
Automated Structural Testing of Simulink/TargetLink Models via Search-Based
Testing assisted by Prior-Search Static Analysis

Benjamin Wilmes
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: benjamin.wilmes@dcaiti.com

Abstract—Considering the advantages of early testing and
the importance of an efficient quality assurance process, the
automation of testing software models would be of great benefit,
in particular to the automotive industry. Search-based testing
has been applied to automate testing of Simulink models. De-
spite promising results however, the approach lacks efficiency.
Working toward a robust tool, this paper presents three static-
analysis-based techniques for assisting and improving search-
based structural testing of TargetLink-compliant Simulink
models. An interval analysis of model internal signals is used
to identify unsatisfiable coverage goals and exclude them from
the search. A further analysis determines which model inputs a
coverage goal actually depends on in order to reduce the search
space. We also propose a technique that sequences coverage-
goal-related search processes in order to maximize collateral
coverage and reduce test suite size. These additional techniques
make the search-based approach applied to Simulink more
efficient, as first experiments indicate.

Keywords-Search-Based Testing; Static Analysis; Simulink.

I. INTRODUCTION

Today, in many application areas, the creation of em-
bedded controller software relies on model-based design
paradigms. Various industries, such as the automotive in-
dustry, use Matlab Simulink (SL) [1] as the standard tool
to create and simulate dynamic models along with a code
generator, for instance TargetLink (TL) [2], in order to
automatically derive software code from such models.

As they are normally the first executable artifacts within
software development processes, SL models play an impor-
tant role in testing theory. Industrial testing practice however,
usually focuses on higher-level development artifacts, like
testing integrated software or systems as a whole. This
discrepancy has both traditional and practical reasons. On
one hand, current testing processes still require further
adaptation to the model-based paradigm. On the other hand,
companies are pressed for time in product development and
must deal with an increasing demand for innovation. This
can lead to a disregard for low-level tests and model tests in
particular. Yet focusing too one-sided on tests of higher-level
software or system artifacts poses the risk that faults may be
found late in the process, which can lead to increased costs,
that some faults can hardly be discovered on higher levels,

or that certain functionality is not tested at all.
Thus, automating the testing of software models is highly

desirable in industrial practice, particularly with regard to
what is normally the most time-consuming testing activity:
the selection of adequate test cases in the form of model
input values (test data). Search-based testing is a dynamic
approach to automating this task. It transforms the test
data finding problem into an optimization problem and
utilizes meta-heuristic search techniques like evolutionary
algorithms to solve it. Search-based testing [3] has been
studied widely in the past and has also been applied success-
fully for testing industrial-sized software systems [4]. Both
structural (white-box) and functional (black-box) testing can
be automated with the search-based approach.

Zhan and Clark [5], as well as Windisch [6], applied
search-based testing to structural test data generation for SL
models. The work of Windisch not only supports Stateflow
(SF) diagrams (which are used fairly often in SL models),
but also makes use of an advanced signal generation ap-
proach in order to generate realistic test data. While his ap-
proach has led to promising results in general, outperforming
commercial tools, it lacks efficiency when applied to larger
models. Furthermore, it shows difficulties targeting Boolean
states and tackling complex dependencies within models [7].

The work presented in this paper is a first step toward
overcoming some of these shortcomings by exploiting static
model analysis techniques before the search process actually
starts. Our scope is test data generation for TL-compliant
Simulink models. We aim to improve both the efficiency
and effectiveness of the approach by Windisch.

This paper is structured as follows: Section II introduces
search-based testing and its application to structural test-
ing of SL models. Section III presents our approach to
supporting the search-based technique by integrating three
additional analysis techniques. We present a signal range
analysis (Section III-A), which captures range information
of internal model signals, and in this way, allows partial
detection of unreachable model states. We then propose
a signal dependency analysis for the purpose of search
space reduction (Section III-B). Our third contribution is
a sequencing approach, which derives an order in which

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

coverage goals of a structural test are processed by the search
(Section III-C). Insight into our implementation along with
first experimental results is provided in Section IV, followed
by our conclusions in Section V.

II. BACKGROUND

A. Search-Based Structural Testing

Search-based testing [3] and its application to industrial
cases has been extensively studied in the last decade, mo-
tivated by its general scalability, in contrast to purely static
techniques like symbolic execution.

The general idea of search-based testing is pretty simple:
a test data finding problem (which surely differs in its
nature depending on the kind of testing) is transformed
into an optimization problem by defining a cost function,
called a fitness function. This function rates any test data
generated by the deployed search algorithm - usually based
on information gained from executing the test object with
it. The rating must express in as much detail as possible,
how far the test data is from being the desired test data.
An iteratively working search algorithm uses these fitness
ratings to distinguish good test data from bad, and based
on this, generates new test data in each iterative cycle. This
fully automated procedure continues until test data satisfying
the search goal(s) has been found, that is, if a fitness
rating has reached a certain threshold or until a predefined
number of algorithm iterations have been performed. Various
search algorithms have been used in the past. Due to their
strength in dealing with diverse search spaces, evolutionary
algorithms, like genetic algorithms, were often preferred [8].

Applied to functional testing, the search-based approach
is generally utilized to search for violations of a requirement.
In this case, a sophisticated fitness function needs to be
designed manually when following the standard approach.
However, when applied to structural test data generation,
fitness functions can be derived completely automatically
from the inner structure of the program to be tested.

Structural testing is commonly aimed at deriving test data
based on the internal structural elements of the test object,
e.g., creating a set of test data which executes all statements
of a code function, or all paths in the corresponding control
flow graph. Industrial standards like ISO 26262 even demand
the consideration of coverage metrics when performing low-
level tests. Search-based testing can automate this task for
various coverage criteria (like branch or condition coverage)
by treating each structural element requiring coverage as
a separate search goal, called a coverage goal (CG). Each
CG is accompanied by a specific fitness function. Wegener
et al. [9] recommend composing the fitness function of
the following two metrics: approach level (positive integer
value) and branch distance (real value from 0 to 1). Given
a test data’s execution path in the control flow graph of the
test object’s code, the approach level describes the smallest
number of branch nodes between the structural element to

be covered and any covered path element. To create a more
detailed and differing rating of generated test cases, the
branch distance reflects how far the test object’s execution
has been from taking the opposite decision at the covered
branch node, which is the closest to the structural element
to be covered. This approach is suitable for structural testing
of program code, like C or Java code.

B. Application to Dynamic Systems

As model-based development is now established in the au-
tomotive industry and practitioners have noticed opportuni-
ties to test earlier, Windisch [6] as well as Zhan and Clark [5]
have transferred the idea of search-based structural testing
from code to model level. For SL models, structural coverage
criteria similar to the ones known from code testing exist
and are commonly accepted in practice. Before addressing
the challenges of applying search-based test data generation
to SL models, we give a brief introduction to SL. SL is
a graphical data-flow language for specifying the behavior
of dynamic systems. Syntactically, a SL model consists of
functional blocks and lines connecting them, while most of
the blocks are equipped with one or more input ports as well
as output ports. The semantics of such a model results from
the composed functionalities of the involved block types,
e.g., sum blocks, relational blocks or delay functions. In
addition, event-driven or state-based functionalities can be
realized within SL models using SF blocks. A SF block
contains an editable Statechart-like automaton.

When applying search-based structural testing to SL mod-
els, two fundamental differences compared to its application
on code level arise. First, SL models describe time and state
dependent processes. Inputs and outputs of SL models, as
well as block-connecting lines, are in fact signals. In order
to enable reaching all system states, an execution with input
sequences (signals) instead of single input values is required.
Such complex test data can only be generated with common
search algorithms by compressing the data structure, as done
by Windisch [10]. His segment-based signal generation ap-
proach also considers the necessity for being able to specify
the test data signals to be generated (e.g., amplitude bounds
and signal nature like wave or impulse form). Second, the
aforementioned fitness function approach cannot be fully
adopted since SL models are data flow-oriented. There are
no execution paths because the execution of a SL model
involves the execution of every included block. Hence, a
CG-related fitness function addresses only distances to the
desired values of one or more model internal signals. For
CGs in SF diagrams however, a bipartite fitness approach is
possible [7].

Figure 1 visualizes the overall work flow of applying
search-based test data generation to structural testing of SL
models as described.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

CG 2 CG 3 . . .

Real Test Data
(Input Signals)

Abstract Test Data
(Signal Segments) A: 5.0

W: *
T: *

A: 4.0
W: 0.5
T: st

A: 3.2
W: 1.2
T: sin

Signal

Generation

Evaluation of Generated Test Data

Model Execution

& Signal Logging

Fitness

Derivation

Distance to CG
Condition/Formula

Coverage Goal 1

Search

Algorithm

CG 4

0.56875

Figure 1. Automated search for test sequences, which fulfill coverage
goals derived from the model under test

C. Deficiencies and Potential

Search-based structural testing has been applied success-
fully to real (proprietary) SL models originating from devel-
opment projects at Daimler, e.g., a model of a windscreen
wiper controller [7]. Compared to purely random test data
generation of similar complexity, the search-based approach
results in significantly higher model coverage. Even in com-
parison with a commercial tool, the search-based approach
performs more effectively.

Despite promising results, the approach lacks efficiency.
In general, the overall runtime of the search processes for
achieving maximal model coverage increases with the size
of the model under test. Similar experiences have been
made with code-level search-based structural testing [11].
Since a single automotive SL model is often hundreds of
blocks in size, and because a test data generation process
of more than a couple of hours is undesirable, improving
efficiency of the search-based approach is vital. Apart from
the shortcomings of this approach that will be addressed
by the contributions in the following sections, there are two
other technical problems leading to a lack of efficiency. First,
the structural test data generation is performed black-box-
like, which means that the model is fed with input values
on one end while some distances for calculating fitness are
measured at some other point in the model. Any structural
information between is not considered, thus the search might
be blind to complicated dependencies in the model (cf.
[12]). Second, when targeting a Boolean state in a model, a
suitable fitness function is hard to find since a simple true or
false rating inadequately leads a search [7]. Zhan and Clark
suggest a technique called tracing and deducing [13], which
mitigates this problem in certain cases, but fails in instances
where the Boolean problem cannot be traced back in the
model to a non-Boolean one. Further work will address these
problems.

As a whole, we aim to improve the search-based approach
for structural testing of SL models so that it performs accept-
ably and reliably in industrial development environments. To

this end, we turn our attention to testing of TL-compliant
SL models since the code generator TL is widely used in
industrial practice. TL extends SL by offering additional
block types, but also makes restrictions on the usage of
certain SL constructs like block types. Nevertheless, it is
possible to adapt our ideas to pure SL usage.

III. PRIOR-SEARCH STATIC ANALYSIS

We distinguish between techniques which support search-
based structural testing (a) before the CG-related search pro-
cesses, (b) between the different search processes, (c) during
each search process, and (d) after the search processes are
done. In the following sections, three techniques belonging
to category (a) are presented. Apart from making use of an
input specification and choice of coverage criteria provided
by the user, all three techniques are fully automatic.

A. Signal Interval Analysis

In structural testing practice, achieving 100% coverage is
often not possible. One reason lies in the semantic construc-
tions precluding certain states or signal values. It might also
be that a tester specified the test data to be generated in such
a way that it prevents certain CGs from being satisfiable.
Also, SL models might be designed variably, e.g., contain a
constant block with a variable value. When such variability
is bound during execution, e.g., via configuration file, certain
model states may be unreachable.

CGs referring to unreachable states worsen the over-
all runtime and undermine the efficiency of search-based
structural test data generation since time-consuming search
processes are carried out without any hope of finding desired
test data. Therefore, we propose two techniques contributing
to automatic identification of unreachable CGs. The first one
is an interval analysis, which determines the range within
which the values of every internal model signal are. If a
signal range is in conflict with the range or value required by
a CG, this CG is unsatisfiable. We use interval analysis since
other approaches to detect infeasibility, such as constraint
solving or theorem proving [14], are currently not scalable
enough for the complex equations constituted by industrial-
sized SL models. The second technique is an analysis of
dependencies between CGs. Since this technique is mainly
used for another purpose, it is presented in Section III-C.

The code generator TL, as well as the latest version
of SL, are capable of analyzing signal ranges in order to
perform code optimizations and improve scaling or data type
selection, respectively. While those range analysis features
are limited (e.g., determining ranges of signals that are
involved in loops is not possible without user interaction)
our signal interval analysis (SIA) makes use of an input
signal specification in order to overcome such limitations
and derive more precise ranges.

As mentioned in Section II-B, a tester who uses the
search-based approach for testing SL models, as outlined by

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

[0,1] : 1

[0,4] : 0.5

[5,20] : 0.2

1

2

3

1

z
[0,300]:1

[0,300]:1

Length: 30 sec Resolution: 0.1
Input Signal

Specification

+
>

CG:

==1

[0]

*
[0,80]

Loop Analysis

Semantic-Driven Range Propagation

400

Figure 2. Example of how determining the ranges of a model’s internal
signals based on input specification and block semantics works

Windisch, is asked to specify the test data to be generated
first. This involves establishing (a) the range boundaries and
step size of each model input as well as defining (b) a
common length (in seconds) and sample rate for all input
signals. SIA starts with information (a) for a model’s input
signals and propagates the corresponding signal ranges of the
form [x, y] : q, where q (optional) is the step size, through
the whole model. Following Wang et al. [15] we also use
interval sets instead of a single interval per signal in order
to derive more accurate range information. Each propagation
step is based on the semantics of the block connecting the
signals. In this context, we derived interval semantics for
each block type of TL-compliant SL models using basic
concepts of interval arithmetic [16].

Figure 2 graphically depicts this procedure with the aid
of a simple example. Note that the model contains a loop,
initiated by a delay block with an initial value of 0. The
standard propagation procedure would be unable to continue
here since ranges are not available for all incoming signals
of the sum block. A simple, yet imprecise solution is to
set the range of the sum block’s outgoing signal to the
minimum and maximum values of the signal’s data type.
A more precise solution however, is to use the information
(b) of the signal specification in order to run a loop analysis.
From length and sample rate, the number of loop iterations
is derivable. Starting with the initial value of the delay block
a static analysis of the loop iterations is performed, resulting
in time-related range information. In order to keep the final
results clean and minimal, each signal’s ranges as well as
the time phases of ranges are combined, if possible, in each
iteration of the loop analysis.

Using range propagation and loop analysis in combina-
tion, SIA is capable of determining the ranges of all signals
contained in the model under test. In cases of blocks with un-
known semantics or unsupported blocks, the minimum and
maximum values of the outgoing signal’s data type are used.
Finally, the results of SIA are used to assess whether each
CG’s associated formula is unsatisfiable - see the exemplary

CG in Figure 2. In addition to unsatisfiable CGs, SIA can
also identify Boolean signals or discrete signals with only a
few possible different values. As described in Section II-C,
CGs related to such signals could be problematic for the
search-based approach.

B. Signal Dependency Analysis

By default, the search algorithm generates test data for all
of the model’s inputs when targeting a CG. However, there
are usually CGs whose satisfaction is, in fact, independent
of the stimulation of certain model inputs. By not taking this
into account, the search space is unnecessarily large, which
makes it more difficult for the search to find desired test
data. To raise efficiency, we include a signal dependency
analysis (SDA) to identify which model inputs each CG
actually depends on. McMinn et al. [17] investigated a
related approach, however, on code level. SDA is closely
related to a slicing approach for SL models developed in
parallel to our work [18].

At code level, such analysis is usually done by capturing
the control dependence in a graph. SL models though, as
pointed out previously, are dominated by data dependencies.
We therefore analyze the dependency of CGs on input
signals by creating a signal dependency graph (a) based on
the syntax of the model and (b) refined according to the
semantics of blocks which have multiple outgoing signals.
Focusing purely on syntax, the following principle leads to
a graph describing which signal b the value of a model
internal signal a depends on: Signal a is dominated by a
signal b if signal a is the outcome of a model block which
has signal b incoming. Some blocks with multiple outgoing
signals however, do not use every incoming signal in order
to calculate the value of a certain outgoing signal. In such
cases, the signal dependency graph is refined by removing
over-approximated dependencies.

In order to determine which model inputs a certain CG
depends on, the signal or signals, which the CG expression
refers to, are selected in the dependency graph first. By
traversing the graph up to the input signals, the set of
relevant model inputs is collected. Within the subsequent
search process for this CG, signals are generated only for
the relevant inputs - all other inputs receive a standard (e.g.,
zero valued) signal when being executed.

C. Coverage Goal Sequencing

No matter if structural testing is performed in addition to
functional (black-box) testing or purely as white-box testing,
it is usually a set of CGs that constitutes the test objective.
Remember, that for each CG a separate search needs to
be run. In Windisch’s approach, those search processes are
executed in random order. Hence, correlations between CGs
are ignored. Given CGs with the expressions s<90, s<80
and s<70, for example, it is most likely more efficient to
aim for reaching the goal s<70 first because it satisfies all

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Coverage Goal Analysis

1. Collect all CGs of all available coverage criteria

CG 1

CG 2

. . .

2. Harmonize and simplify CG expressions, e.g.

s1>10 AND s1>4 s1>10

s2≥1 + s in [0,1]:1 s2==1

Dependancy Analysis

1. Logical Dependance between CGs

2. Semantical Dependance due to connecting blocks

s2==1 s2≠4

(incl. creation of virtual CGs for bridging between CGs)

s3==1OR

s3 s4
s4==1

Optimization Goal Sequencing

1. Reduction of Dependancy Graph according to
user selection of coverage criteria or CGs

2. Derivation of Optimization Goals from graph

CG 1 CG 4CG 9+

CG combinations single CGs

3. Sequencing based on factors such as number
of implied CGs, model depth or boolean
signals in expressions

Figure 3. Main process steps to create an efficient order for a set of coverage goals, which are processed separately by a search

other CGs at the same time. As this example indicates, the
execution order of the CG-related search processes affects
the efficiency of the whole structural test.

Other researchers in the search-based testing community
have noticed this shortcoming as well. Fraser and Arcuri [19]
advise focusing on the generation of whole test suites rather
than targeting single CGs. They recommend optimizing
multiple test suites instead of multiple test data, and also
suggest rewarding smaller test suites with a better fitness
in case two or more test suites achieve the same coverage.
Harman et al. [20], in contrast, suggest a multi-objective
search in which each CG is still targeted individually but the
number of collateral (accidentally covered) goals is included
as a secondary objective. Though facing a similar problem,
our approach differs. We keep the focus on single CGs since,
considering the complexity of the optimization problems
constituted by industrial SL models, they are often difficult
to reach and we do not want to impede the search by
burdening it with additional goals or mixed fitness values.
Instead, we propose a coverage goal sequencing approach
that creates a reasonable order in which the various CGs
are pursued. Li et al. worked out a related approach [21],
however it is outside of the search-based and SL context.
Ultimately, by maximizing collateral coverage, our approach
attempts to minimize the number of CGs that need to
be pursued. Not only is this expected to improve overall
efficiency, but the resulting test suite should also be smaller.

In this paper, we can only give a brief introduction to this
technically complex solution, as summarized in Figure 3.
First of all, the model under test is analyzed and CGs are
derived for all SL/SF-relevant coverage criteria (see [7]).
In preparation to analyzing dependencies between CGs, we
apply several harmonization and simplification steps to the
CG expressions. Note that results of SIA (Section III-A)
are used for this task as well, e.g., an expression s≥1
would be transformed to s=1 if s is a Boolean signal.
Next, possible dependencies between CG expressions are
analyzed, resulting in a set of dependency graphs. A set,
since only certain dependencies are considered in order to
limit complexity. The following CG relations are registered:
implication, equivalence, NAND, and XOR. Dependencies

of the expressions are analyzed both from a logical and a
semantical point of view. Semantical means that for each two
CGs relating to incoming or outgoing signals of the same
model block, a block-specific analysis checks if a relation
between the CGs exists. In certain cases, the block-specific
analysis adds virtual CGs as a bridge to other CGs in order
to detect further dependencies. Along the way, based on the
captured dependencies, further CGs might be detected as
unsatisfiable (see Section III-A).

Considering the user’s selection of coverage criteria or
single CGs, the graphs are minimized accordingly. Amongst
others, non-selected CGs implying selected CGs are kept.
From the graphs the final optimization goals are derived
in a two-fold way: Besides keeping each selected CG as a
single optimization goal, certain combinations of CGs are
derived as well - since a graph can contain conjunctions. In
this way, optimization goals with high collateral coverage
are added. Finally, the optimization goals are sequenced
according to several metrics, primarily by the number of
(so far unsatisfied) implied CGs, but also by their depth in
the model and the amount of Boolean signals involved in
the expressions - since such goals should be avoided given
the fitness function construction problem (see Section II-C).
Note that the pursuing order of optimization goals is updated
after each search process ends, since an optimization goal’s
number of unsatisfied implied CGs might have changed.

IV. IMPLEMENTATION AND FIRST EXPERIMENTS

The presented analysis techniques have been implemented
in the course of developing our tool TASMO [22], which
is implemented in Java and closely integrated with Matlab.
TASMO extracts model related information from Matlab
and applies transformation and reduction steps to an internal
representation of the model under test in order to focus on
the relevant parts for structural test data generation. TASMO
can also visualize the results of the presented analysis
techniques. We investigated the effect of these techniques
to structural test data generation for industrial SL/TL mod-
els. Case studies applying the whole procedure, including
running the search procedure, are part of ongoing work.
We present first experimental results of applying signal

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

interval analysis and signal dependency analysis to two SL
models, one mid-sized (model A, 147 blocks, 323 CGs) and
one large-sized (model B, 1047 blocks, 736 CGs), recently
developed at Daimler in the scope of an electric vehicle’s
propulsion strategy. Based on the input specifications, SIA
identified 17 (A) and 39 (B) infeasible CGs for which the
standard search-based approach would otherwise perform
extensive search processes. SDA detected that for each CG,
on average, only about 3.1 out of 8 (A) and 17.3 out of 32
(B) model inputs would need to be stimulated in order to
match the CG formulas. This shows how this technique can
reduce the search space distinctly - without excluding CG-
relevant search space areas. The runtime of the additional
analysis techniques was only a matter of seconds.

V. CONCLUSION AND FUTURE WORK

This paper introduces an approach to improving the per-
formance of search-based testing when applied to structural
testing of SL models. Three static techniques extend the
standard search-based approach by analyzing the model
under test before the search processes for each CG are run.
Unsatisfiable CGs are partially identified and excluded from
the search. The search space is reduced in such a way that the
search focuses solely on relevant model inputs. The separate
search processes for each CG are sequenced in order to
maximize collateral coverage, minimize test suite size, and
shorten the overall search runtime.

First experiments backed up our expectations and exten-
sive case studies will follow in the course of our proceeding
tool development. We aim to develop a prototype tool that is
applicable in industry. Further work is required to extend the
presented techniques with full Stateflow support. Targeting
the discussed shortcomings of the search-based approach,
our next main step is to work on a hybridization of the
search-based algorithm with supporting (static) techniques.

REFERENCES

[1] The Mathworks, “Matlab Simulink,” Last access: 2012-09-16.
[Online]. Available: http://www.mathworks.com

[2] dSpace, “Targetlink,” Last access: 2012-09-16. [Online].
Available: http://www.dspace.com

[3] P. McMinn, “Search-based software testing: Past, present
and future,” in Softw. Testing, Verif. and Valid. Workshops
(ICSTW), 2011.

[4] B. Wilmes, A. Windisch, and F. Lindlar, “Suchbasierter Test
für den industriellen Einsatz,” in 4. Symp. Test. im Sys.- und
Softw. Life-Cycle, 2011.

[5] Y. Zhan and J. A. Clark, “A search-based framework for
automatic testing of MATLAB/Simulink models,” J. Syst.
Softw., vol. 81, no. 2, pp. 262–285, Feb. 2008.

[6] A. Windisch, “Search-based testing of complex simulink
models containing stateflow diagrams,” in Proc. of the 1st
Int. Workshop on Search-Based Soft. Testing, 2008.

[7] A. Windisch, “Suchbasierter Strukturtest für Simulink Mod-
elle,” Ph.D. dissertation, Berlin Institute of Technology, 2011.

[8] M. Harman and P. McMinn, “A theoretical and empirical
study of search-based testing: Local, global, and hybrid
search,” IEEE Trans. on Softw. Eng., vol. 36, pp. 226–247,
2010.

[9] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Inform. and
Softw. Technology, vol. 43, no. 14, pp. 841–854, 2001.

[10] A. Windisch and N. Al Moubayed, “Signal generation for
search-based testing of continuous systems,” in Softw. Testing,
Verif. and Valid. Workshops (ICSTW), 2009.

[11] T. Vos, A. Baars, F. Lindlar, P. Kruse, A. Windisch, and
J. Wegener, “Industrial scaled automated structural testing
with the evolutionary testing tool,” in Proc. of the 3rd Int.
Conf. on Softw. Testing, Verif. and Valid., 2010.

[12] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The
species per path approach to search based test data genera-
tion,” in Proc. of the 2006 Int. Symp. on Softw. Testing and
Analysis (ISSTA), 2006, pp. 13–24.

[13] Y. Zhan and J. A. Clark, “The state problem for test genera-
tion in simulink,” in Proc. of the 8th Annual Conf. on Genetic
and Evolutionary Computation, 2006, pp. 1941–1948.

[14] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications
of feasible path analysis to program testing,” in Proc. of the
Int. Symp. on Softw. Testing and Analysis, 1994, pp. 80–94.

[15] Y. Wang, Y. Gong, J. Chen, Q. Xiao, and Z. Yang, “An
application of interval analysis in software static analysis,”
in IEEE/IFIP Int. Conf. on Embedded and Ubiquitous Com-
puting, vol. 2, 2008, pp. 367 –372.

[16] R. E. Moore, Interval Analysis. Prentice-Hall, 1966.

[17] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. We-
gener, “Input domain reduction through irrelevant variable
removal and its effect on local, global, and hybrid search-
based structural test data generation,” IEEE Trans. on Softw.
Eng., vol. 38, pp. 453–477, 2012.

[18] R. Reicherdt and S. Glesner, “Slicing Matlab Simulink mod-
els,” in 34th Int. Conf. on Softw. Eng., 2012, pp. 551 –561.

[19] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in 11th Int. Conf. on Quality Softw., 2011.

[20] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search
based test data generation with an application to the oracle
cost problem,” in Softw. Testing, Verif. and Valid. Workshops
(ICSTW), 2010, pp. 182–191.

[21] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided pri-
oritized test generation,” Inf. Softw. Technol., vol. 48, no. 12,
pp. 1187–1198, 2006.

[22] B. Wilmes, “Toward a tool for search-based testing of
Simulink/TargetLink models,” in 4th Symp. on Search Based
Softw. Eng. (Fast Abstracts), 2012.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

