
Test Driven Life Cycle Management for Internet of Things based Services: a
Semantic Approach

Eike S. Reetz, Daniel Kümper and Ralf Tönjes
Faculty of Engineering and Computer Sciences

University of Applied Sciences Osnabrück
Osnabrück, Germany

Email: {e.reetz, d.kuemper, r.toenjes}@hs-osnabrueck.de

Anders Lehmann
Institute for Business and Technology

Århus University
Århus, Denmark

Email: anders@hih.au.dk

Abstract—Concepts for Internet of Things (IoT) are cur-
rently limited to particular domains and are tailored to meet
only limited requirements of their narrow applications. To
overcome current silo architectures, we propose a business
oriented service composition of IoT enabled services with
(semi-) automated model based testing capabilities. Explicit
description of services as well as the target environment
allows for automated design and execution of tests, hence
enabling fast and robust IoT based service provision. This
work proposes a semantic description of the test design and
execution process to enable reasoning of test behaviour and
suitability in the different phases of a service life cycle. The
proposed work describes a test model and an appropriate test
architecture. A first testbed implementation demonstrates their
applicability. The proposed approach enriches current views
of IoT architectures with knowledge from the field of service
oriented architectures and makes them usable in distributed
environments with partial unreliable resources by introducing
a formalised integration of automated testing into the life cycle
management.

Keywords-model based testing; Internet of Things; life cycle
management; semantic test description.

I. INTRODUCTION

Seamless and transparent integration of smart objects into
the environment is an open research topic for almost 20
years. Several aspects of a smart interaction between the
virtual and the physical world from low level resource
constraint sensors and actuators to high level description
and interaction capabilities based on context-awareness have
been proposed so far, resulting in several isolated solutions
for the Internet of Things (IoT). Nevertheless, most of the
proposed approaches address only the open issues of a
specific application domain. Moreover, the limited interop-
erability between different silo solutions tends to prevent
mass market services and service composition. To overcome
these technological limitations, we propose a flexible service
creation environment for IoT in order to dynamically design
and integrate new types of services and therefore enable new
business opportunities.

Due to interactions with the real world and a large
variety of involved technologies, these services have to be
very flexible and robust. This requires enhanced testing

capabilities already included in the service creation process.
Our approach is not only to pursue a test-driven service life-
cycle management, but also to automate the testing process
appropriately. Testing in the IoT domain is a challenging
task: The diversity and distribution of involved components,
as well as their unreliability, raise current research issues.
Furthermore, the need for realistic conditions results in a
complex testing environment. Moreover, the dynamics of the
IoT environment make the development and maintenance of
services an error prone challenge.

The presented concepts have been conducted in the scope
of the European research project ”IoT.est” (the overall
project concept can be found at [1]). This paper focuses
on the aspects related to automated testing by describing
the current status of the approaches and their limitations.

The overall contribution of this paper can be summarises
as follows: we propose a test-driven life cycle management
which can be utilised for rapid IoT based service creation
and deployment based on automated testing. Therefore, our
overall concepts of a test-driven life cycle management,
semantic descriptions of service and tests, and the derived
test architecture are envisaged. We are following a Ser-
vice Oriented Architecture (SOA) and, therefore, we are
extending classical approaches by adding enhanced testing
capabilities (e.g, test automation, emulation of network,
resources and real world context), which we believe enable
the applicability of SOA to the IoT domain.

The rest of the paper is structured as follows: after giving
a brief overview of the State of the Art in Section II, the
IoT service concept will be briefly explained in Section III.
Afterwards the model based testing approach is introduced
in Section IV and the test architecture is described in Section
V. First prototype implementations and testing principles are
then presented in Section VI. Conclusions and future work
finally conclude this paper.

II. RELATED WORK AND OPEN RESEARCH ISSUES

Current solutions do not consider test-friendly automated
development of services. Some approaches like the UML
2.0 Testing Profile [2] provide concepts for designing and

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

developing black-box tests, but do not provide guidance
how to utilise it. The abstract UML 2.0 Testing Profile
(U2TP) notation has to be transformed into a test specific
programming language like TTCN-3 [3] or JUNIT [4].
TTCN-3 specifies tests and how they have to be executed.
Several tools provide an environment for test creation and
execution. Nevertheless, a drawback of TTCN-3 is the lack
of simplicity in the generation of tests since the users need
to learn a new language. Our approach tries to overcome
this drawback by automated test case design and execution
during service development.

Initial concepts of software engineering processes applied
phase-models like the waterfall model and assume software
can be split into sequential phases. Iterative models, such as
the spiral model or V-model, change this paradigm by con-
sidering more iterative approaches. The V-model introduces
testing to the phases of the waterfall model. In recent years,
agile development processes, such as Extreme Programming,
have been introduced. One important outcome of of the
agile development approach is the test-first method, which
aims at a test-driven target orientated service development
process [5]. A Pattern Oriented Software Development
(POSE) approach for web service development has been
proposed by Chengjun [6]. A pattern represents compo-
nents and relationships amongst them. For each identified
POSE process a pattern is built; it comprises the activities,
goals, architecture definition and validation. Adapting these
software development processes to IoT service development
rises some challenges: the support for services at different
levels of granularity, the support for service composition,
consistency checking, the identification of dependencies
and the service development as contentious process. For
automation purposes, detailed descriptions of processes and
resources are crucial to control the IoT resource effects in
the service life cycle, especially during the testing phase.

III. IOT SERVICE CONCEPT

The investigated approach of IoT enabled services shows
similarities to classical service oriented architectures [7].
Our model for IoT enabled business services extends the
classical consumer/provider role concept by connecting IoT
resources (Inspired by the EU Project Sensei [8]) to the
service component and differentiate between Atomic Service
(AS) and Composite Service (CS). The AS is the smallest
separable, which could be either a classical web service or
an IoT service. IoT services access sensors and actuators by
abstracting their interfaces and capabilities. They provide an
interface based on SOA interfaces (e.g., RESTful), which
enables reusability by other entities. A CS is a conjunction
of atomic or composed services and integrates the business
flow perspective into the service. The CSs are modelled
with a Business Description Language like Business Process
Model and Notation (BPMN) or Business Process Execution
Language (BPEL), thus providing an abstract way to design

the service and accelerating evaluation of services and
integration of business logic.

IV. MODEL BASED TESTING

Due to dynamic and unreliable components involved in
IoT based services, efficient planning of resources for testing
is required. In order to address test levels with a certain cov-
erage, it is necessary to simplify and automate the test design
and execution process. Therefore, model based testing is a
promising approach to improve the IoT based services by
generating test cases from models extracted from the service
description. Figure 1 highlights the well known concept of
model based testing. Abstract test cases can be derived from
a service model, which is a partial description of the service.
The figure shows an extension to this classical approach
by introducing an explicit model of the environment in
which the service is executed. The explicit description of
an environmental model can be utilised to build components
for emulating the environment in an abstract and executable
way. Modelling the environment appears crucial for con-
vincing test results due to the distribution and unreliability
of IoT components as well as due to the interaction with
the real world. Different to the classical SOA domain of
web services, IoT services require a novel paradigm to
model the expected interaction with physical and virtual
objects. Enhanced models of the environment assure more
sophisticated testing capabilities of resources, network and
real world effects to the System Under Test (SUT).

The next subsection explains how model based testing
is integrated into the life cycle management and highlights
the different scopes of the testing process within various
phases of the life cycle. Afterwards, a semantic test model
is proposed, enabling reasoning of test behaviour and suit-
ability in the different phases of a service life cycle with
self-explanatory derivation and execution of test cases.

A. Test driven life cycle management

In order to understand why life cycle management is
important, we need to keep the paradigm shift of SOA in
mind. A SOA enables an improved alignment of business
and IT needs. Due to the composition of services, logic can
be separated from the implementation. Classical approaches
tend to decide how to achieve quality of service, security, or
combinations of functions at design time and thus reduce the
flexibility of the business processes. Another improvement is
the reduction of the time to market since the decomposition
of applications into services increases sharing and reusability
of services. Different stakeholders, as well as the integration
of IoT enabled business services, require coordination and
collaboration in terms of service design, execution and
testing. This results in the need of a common understanding
of the service life cycle process. In addition to these classical
outcomes of a well defined life cycle, a management process
enables to (semi-) automatise the test process based on the

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Service Model

Service

Abstract Emulation

Environment

Env. Model

Executable Emulation

is executed in an

is a partial description of

Is derived from

is abstract Version of

Executable Tests

Abstract Tests

emulates

can be run against

are abstract versions of

are derived from

is a partial description of

control

are derived from

Figure 1. Extended model based testing approach

semantically described process and the service itself. There-
fore, knowledge about the functional and non-functional
behaviour of the service as well as the test modelling and
execution are explicitly described by utilising a machine
and human interpretable semantic description. The proposed
life cycle approach takes advantage of well known phase
models. Nevertheless, we believe that the explicit integration
can significantly enhance the applicability for IoT based
services. This test description enables reasoning of test
behaviour and suitability in the different phases of an IoT
service life cycle. In these life cycle phases (Figure 2), the
focus of interests is different.

In the modelling phase, the focus is on making the service
perform according to the functional specifications. Thus, the
focus is on functional testing, i.e. unit tests and integration
tests.

In the composition phase, the focus is on building complex
services by composing other services. In this phase, it
becomes more important to discover the atomic services
needed to achieve the goals of the composite service. Like-
wise, it is important to be able to discover the tests that
effectively represent the composite service. These composite
service tests need to make sure that the underlying services
are available or can be emulated adequately. Therefore,
there is a need to gather this specific service composition
information and add it to the description of the tests.

In the deployment phase, a number of services is typically
deployed. In order to be able to evaluate the success of the
deployment, the semantic description of the services to be
deployed can be checked for inconsistencies, contradictions
and overlaps. The focus of the deployment is to prove that
the deployed services will be able to deliver the services
as promised in the Service Level Agreement (SLA). In the

Service
Modelling Service

Creation,
Composition

and
functional

Description

Identification
of

Provisioning
Metadata

Test
Derivation

Deployment
in Sandbox

Test
Execution

Test
Evaluation

Service
Deployment
in Runtime

Environment

Monitoring &
Adaptation

Evaluation

Identification /
Adaptation

of the
Business
Process

Modelling

Composition

Deployment

Execution

Figure 2. Test driven Life Cycle Management

deployment phase, the concrete environment for running the
service is chosen. By adding information of the concrete
environment, the expected load can be determined by load
tests.

In the execution phase, the service provider measures
relevant parameters of the services being executed in order
to prove compliance with the SLA. By using the information
added to the load tests in the deployment phase, the service
provider can predict when the services are close to reach the
maximum capacity. These results can also be used to set up
alarms, which will be triggered if the measured parameters
indicates imminent breach of the SLA. The effect of the
alarm can then lead to a dynamic re-selection of the atomic
services in utilisation.

The detailed steps of the test driven life cycle management
are shown in Figure 2. Its original purpose is to identify
the business process requirements and goals and categorise
them into different life cycle phases (short term and long
term requirements). The categorisation assures a fast ability
to demonstrate first results and helps to adjust requirements
during the life cycle process. The next step, Service Mod-
elling, decomposes the business process and tries to identify
possible service components, taken into account that already
available services should be reused if possible. As in all
steps, requirements from previous steps are evaluated (in
terms of feasibility) and new requirements are identified.
Modelling goals ensures the proper identification of the
required service components.

Contrary to the first steps requiring rather manual actions,
the Service Creation and Composition phase is supported
with tools to discover and compose services. The outcome
of this step is a deployable service including a semantic

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

service description. The next phase takes care of required
meta data for service provisioning. This includes semantic
descriptions of the service contract and the service run-time
where the service is be to deployed. With this information,
the Test Deviation phase can reason about the semantic
descriptions in order to build test cases as well as the test
execution flow. Afterwards, the service is executed within a
sandbox environment. The sandbox is controlled from the
test execution engine (to be discussed in Section V) and
intends to act as the service run-time environment under
realistic conditions in terms of load, traffic and competing
services running in parallel. The execution of test cases
results in the test evaluation. The test outcome is finally
compared to the expected outcome and if the tests pass
successfully the service is available for deployment.

The Service Monitoring and Adaptation phase takes place
if the service is deployed successfully. Service monitor-
ing based on current behaviour can result in dynamic re-
selection of utilised atomic services. In addition, the mon-
itoring phase discovers if the service consumption is as
expected, for example if the number of request per minute fit
to the expectations. From the discoverer information further
needs for the next life cycle as well as adjustments for the
sandbox are detected within the Evaluation phase.

Contrary to classical life cycle approaches, this life cycle
is driven by the semantic description of the service, the
service run-time environment and the test environment.
Therefore, it is possible to automatise and integrate the
test design and execution into the service design-time. As
a benefit there is a clear separation between developing
and testing, i.e. the developer does not create the test cases
explicitly, which might result in a non-optimal test coverage.
Moreover, there is a kind of integrated testing since the test
cases are automatically built and executed in a controllable
sandbox. This results in fast feedback and rapid service
improvement during design time.

B. Semantic Test Model

The procedure for testing is closely related to service
process modelling; the service models described in [9] are
used to describe test cases, test data and the test flow. This
work employs the concepts defined in the OWL-S [10]
to specify the service test semantics – including inputs,
outputs, preconditions and effects (named IOPE) used for
behavioural description of the service interface and the
resource interface connecting to various IoT resources.

The description of the test model within a test ontology
is the basis for automated test case creation and execution.
The test ontology enables the creation of reusable test cases
for an SUT and the modelling of the test flow which
will be executed (Figure 3). A Test Design Engine (TDE)
utilises precise service descriptions and a knowledge base
containing business expert knowledge, test data generation
and a test oracle for deriving tests, distinguishing different

Service
Description

SUT Model Life Cycle

Environment
Description

IOPE
hasBehaviourDescription

Semantic Test Model

usesInput

Knowledge
Base

Test FlowTest Cases

Test Execution
Engine

Test Design
Engine

processesDescriptions

processesExecution
hasTa

rgetInform
ation

ha
sV

alu
eI

nf
or

m
at

ion

isControlledBy

Resource IF
Description

Service IF
Desciption

hasBehaviourDescription

defines

de
fin

es

de
fin

es

hashas

SLA

ha
s

Figure 3. Semantic Test Model

Service Provider Infrastructure

Service

Broker

Test Design

Engine Sandbox

System Under Test

Service

(Atomic or Composed)

Test Execution

Engine

Emulation

Interface
Communication

Interace

Developer

Figure 4. Test Environment for IoT enabled Composite Service

types, e.g., functional or reliability, and levels of tests, i.e.,
unit, interface, integration, or collaboration test. The service
description thereby also supports the interface description
of external IoT resources used by the generic emulation
interface (Section V-C). Attribute values of service descrip-
tions are constrained by a min and max value or a value
list and an optional default value. Moreover, events are
defined to describe transition of states and events. Reasoning
engines, e.g., rule based systems, can exploit the knowledge
to derive the behaviour model and constrain the test cases,
i.e., behaviour model plus test data. The defined test flow
enables the Test Execution Engine (TEE) to process different
tests and ensures the desired coverage regarding different
states and paths of the finite state machine of the service.

The semantic test model is involved in different stages of
the services and enables a highly automated test manage-
ment.

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

V. TEST ARCHITECTURE

As mentioned in the previous section, due to the real
world interaction and the lack of control of components
involved in atomic and composite services, tests can not
be executed in a productive environment. Our approach
integrates systematic testing into the life cycle management.
Therefore, each service that is designed will be tested in
a (semi-) automated way before being deployed. The SUT
will be placed in a so called sandbox, which emulates the
target environment as realistically as possible – not only
functionally, but also in from a real world, e.g., network
and resource oriented, point of view. In order to achieve
automated test case creation and execution each SUT needs
to be described semantically. Although tests based on the
semantic description can only detect whether the service acts
as described and not as it was imagined by the developer,
the test automation promises to overcome current limitations
as far as complex and distributed IoT enabled composite
services are concerned and can improve the service quality
significantly. Figure 4 depicts the main components of the
test architecture for IoT enabled services. The SUT can
be either a AS or a CS. The sandbox ensures that the
behaviour can be emulated according to the test cases. This
includes the emulation of network, hardware resources and
IoT resource related parameters and characteristics. The
Test Execution Engine (TEE) controls the environment and
executes the test cases. The TDE is responsible for deriving
the test cases from the semantic description of the SUT and
generates test data. The test creation process is triggered
either by the upload of a new or updated service from the
Service Developer (including semantic description) or by the
detection of new or changed service elements in the Service
Broker lookup, which might be selected from a CS at run-
time. The proposed test environment is located at the service
provider infrastructure of the SUT and does not consider
white-box unit tests from the service developer perspective.

A. Test Design Engine

The Test Design Engine (TDE) is responsible for create
test cases for new and changed services and takes care of
preparing their execution. The main functions and interfaces
are shown in Figure 5). The TDE is trigged via the Service
Developer Design Interface by transmitting the SUT together
with a semantic description. In the first phase a Codec Plug-
in Creator will identify which protocols are utilised by the
service interfaces and, if required, create a new codec in
order to abstract the protocol flow. Afterwards, the test cases
for functional and non-functional tests are created and the
order of execution is defined based on a extended finite state
machine of the service. The test cases are described with
the standardised Test Control Notation Version 3 (TTCN-
3) language. Afterwards, the test cases will be enriched
with generated test data based on the IOPE conditions of
the semantic service description. The Test Case Compiler

Test Design Engine

Test Execution

Interface

Service Developer

Design Interface
Test Data Generator

Test- Case and Flow Creator

Codec Plug-in Creator

Test Case Compiler

Service Broker

Figure 5. Test Design Engine for IoT based Composite Service

Test Execution Engine

Communication

Interface

Network Emulation

Interface

Context Emulation

Interface

Run-time Emulation

Interface

T
e

s
t C

a
s
e

 E
x
e

c
u

tio
n

 E
n

g
in

e

Test Design

Interface

Service Broker

Interface

Codec Plug-in Pool

Service Broker Emulation

Service Interface Emulation

Engine

Network Emulation Engine

Resource Emulation Engine

Context Emulation Engine

Logging and Monitoring

Figure 6. Test Execution Engine for IoT based Composite Service

produces executable code from the test cases and assures
a native test case execution by sharing test case executable
code via the Test Execution Interface with the TEE.

B. Test Execution Engine

The Test Execution Engine (TEE) is the central compo-
nent to coordinate the test flow. Figure 6 depicts the main
components and interfaces of it. The execution is triggered
by the Test Design Interface. While the Test Case Execution
Engine takes care of the test execution it accesses emulation
components in order to execute the SUT under controlled
and emulated conditions of the target environment. This
includes also the emulation of the Service Broker (in case
of composite services) in order to control the run-time
service selection. In case of a service request from the SUT,
the emulated Service Broker answers the request with the
binding address of the Service Interface Emulation Engine.
This assures that no external resources are involved in
the execution and allows for testing all possibly correct
and partly incorrect behaviours of the external service with
fully controllable emulated components. Therefore, the test
execution of composite service is capable of testing the
interoperability of the connected services without directly
executing the involved components.

C. Sandbox

The sandbox ensures that the SUT can be executed in
a test environment and can be manipulated during the test
execution (shown in Figure 7). In addition, the separation be-
tween the TEE, and the sandbox offers the ability to execute

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Sandbox

Communication

Interface

Network Emulation

Interface

Context Emulation

Interface

Run-time Emulation

Interface

S
U

T

IoT/external

Resource Interface

Network Emulation

IoT/external Resource Emulation

Execution Runtime

Emulation

Figure 7. System Under Test Encapsulation

the tests in a distributed manner. The SUT service interfaces
are connected with the Test Encapsulation Communication
interface via the Network Emulator. Each message from or to
the SUT can be manipulated in terms of delay and packet
loss for evaluating the robustness. The network emulation
is controlled via the Network Emulation Interface from the
Network Emulation Engine of the TEE. Run-time behaviour
changes are made by the Execution Runtime Emulation and
assure the identification of potential SLA violations. The
strict isolation of the SUT within the sandbox is realised
by encapsulating interfaces to external web services or IoT
resources. Therefore, the service description mandatorily
includes the IOPE description to all external services or
IoT resources. Nevertheless, functional descriptions from
interfaces only partly describe the utilisation flow of the
interface (e.g, typically time deltas between request, typical
response delays). To overcome this limitation the inclusion
of a capture and reply mechanism is intended in order to
reuse real communication with IoT resources and inject the
traffic back in the test mode.

VI. PROTOTYPE IMPLEMENTATION

The requirements of IoT business services raise a lot of
open test issues as mentioned earlier. In order to explain
some of our concepts by example we have implemented
parts of our proposed architecture to highlight the complex-
ity of a (semi-) automated test case creation and execution
approach. In the outlined example test cases are designed
for our Context Provisioning Middleware [11]. The test case
execution validates if a lookup service interface is working
properly (integration tests). The Context Broker is requested
via a HTTPS/Get interface. The correct answer is expected
to be encoded in an Extensible Markup Language (XML)
based language called ContextML [12] described within a
provided XML Schema Definition (XSD) file.

As outlined in the previous section, the Test Design
Engine (TDE) prepares the test cases for execution. After

recognising the new service the TDE identifies an appropri-
ate codec for HTTP and XML. Hence, knowledge from the
defined structure of the XML data is transferred into a codec
and the constraints of the provided XSD file are utilised
for building the expected data structures in the TTCN-3
format [13]. An element of the related structures is shown
in Listing 1. Basically, it enables casting the received data
stream into the expected XML structure. Based on the XSD
description the possible data structure consists of a scopeEl
element that consists of a list of par elements structured
in a parA element. In addition, the expected data types
and data items are described. The next step is to build the
test cases and the test execution flow. Even a very simple
example like this can illustrate the required complexity of
an automated process. Like many other data types, the XSD
description allows interlaced structures without limitations
of the length. Hence, it has to be tested against dynamic
data structures. The templates depicted in Listing 2 are
utilised to test the interface against the expected data input.
As shown in Listing 2, the template restricts the data item
‘n‘ to the string ‘scope‘ and allows only letters from a-Z
and numbers of 1 to 15. But where does this knowledge
originate from? Data constraints like these are not included
in the XSD description. Therefore, the services needs an
additional semantic description as proposed in IV-B.� �
type record s c o p e E l {

record {
XSDAUX. s t r i n g n ,
record of record {

XSDAUX. s t r i n g n ,
XSDAUX. s t r i n g c o n t e n t

} p a r o p t i o n a l
} parA

}� �
Listing 1. XML Structure Described with TTCN-3

The templates are utilised by a test execution function. A
control structure defines the flow of the test execution. The
test execution function sends a response to the SUT and

� �
t empla te s c o p e E l . parA . p a r [−] p a r T e s t := {n := ”

scope ” , c o n t e n t := p a t t e r n ” [a−zA−Z] # (1 , 1 5) ” } ;
t empla te contextML responseCheck (t emplate s c o p e E l .

parA . p a r p l i s t) := {
c o n t e n t := {

s c o p e E l s := {
s c o p e E l := {
{

parA := {
n := ” s c o p e s ” ,
p a r := p l i s t

. . .
}
t empla te GETInfo g e t I n f o A u t h := { . . . }� �

Listing 2. TTCN-3 Templates

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

XSDExample.tc_HTTPGetWithAuthentication
Start : 2012-03-14 16:16:16.584
End : 2012-03-14 16:16:17.265

MTC SYSTEM

HTTPConf... HTTPConf...

timer0(10.0)

httpClienthttp
call GETreq

INFO:Attached file: http8175764283759699129.xml

get reply GETreq
httpClienthttp

match

match

pass

GETreq

pass

{ content := {scopeEls := { scopeEl := {{ parA := { n:= “scopes“, par :=

16:16:16.660

16:29:45.945

16:16:16.667

16:16:17.076

16:16:17.092

16:16:17.098

16:16:17.247

16:16:17.251

16:16:17.265

Figure 8. Test Execution Screenshot

validates the response with the shown template. Figure 8
shows the resulting graphical view of the the test execution
realised with a tool called TTworkbench [14]. It shows the
interaction flow between the Main Test Component (MTC)
and the System to test. After receiving the get reply the test
case is marked as pass.

VII. CONCLUSION AND FUTURE WORK

In this paper, we discussed that the domain and application
boundaries for IoT can be overcome with a business oriented
service composition. Our life cycle management takes into
account that IoT enabled services need to cope with the
abstraction of heterogeneity, reliability and robustness by
integrating (semi-) automated self-testing capabilities. Our
model based testing approach addresses these issues and
identifies a semantic test description enabling reasoning of
test behaviour and suitability in the different phases of a
service life cycle. An appropriate test architecture has been
presented. Practical problems are discussed based on an IoT
based service with a typical web interfaces. Due to the broad
scope of the paper, the discussions are rather concentrated
on a high level and future work work will include a more
detailed description of the proposed approach, which appears
to be a promising way utilising SOA in the IoT domain.

VIII. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement n◦ 257521.

REFERENCES

[1] R. Tönjes, E. S. Reetz, K. Moessner, and P. M. Barnaghi, “A
test-driven approach for life cycle management of internet of
things enabled services,” in Procedings of Future Network
and Mobile Summit, Berlin, Germany, pp. 1–8, 2012.

[2] I. Schieferdecker, Z. Dai, J. Grabowski, and A. Rennoch, “The
uml 2.0 testing profile and its relation to ttcn-3,” Testing of
Communicating Systems, pp. 609–609, 2003.

[3] ETSI, “The testing and test control notation version 3 (ttcn-
3).” European Standard 201 874, 2002/2003.

[4] Y. Cheon and G. Leavens, “A simple and practical approach
to unit testing: The jml and junit way,” ECOOP 2002 Object-
Oriented Programming, Springer, pp. 1789–1901, 2006.

[5] M. Huo, J. Verner, L. Zhu, and M. Babar, “Software quality
and agile methods,” in Proceedings of the 28th Computer
Software and Applications Conference, 2004. COMPSAC
2004., pp. 520–525, IEEE, 2004.

[6] W. Chengjun, “Applying pattern oriented software engineer-
ing to web service development,” in Procedings of Inter-
national Seminar on Future Information Technology and
Management Engineering, 2008. FITME’08., pp. 214–217,
IEEE, 2008.

[7] G. Canfora and M. Di Penta, “Service-oriented architectures
testing: A survey,” Software Engineering, Springer, pp. 78–
105, 2009.

[8] M. Presser, P. Barnaghi, M. Eurich, and C. Villalonga, “The
sensei project: integrating the physical world with the digital
world of the network of the future,” Communications Maga-
zine, IEEE, vol. 47, no. 4, pp. 1–4, 2009.

[9] W. Wang, S. De, R. Toenjes, E. Reetz, and K. Moessner, “A
comprehensive ontology for knowledge representation in the
internet of things,” in Procedings of the 11th International
Conference on Trust, Security and Privacy in Computing and
Communications, pp. 1793–1798, IEEE, 2012.

[10] W3C, “Owl-s: Semantic markup for web services.”
W3C Member Submission 2004. Available online
at http://www.w3.org/Submission/OWL-S retrived: October,
2012.

[11] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tönjes, “A
context provisioning framework to support pervasive and
ubiquitous applications,” in Proceedings of the 4th Euro-
pean Conference on Smart Sensing and Context (EuroSSC),
(Berlin, Heidelberg), pp. 93–106, Springer-Verlag, 2009.

[12] M. Knappmeyer, S. Kiani, C. Frà, B. Moltchanov, and
N. Baker, “Contextml: a light-weight context representation
and context management schema,” in Procedings of 5th IEEE
International Symposium on Wireless Pervasive Computing
(ISWPC), pp. 367–372, IEEE, 2010.

[13] I. Schieferdecker and B. Stepien, “Automated testing of
xml/soap based web services,” in Kommunikation in Verteilten
Systemen, pp. 43–54, 2003.

[14] Testing Technologies, “TTworkbench.”
Website. Available online at
http://www.testingtech.com/products/ttworkbench.php
retrieved: October, 2012.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

