to be proved and where to
locate the preconditions and postconditions in the code.
However, what is considered difficult in the certification
process are the formal steps, while the developer's choices
are only briefly mentioned: 'Given 1) source code annotated
with preconditions and postconditions and 2) a security
property of interest, the overall problem is how to establish
that the code satisfies the property. We developed a five-
step process for establishing the property. These five steps
are described (...)'.

As one might expect, arbitrariness, convention, and
hence ‘subjectivity’ are inevitably present in the initial
stages, when several choices are made by the developer. The
formal method is unable to eliminate subjectivity, but
propagates it stealthily throughout the entire process.

Ignoring the subjective character of choices such as those
pointed out above, and still evoking the absolute certainty in
formal methods, we can see nowadays in the CC web site
statements such as: ‘IT products and protection profiles
which earn a Common Criteria certificate can be procured or
used without the need for further evaluation’ suggesting that
formal methods are reliable enough to bypass the need of
any additional testing, and overshadowing that its role is to
provide strong evidence that the system does not contain
critical errors.

III. WHEN OBJECTIVITY IS NO LONGER ENOUGH

In software verification and validation, the criterion of
truthfulness, reliability and applicability is many times
dependent upon confidence in proofs, which, in turn, has
been historically linked to the purely deductive reasoning
(or 'the ideal of certainty achieved by mathematical proof',
in words of Hoare [16]). This does sound a bit contradictory
since, in computer science, the abstract (formal) knowledge
becomes directly embodied in computer programs, and so,
apparently makes direct contact (without intermediation)
with the 'life-world', that is, borrowing the term from
Edmund Husserl, the 'only real world, the one that is
actually given through perception, that is ever experienced
and experienceable - our every-day life-world' [17]. Thus,
inductive reasoning, tests, empirical approaches as well as
methodologies based on social collaboration appear in
programming activities side by side with formal methods, as
a way of approaching 'our every-day life-world'. Computer
programming evinces that knowledge is a situated
construction, that is, a construction strongly connected to
materialities and local issues, even when the subject is
mathematics or other technical or abstract subjects.

Let us consider the controversies around the
establishment of the IEEE Standard for Floating-Point
Arithmetic [18]. It shows the conflict between the 'objective'
arithmetic and the requirements of 'every-day life-world',
here embodied in a hardware architecture. In this struggle,
both sides change, giving rise not only to a modified
computer but, as a counterpoint of Frege's claim ('there is
nothing more objective than the laws of arithmetic' [6])
giving rise also to a modified arithmetic.

 The core issue was the confrontation of the infinite
expansion of certain real numbers and the finite size of
computational representation, which certainly requires some
form of truncation. Different algorithms were used by
different companies (IBM, Digital, HP, Intel, Texas) which
generated different results for the same purpose. A
comparison between them showed that there were many
decisions to be taken: ‘One specialist cite[d] a compound-
interest problem producing four different answers when done
on calculators of four different types: $331,667.00,
$293,539.16, $334,858.18 and $331,559.38. He identifie[d]
machines on which a/1 is not equal to a (as, in human
arithmetic, it always should be) and eπ −πe is not zero.’ [18]

The total number of digits to be adopted in the
computational representation of real numbers was a decision
that involved the complexity of the hardware being used. In
addition, other decisions would also influence hardware
design, such as the size of the sequence of digits for
representing the mantissa and exponent in the floating point
representation. Mackenzie [18] also pointed out the
mathematical arbitrariness embedded in several choices:
what should be done if the result of a calculation exceeds the
largest absolute value expressible in the chosen system, or if
it falls below the lowest? What should be done if a user
attempts a meaningless arithmetic operation such as dividing
zero by zero? In addition to producing different results in
some calculations, the lack of standardization hindered
compatibility among different computers. Thus, it was
necessary to define a standard computational arithmetic.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

However, changes in the numerical representation implied
costly hardware changes and other nuisances such as lack of
compatibility with preexisting programs. Fundamental
questions persisted: these different forms of representation
configured a new arithmetic or were they just different ways
of representing the sole real arithmetic?

'Negotiating arithmetic', as Mackenzie aptly termed it,
proved to be a long process. A committee began to work in
1977 but the norm IEEE 754, Numbers Fractional Binary
Arithmetic, was not adopted until 1985. The crucial point,
highlighted by [18], is that 'there was a stable, consensual
human arithmetic against which computer arithmetic could
be judged. Human arithmetic was, however, insufficient to
determine the best form of computer arithmetic. (…) Human
arithmetic provided a resource, drawn on differently by
different participants, rather than a set of rules that could
simply be applied in computer arithmetic.'

IV. SOCIAL PROCESSES FOR SOFTWARE CORRECTNESS

Despite the strength of mathematization of software,
even in the seventies the confidence in formal methods was
not a consensus: ‘[L]et us suppose that the programmer gets
the message ‘VERIFIED.’ (. . .) What does the programmer
know? He knows that his program is formally, logically,
provably, certifiably correct. He does not know, however, to
what extent it is reliable, dependable, trustworthy, safe; he
does not know within what limits it will work; he does not
know what happens when it exceeds those limits. And yet he
has that mystical stamp of approval: “VERIFIED.” ’ [19].
Hence, subjectivity was clearly pointed out, but was
insufficient to shake the confidence that rested solely on
formal methods, and even applies today.

The dissenting voices did more than point out the
existence of a social component in the acceptance of
theorems and proofs. They argued that it is precisely the
social component that acts as a decisive factor of trust and
may lead to minimize the error conditions: 'What elements
could contribute to making programming more like
engineering and mathematics? One mechanism that can be
exploited is the creation of general structures whose specific
instances become more reliable as the reliability of the
general structure increases. This notion has appeared in
several incarnations, of which Knuth's insistence on creating
and understanding generally useful algorithms is one of the
most important and encouraging. Baker's team-programming
methodology is an explicit attempt to expose software to
social processes. If reusability becomes a criterion for
effective design, a wider and wider community will examine
the most common programming tools.'[19].

Although these ideas have not strongly echoed then, we
now see that 'expose software to social processes' seems to
be the trend in the development of secure software.
Researchers cited generally useful algorithms that took the
form of the present design patterns which are general
descriptions of how to solve a commonly occurring problem
in software design. A pattern is an unfinished algorithm that
must to be adapted to many real situations. They also cited
team programming methodologies that nowadays have been
improved by the collaborative capabilities introduced
through the Internet, in a way that a piece of code can be

constructed or examined by several hands, tending to
stability. Reusability is a key issue in the conception of
modern program environments, enabling stable codes to be
used as components in the construction of modules. Finally,
there is currently a proliferation of software development
methodologies which rely on social collaboration for secure
software development. Some examples are TDD, PBL,
social coding, pair programming. Test Driven Development
(TDD) is a programming methodology where any
functionality of a program starts from a failing test case.
Each piece of code is written to solve the test case and
overpass its failure. Problem Based Learning (PBL) is a
learning methodology that considers a realistic problem, with
all its complexity, as a way of invoking interdisciplinarity
and autonomy aiming at knowledge construction through the
design and implementation of a solution for the proposed
problem. Both TDD and PBL takes place in teams. Social
Coding are face events aiming the development or
enhancement of code in groups. Pair Programming is a
programming mechanism guided by a "pilot" trading ideas
with a "co-pilot" attended by an audience. Each of these
methodologies, among others, start from the assumption that
the collective creation, negotiation, discussion and review by
multiple agents, among other mechanisms of participation,
tend to maximize the chances of success in building a
product, especially software.

V. CONCLUSION

In the Strong Program in the Sociology of Knowledge of
the University of Edimburgh, case studies play an important
role as they bring in the complexity of the ‘life-world’
situations. The Sociology of Mathematics, a sub-area of the
Strong Program, is a field were the resistance against a
intertwined approach to mathematics is a key issue of study,
and case studies make visible this resistance. David Bloor,
one of the proponents of the Strong Program, referring to
questions involving the myth of a purified mathematics,
claimed that ‘[t]he best answer to these questions is to
provide examples of such sociological analyses’ [12].

In the line of the Sociology of Mathematics, this article
pointed out that strategies of software certification currently
in place and the tone of recent initiatives such as 'The Great
Challenge' indicate that confidence in purified mathematics
still underlies the thinking and the doing of mathematicians
and computer scientists. In the sequence, this article brings
in a case study concerning the definition of an arithmetic for
computers that makes a compelling argument about the
impossibility of achieving a purified arithmetic, that is, an
arithmetic that is not influenced by what is considered
'extra-mathematical' factors. In a attempt to have purified
mathematics as an arbiter, new elements and testimonies
have slowly emerged, destabilizing the bases of the search
for objectivity and making room for mixed heterogeneous
(extra mathematical) elements that were decisive in
establishing consensus. We thus conclude this paper by
citing two recent cases that argue in favor of hybrid
approaches, rejecting the possibility of a mathematics that,
being supposedly free of subjectivities, would provide
absolute certainty.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

The first case is a recent discussion referring to a famous
phrase of the mathematician Georg Cantor: 'Je vois mais je
ne le crois pas', by which he would have expressed his
astonishment at the amazing results that he had just
discovered. According to the analyses of the mathematician
Gouvêa [20], however, this phrase was actually a response
to Dedekind who argued contrary to Cantor’s proposals. It
was an emphatic trope against his opponent’s arguments
about something that was, for Cantor, completely clear.
Gouvêa's conclusions about this case have much to do with
the discussion of objectivity and the influences of non-
mathematical factors in the configuration of what is said to
be objective. According to Gouvêa (in page 198) ‘[t]he story
was then co-opted to demonstrate that mathematicians often
discover things that they did not expect or prove things that
they did not actually want to prove.’

Sociology of Mathematics argues that mathematical
knowledge is a result of several steps of agreement within a
collective thought, in strong alignment with Gouvêa’s
assertion about subjectivity in mathematical proofs: ‘A
proof is not a proof until some reader, preferably a
competent one, says it is. Until then we may see, but we
should not believe.’

The second case is about a recent statement of Tony
Hoare, a well known knowledgeable spokesman, for the use
of formal methods to ensure program correctness. As late as
2010 Hoare felt adequate to announce a reconsideration of
his own previous words. In page 5 of [21]: 'I regarded
program testing as the main rival technology'. He reported a
join work where he could see senior researches using formal
methods not for proof but to detect program errors as much
close as possible to their occurrence in code. He then
concludes: 'Testing and proving are not rivals: they are just
two ends of a scale of techniques available to the software
engineer to collect evidence for the validity and
serviceability of delivered code.' Hoare’s testimony in a
year as recent as 2010 shows for how long inductive
reasoning, tests, empirical approaches have been (and very
likely still are) rejected as legitimate mechanisms for
software verification.

The Sociology of Mathematics bring legitimacy to
explanations of mathematical facts (such as proved
theorems) which distance themselves from explanations of a
more absolutist flavor prevailing among the majority of
mathematicians. For the Social Studies of Science and
Technology, where the universality of knowledge is
understood as a mechanism to ensure authority and science
is viewed as a local phenomenon, objectivity is addressed in
its interweaving with the social; this makes it possible that
other elements besides those considered as ‘technical’ come
into play in the composition of the facts regarded as
‘mathematical’. A closer examination of mathematical
practice shows this inevitable interweaving of knowledge,
which, however, remained invisible to the great majority
possibly because of the lack of interest in shaking the
stability of a purified body of knowledge which places
mathematics in a level of unquestionable, neutral and
universal truth.

REFERENCES

[1] E. W. Dijkstra, “The humble programmer.” Commun. ACM, vol 15,
issue 10, pp. 859-866, October 1972.

[2] P. Naur and B. Randell, Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, pp. 7-11 October 1968.

[3] T. M. Porter, Trust in numbers: the pursuit of objectivity in science
and public life, Princeton University Press, 1995.

[4] D. A. Mackenzie, Mechanizing proof: computing, risk, and trust.
Cambridge, Mass. MIT Press. 2001.

[5] J. S. Mill, A System of Logic, Raciocinative and Inductive, Londres,
H& B Pub, 1848.

[6] G. Frege, The Foundations of Arithmetic. A logico-mathematical
enquiry into the concept of number, Harper & Brothers. New York.
2Ed, 1953.

[7] R. Carnap, O. Neurath, and H. Hahn, “La concepción científica del
mundo: el Círculo de Viena. 1929” Trad. Lorenzano, P. Presentación
de La concepción científica del mundo: el Círculo de Viena. Revista
Redes, vol.9, n. 18, pp. 103-149,2002..

[8] D. Hilbert, “On the infinite”, In: Bencerraf, P., Putnam, H. Eds.
Philosophy of Mathematics Cambridge University Press, 1984.

[9] M. Davis, The undecidable; basic papers on undecidable propositions,
unsolvable problems and computable functions, Raven Press Hewlett,
N.Y., 1965.

[10] D. J. Struik, “On the Sociology of Mathematics”, Science and
Society, New York, vol. VI, no. 1, Winter, 1942.

[11] C.A.R. Hoare and J. Misra, “Verified Software: Theories, Tools,
Experiments Vision of a Grand Challenge Project”. In B. Meyer, J.
Woodcook, eds. First IFIP TC 2/wg 2.3, VSTTE 2005, Zurich, vol
4171 of LNCS pp. 1-18, Springer, 2005.

[12] D. Bloor, Knowledge and social imagery. Chicago: University of
Chicago Press, 1976/1991.

[13] Department of Defense Standard. Department of Defense Trusted
Computer System Evaluation Criteria. DoD 5200.28-STD, Dec, 1985
av. at http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
[retrieved:September,2012]

[14] Common Criteria for Information Technology Security Evaluation
Part 3: Security assurance components July 2009 Version 3.1
Revision 3. CCMB- 2009-07-003:229.

[15] C. L. Heitmeyer, “On the role of Formal Methods”, Electronic Notes
in Theoretical Computer Science, vol 238, pp. 3–9, 2009.

[16] C.A.R. Hoare, “How did software get so reliable without proof?”
FME'96: Industrial Benefit and Adv. in Formal Methods, vol. 1051 ,
pp. 1-17, 1996.

[17] E. Husserl, The crisis of European sciences and transcendental
phenomenology; an introduction to phenomenological philosophy.
Evanston: Northwestern University Press, 1954/1970.

[18] D. A. Mackenzie, Negotiating Arithmetic, Constructing Proof. In: D.
Mackenzie Ed. Knowing Machines - Essays on Technical Change.
Cambridge, MA: The MIT Press, 1996.

[19] R. A. De Millo, R. J. Lipton, and A. J. Perlis, Social Processes and
Proofs of Theorems and Programs, Commun. ACM vol 22, pp. 271-
280, 1979.

[20] F. Q. Gouvêa, “Was Cantor surprised?”, The Mathematical
Association of America, Monthly vol 118, pp. 198-209, 2011.

[21] C. A. R. Hoare. “Testing and proving, hand-in-hand” TAIC PART'10,
L. Bottaci and G. Fraser Eds. Springer-Verlag, Berlin, Heidelberg, pp.
5-6, 2010.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

	I. Introduction
	A. The strengthening of mathematics to support the trust
	B. Organization of the next sections

	II. Formal Methods for Software Correctness (from the seventies to today)
	III. When objectivity is no longer enough
	IV. Social Processes for Software Correctness
	V. Conclusion

