
Sick But Not Dead Testing -
A New Approach to System Test

Tara Astigarraga1, Michael Browne2, Lou Dickens3,
Systems and Technology Group

IBM
1 Rochester, NY 14626

2 Poughkeepsie, NY 12601
3 Tucson, AZ 85744

{asti, browne, dickens}@us.ibm.com

Abstract— Enterprise data center implementations make
significant investments in high availability configurations,
redundant hardware, software and Input / Output (I/O) paths
that are in many failure scenarios quite successful. However, in
spite of all that investment clients are still facing unexpected
outages and performance impacts related to a phenomenon
referred to as Sick but not Dead (SBND) errors. SBND errors
are sometimes lumped together in a category with other related
errors including transient errors, partial failure scenarios and
soft errors. While SBND errors do have many common
characteristics with the errors described above, there are key
differences and environment impacts which we will explore
further in this paper. We will also present new proactive
techniques, inject scenarios and methods to identify, characterize
and address SBND failures including cross-component impacts
and failures.

Keywords-Software Testing; Sick but not Dead; Software
Engineering; Partial Failure; Transient Error; Soft Failure; SAN
Test; System Test.

I. INTRODUCTION AND MOTIVATION
Despite high availability (HA) configurations, customers

are still experiencing outages and severe performance declines
in their environments. These outages typically show no signs
of hard component failures for which the HA infrastructure
would react to and provide recovery. We classify these errors
as Sick but not Dead (SBND) failures. These errors are often
the hardest failures to identify and can have sporadic but
lasting impacts on the environment as a whole. SBND failures
currently represent 80% of business impact, but only about
20% of the problems [2].

SBND errors are sometimes lumped together in a category
with other related errors including transient errors, partial
failure scenarios and soft errors. While SBND errors do have
many common characteristics with the errors described above,
there are key differences as well. SBND errors by definition
derive from a component within the I/O path that is ‘sick’
meaning behaving in an unorthodox or partially failed fashion
but not completely ‘dead’ or hard failed. Depending on the
component exhibiting the SBND characteristics, the symptoms
can vary, come and go at different intervals and it can take
anywhere from seconds to months for the component to finally

reach a hard fail state. It is this in-between time when the
component is defined as SBND.

Complex customer solutions and environments utilizing
mixed vendor products and technologies create textbook
scenarios for SBND failures to occur. Many products are
intolerant of misbehavior of other devices and most failure
paths deal promptly with hard failure scenarios, but are slower
and more cautious to react to partially failed, misbehaving, or
SBND components in a Storage Area Network (SAN). With
current field solutions, problem determination related to
SBND failure scenarios is complex, time consuming and often
requires special problem determination lab trace tools and a
team of cross-vendor product and solution experts. Current
resolutions to SBND failure scenarios are almost always
reactive vs. proactive. In our system test and SAN labs we
have been developing new proactive techniques, protocol
inject scenarios and methods to identify, characterize and
address SBND failures including cross-component impacts
and failures across the I/O path.

Our current research related to SBND defects reported
shows that the highest number of SBND problems exists along
the I/O path. While related problems do occasionally exist
within specific internal sever paths they are significantly less
frequent, easier to debug and typically contained to a single
server and handled via embedded HA mechanism.

Systems generally behave properly when failures are solid
or hard failures. It is when components act SBND that system
availability is often at risk. In these scenarios failover or
recovery mechanisms often do not behave as we should expect
them to. Often times the problems are corner cases where they
are not easily reproducible and hard to trouble shoot, but
continue to plague customer environments. It should also be
noted that SBND problems are not something that occur in a
particular vendor or product set, but rather a system level
event that occurs when one (or more) component(s) in the
environment does not always behave consistently. Since the
problem does not relate to a particular vendor or component
issue it is not a simple fix but rather a system level event that
must be fully understood, tested and addressed by all vendors
in a distributed systems SAN environment.

The focus of this paper will be on SBND failures related to
the I/O path in distributed systems Fibre Channel (FC) SAN
and Fibre Channel over Ethernet (FCoE) environments. In

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

this paper we will better define and characterize SBND
failures, explain the impacts they can have on complex
customer environments and introduce new testing techniques
and injections we have deployed in our system test labs.

II. COMMON CHARACTERISTICS OF SBND FAILURES
Most SBND failures are not obvious product failures.

Often when problem determination begins all individual
products in the environment may appear ‘healthy’ and existing
internal diagnostics often do not flag anything. Even error log
reviews may come up relatively clean, making problem
determination very difficult. SBND problems by definition
are transient errors, meaning a product is temporarily
misbehaving, making the side-effects or symptoms in an
environment often appear and disappear.

SBND failures are frequently first noticed at the host or
application layer. The tables below outline the most frequent
symptoms and characteristics displayed when SBND failures
were encountered.

 TABLE I. MOST FREQUENT SBND SYMPTOMS

Severe performance degradation at sporadic intervals
Mirror or replication times exceeding Service Level
Agreements
I/O redrives
I/O near redrives
Application sensitivity to Recoverable I/O Events
Product interaction behaviors related to unforeseen
external trigger events

 TABLE II. COMMON SBND CHARACTERISTICS
Not an obvious product failure, individual products in
the environment appear ‘healthy’ even after detailed
internal dump analysis at highest levels of product
support
HA Mechanisms see no error and don’t react
Hard for software and monitoring products to detect,
internal diagnostics often do not find anything
Problems often appear and disappear
Start slowly and often amplify with time

Note; the 2 tables above were compiled using defect data
from problems that were encountered in the IBM system test
labs and the IBM field support group from 2010 through
2012.

One might fail to realize the size and/or scope of a SBND

failure, by examining the symptoms alone. This is because
SBND failures commonly create a sympathy sickness
throughout the entire network. Sympathy sickness is when a
single device or condition in one part of a network impairs the
performance of other devices or other parts of the network.
For example, a single bad small form-factor pluggable (SFP)
in one of the E-ports of an inter-switch link (ISL) can
intermittently corrupt frames that are being transported

through the ISL [3]. The other switches in the SAN or the end
devices will discard these corrupted frames. This will result in
the initiators having to perform error recover, and re-drive the
corrupted I/O exchanges. Thus one bad SFP in an E-port, can
affect the performance of 100’s or 1000’s of initiators that
have their frames transported over the ISL.

III. TEST APPROACH
In a proactive attempt to better address and improve test

and design around SBND customer failures, IBM introduced
an internal quality improvement effort to better define,
categorize and test SBND failures. As part of this ongoing
effort, the IBM Systems and Technology Group labs have
begun introducing a variety of SBND symptoms into complex
system test environments using a three-pronged approach. 1.
Build a center of competency around identifying,
characterizing and debugging SBND failures in the I/O path.
2. Target modified reliability, availability and serviceability
(RAS) microcode to better identify and flag SBND failures for
troubled areas. 3. Targeted test case coverage related to SBND
failures, symptoms and characteristics.

For this paper we will cover the 3rd prong described above
related to increased SBND testing and early results. In late
2010 our SAN test labs within IBM began technical analysis
on SBND errors and targeted ways to not only inject SBND
failures, but to proactively monitor the environment as a whole
for related defects and outages. This was a detailed and
controlled approach consisting of injects in three primary
locations within the I/O path, as outlined in figure 1 below.

Figure 1. Example of Typical SAN

Once the inject areas were established and test tools in

place we began targeted testing covering the most frequent
SBND symptoms and characteristics described in tables 1 and
2. Table 3 below outlines some of the test injects symptoms
and test case examples that were created to inject SBND
symptoms into our SAN environments to monitor for proper
handling and unintended side effects.

TABLE III. SBND TEST SCENARIO INJECTS
Symptom: Types of Injects

Used:
Test Case

Examples: [4]
Severe
Performance

1. Credit starvation
2. Inject Delay

1. Replace R_Rdy
primitives with
IDLE/ARB (FC), inject

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Degradation PFCs for Class 3 traffic
(FCoE).
2. Hold all frames for x
microseconds

Mirror or
Replication times
exceed Service
Level Agreement

1. port flaps
2. drop frames
3. jitter

1. Port shut/no shut
activity (FC,VFC,Eth)
2. Drop every xth frame
in each direction
3. Corrupt sof, eof, crc
and other header data

I/O redrives or
near redrives

1. drop, corrupt or
re-order data frames
2. short holds of
frames

1. Target data frames
and drop or re-order
2. Hold all data frames
and/or transfer ready
frames for x seconds.

Application
sensitivity to
Recoverable I/O
Events

1. virtual link jams
2. link resets
3. corrupt frames

1. FDISC drops, VFC
jitter, VSAN jams
2. Inject NOS, OLS, LR
and/or LRR onto link
3. Corrupt bits in the FC
or FCoE header and
recalculate CRC

Product behaviors
related to
unforeseen
external trigger
events

1. protocol
violations
2. unexpected data
returns
3. partial recovery
scenarios

1. Inject protocol
deviations from
standard and monitor
destination handling
2. Return Check Cond
to write exchange
3. Drop data frame, then
drop subsequent ABTS,
allow re-driven ABTS
to flow through un-
jammed.

IV. EARLY RESULTS
Overall we established a test suite consisting of over 100

unique SBND test cases, which are run in a controlled SAN
environment allowing us the capabilities to inject a single
error (or combination of errors) and monitor the environment
as a whole. The majority of the problems we have identified
are defects that would have been near impossible to detect and
correlate in a customer environment. The ability to understand
which variables are being injected at which time and location
in the SAN and watching all associated host, switch and
storage logs provides the ability to correlate and connect
events that otherwise would have appeared to be non-related.
Further, having packet level traces at each point in the SAN
allows the ability to deep-dive into the traces. Figure 2 below
illustrates one SBND inject example where every 5 min the
Not_Operational primitive sequence (NOS) was injected to
simulate a bouncing or partially failed port in the SAN. Figure
2 below shows the subsequent behaviors following one of the
NOS injects which resulted in failed link initialization. For
link initialization to complete successfully following our NOS
injects the primitive sequences OLS/LR/LRR/IDLE/IDLE
have to be traded sequentially. In figure 2 you can see one
SAN vendor sent extra R_RDY primitives and LRRs prior to
sending the final IDLE packets required to complete link
initialization.

Figure 2: Protocol trace review

The protocol trace analysis results and frame level debug
capabilities, provide enhanced problem determination
capabilities and when combined with associated host, switch
and storage logs and traces present a clear picture of the
problem and greatly aid in cross-vendor problem
determination.

Typical product system test environments and test plans
will analyze recovery capabilities in a product or system
offering along with potential implementation architectures and
then inject hard errors to determine if products under test were
behaving according to specification and customer
requirements. A high level example would be a system test
environment that had been designed and implemented with
full redundancy of all components in order to minimize
Service Level Agreement (SLA) violations [1]. The test
engineer would then introduce failures of the components at
injectable points in the configuration to validate and verify the
system offering would meet SLA requirements. What this
technique misses is the “almost errors” that are not specified
or articulated as customer requirements. Additionally, there is
some level of subjectivity to a SBND event actually occurring
and convincing the designers that such a situation would exist
in the real world. A test engineer also has to use reasonable
judgment in designing the injection as any SBND injection
can be pushed to unrealistic limits and then the test can be
declared invalid. For example, when testing credit starvation
one must be cautious in the rate of R_Rdy (frame buffer
credit) drops that are injected as too many will cause link
resets, replenishing credits back to the agreed upon limit
during login. For SBND scenarios, the tester would want to
identify the buffer credits allotted during login and drop
R_Rdys at a rate which slowly impacts the environment
without causing an immediate link reset. It is this careful
balance that must be pursued in the test design and execution.
Having a test engineering center of competency for SBND
problems that can provide real world patterns of these
injections is critical to wining the subjective discussions
between test engineers and designers.

Since starting this work in 2010 we have seen a dramatic
spike in internally found SBND related defects being
identified and fixed in system test. In 2010 when we started
this testing only 5% of the defects found in SAN system test
were related to SBND error handling. In May of 2012, these
defects accounted for 48% of the overall defects opened by the
SAN system test teams. The defects opened are spread across
multiple vendors and I/O path components including operating
systems, host HBA/CNA firmware and drivers, multipath

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

drivers, SAN and FCoE switch code and storage firmware and
drivers.

V. CONCLUSION AND FURTHER DEVELOPMENT
As complexity, virtualization and mixed vendor solutions

continue to grow in the IT industry and customer solutions, the
need for highly-skilled SBND low-level testing will also
continue to increase. In an industry where quality is expected
and customer defects can cause costly outages it is no longer
sufficient to test products for correct recovery in hard failure
scenarios. We need to continue to put increased focus on
solution testing, and further on solution injects and handling of
hard failures and SBND failures on any component within the
environment.
 As we continue to implement deeper SBND testing
described in this paper, we are pursuing plans to continue this
effort with a second phase targeting new inject methods and
focus on spreading these testing capabilities and awareness
across IBM test labs worldwide. Given the economic costs of
the tools to inject SBND scenarios and the skill required we
are also innovating in economically scalable methods to do
this type of testing in more diverse testing and test skill
environments. We also continue to drive a close-loop feedback
process between IBM test, development and support teams
and across OEM partners, ensuring that the SBND defects that
have been found are fixed and lessons learned are applied to
future product development and monitoring capabilities.
 It is our hope and vision that impacts of SBND failures be
understood across the industry and that more SBND testing
and proactive measures are taken to help minimize the impacts
these failures have on the environments of the future.

VI. ACKNOWLEDGMENTS
The authors would like to thank their employer, International
Business Machines (IBM) for supporting their efforts to
produce educational content. We would also like to thank
those parties who provided quotations for use in this paper.

REFERENCES
[1] A. Hanemann, D. Schmitz, and M. Sailer, "A framework for failure impact
analysis and recovery with respect to service level agreements," Services
Computing, 2005 IEEE International Conference on , vol.2, no., pp. 49- 56
vol.2, 11-15 July 2005 doi: 10.1109/SCC.2005.10
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1524423&is
number=32587 [retrieved: July, 2012]
[2] B. Rogers, “z/OS 1.11 Sysprog Goody Bag” Presented at SHARE Session
2228,“ March 2010. [Online]. Available:
http://mobile.share.org/client_files/SHARE_in__Seattle/S2228RR092920.pdf
[retrieved: July, 2012].
[3] FC-MI, ANSI Standard 3.2.14-3.2.34, 2001.
[4] FC-FS-3, ANSI Standard 5.2.4-5.2.5, 2008.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

