
Cost-Aware Combinatorial Interaction Testing

Gulsen Demiroz and Cemal Yilmaz
Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul 34956, Turkey
Email: {gulsend,cyilmaz}@sabanciuniv.edu

Abstract—The configuration spaces of modern software sys-
tems are often too large to test exhaustively. Combinatorial
interaction testing approaches, such as covering arrays, sys-
tematically sample the configuration space and test only the
selected configurations. Traditional t-way covering arrays aim
to cover all t-way combinations of option settings in a minimum
number of configurations. By doing so, they assume that the
testing cost of a configuration is the same for all configurations.
In this work, we however argue that, in practice, the actual
testing cost may differ from one configuration to another and
that accounting for these differences can improve the cost-
effectiveness of covering arrays. We first introduce a novel
combinatorial object, called a cost-aware covering array. A
t-way cost-aware covering array is a t-way covering array
that minimizes a given cost function. We then provide a
framework for defining the cost function. Finally, we present
an algorithm to compute cost-aware covering arrays for a
simple, yet important scenario, and empirically evaluate the
cost-effectiveness of the proposed approach. The results of
our empirical studies suggest that cost-aware covering arrays,
depending on the configuration space model used, can greatly
reduce the actual cost of testing compared to traditional
covering arrays.

Keywords-Software quality assurance, combinatorial interac-
tion testing, covering arrays.

I. INTRODUCTION

The configuration spaces of configurable software systems
are often too large to test exhaustively. The number of
possible configurations is often far beyond the available
resources to test the entire configuration space in a timely
manner, e.g., for regression testing.

Combinatorial interaction testing (CIT) approaches take
as input a configuration space model. The model includes
a set of configuration options, each of which can take on a
small number of option settings. As not all configurations
may be valid, the model can also include some system-
wide inter-option constraints. In the context of this work,
an inter-option constraint is a constraint that implicitly or
explicitly invalidates some combinations of option settings.
In effect, the configuration space model implicitly defines a
set of valid ways the software under test can be configured.

CIT approaches systematically sample the valid config-
uration space and test only the selected configurations.
The sampling is carried out by computing a combinatorial
object, called a covering array. Given a configuration space

model, a t-way covering array is a set of configurations, in
which each possible combination of option settings for every
combination of t options appears at least once [6].

The basic justification for covering arrays is that they can
cost-effectively exercise all system behaviors caused by the
settings of t or fewer options. The results of many empirical
studies strongly suggest that a majority of option-related
failures in practice are caused by the interactions among only
a small number of configuration options and that traditional
t-way covering arrays, where t is much smaller than the
number of options, are an effective and efficient way of
revealing such failures [2], [6], [9], [10].

Existing approaches construct a t-way covering array in
such a way that all valid t-way combinations of option
settings are covered by using a minimum number of config-
urations. By doing so, these approaches implicitly assume a
simple cost model where the cost of configuring the system
under test is the same for all configurations.

In this work, we argue that this cost model is not always
valid in practice. First, we observe that the configuration cost
often varies from one configuration to other. For example, in
a study conducted on MySQL – a widely-used and highly-
configurable database management system, we observed that
the cost of configuring the MySQL Community Server (a
core component of the system) with its default configuration
took about 6 minutes on average (on an 8-core Intel Xeon
2.53GHz CPU with 32 GB of RAM, running CentOS 6.2
operating system). On the other hand, configuring the system
with NDB cluster storage support – a feature that enables
clustering of in-memory databases, and with embedded
server support – a feature that makes it possible to run a
full-featured MySQL server inside a client application, took
about 9 minutes, as these features needed to be compiled
into the system. Therefore, in a covering array, reducing the
number of configurations that include these features, without
adversely affecting the coverage of option setting combina-
tions, can significantly reduce the amount of time required
for testing. However, existing approaches do not take actual
testing costs into account when computing covering arrays.

Second, we observe that highly configurable systems often
have reusable components, which, once configured, can be
used in other configurations with no or very little additional
cost. One simple example is the presence of compile-time
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A 2-way cost-aware covering array2-way covering array for options {o1,o2,o3}A traditional 2-way covering array

(b) (c)
Figure 1. (a) A traditional 2-way covering array. (b,c) Illustrates our algorithm where (b) shows 2-way covering array for only compile-time options and
(c) shows 2-way cost-aware covering array.

and runtime configuration options.
Compile-time options need to be set before the system

can be built. The system is then configured as a part of the
build process. Therefore, changing the setting of a compile-
time option requires a partial or a full rebuild of the system.
On the other hand, given a build of the system, runtime
options are set when the system is running and the system
is configured on the fly. Note that a build of the system is
a reusable component. Once the system is built for a given
combination of compile-time option settings, the same build
can be used with different runtime configurations without
any additional cost; as long as the settings of compile-time
options stay the same, the same binaries can be reused.
However, runtime configurations are not reusable. Even for
the same build (i.e., the same compile-time configuration)
they need to be reconfigured every time the program is
executed, unless the program state is saved for future use.

Figure 1(a) and 1(c) illustrate the effect of reusable
components on testing cost in a hypothetical scenario. In this
scenario, we have 7 configuration options o1 , . . . , o7 , each
of which can take on a binary value (i.e., 0 or 1). The first 3
options o1 , o2 , and o3 are compile-time options, whereas
the remaining options o4 , o5 , o6 , and o7 are runtime
options. There are no system-wide inter-option constraints;
all option setting combinations are valid. Furthermore, the
system is to be tested with a 2-way covering array. Two
covering arrays are created for comparison.

The 2-way covering array presented in Figure 1(a) in-
cludes 8 unique combinations of compile-time option set-
tings, requiring to build the system 8 times. On the other

hand, the 2-way covering array presented in Figure 1(c)
requires to build the system only 4 times, as it includes
4 unique compile-time configurations. For example, once
the system is built for o1=0, o2=0, and o3=0, the same
binaries are reused without any additional cost for 3 more
configurations included in the covering array. Assuming that
the runtime configuration cost is negligible compared to the
compile-time configuration cost and that the compile-time
configuration cost is the same for all configurations, the 2-
way covering array in Figure 1(c) tests all 2-way option
setting combinations at half of the cost compared to the 2-
way covering array in Figure 1(a).

To improve the cost-effectiveness of CIT approaches,
we introduce a novel combinatorial object, called a cost-
aware covering array. Given a traditional configuration
space model augmented with a cost function and a value of t,
a t-way cost-aware covering array is a t-way covering array
that minimizes the cost function. We, furthermore, provide
an algorithm to compute cost-aware covering arrays for a
simple, yet frequently-faced scenario in practice. The results
of our empirical studies suggest that cost-aware covering
arrays, depending on the configuration space model used,
can greatly reduce the actual cost of testing compared to
traditional covering arrays.

The remainder of the paper is organized as follows:
Section II discusses related work; Section III introduces
cost-aware covering arrays; Section IV presents an algorithm
to compute cost-aware covering array for a particular cost
model; Section V describes the empirical studies; Section VI
presents concluding remarks and directions for future work.
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II. RELATED WORK

In this section, we provide background information on
traditional covering arrays and discuss related work.

Traditional CIT approaches take as input a configuration
space model M=<O,V,Q>. The model includes a set
of configuration options O={o1, o2, . . . , on}, their possible
values V={V1, V2, . . . , Vn}, and some system-wide inter-
option constraints Q (if any). Each configuration option oi
(1 ≤ i ≤ n) takes a value from a finite set of |Vi| distinct
values Vi = {vi1, vi2, . . . , vi|Vi|}.

Definition 1. Given a configuration space model
M=<O, V,Q>, a t-tuple ϕt={<oi1 , vj1>, <oi2 , vj2>,
. . ., <oit , vjt>} is a set of option-value tuples for a
combination of t distinct options, such that 1 ≤ t ≤ n,
1 ≤ i1 < i2 < . . . < it ≤ n, and vjp ∈ Vip for
p=1, 2, . . . , t.

Not all the t-tuples may be valid due to the constraints
Q. Let valid(ϕt, Q) be a deterministic function such that
valid(ϕt, Q) is true, if and only if, ϕt satisfies the constraint
Q. Otherwise, valid(ϕt, Q) is false. The set of all valid t-
tuples Φt under constraint Q is then defined as: Φt={ϕt :
valid(ϕt, Q)}.

Definition 2. Given a configuration space model
M=<O, V,Q>, a valid configuration c is a valid
n-tuple, i.e., c ∈ Φn, where n = |O|.

Definition 3. Given a configuration space model
M=<O, V,Q>, the valid configuration space C is
the set of all valid configurations, i.e., C={c : c ∈ Φn}.

Definition 4. A t-way covering array
CA(t,M=<O,V ,Q>) is a set of valid configurations,
in which each valid t-tuple appears at least once, i.e.,
CA(t,M=<O,V,Q>)={c1, c2, . . . , cN}, such that
∀ϕt ∈ Φt ∃ ci ⊇ ϕt, where ci ∈ C for i=1, 2, . . . , N .

The problem of generating covering arrays is NP-
hard [15]. Nie et al. classify the methods for generating
covering arrays into 4 main categories [15]: random search-
based methods [16], heuristic search-based methods [8], [4],
[7], [11], [4], [17], greedy methods [6], [9], [5], [19], [18],
[14], and mathematical methods [20], [13], [21], [12].

Random search-based methods employ a random selection
without replacement strategy [16]. Valid configurations are
randomly selected from the configuration space in an itera-
tive fashion until all the required t-tuples have been covered
by the configurations selected.

Heuristic search-based methods, on the other hand, em-
ploy heuristic search techniques, such as hill climbing [8],
tabu search [4], and simulated annealing [7], or AI-based
search techniques, such as genetic algorithms [11] and ant
colony algorithms [17], to compute covering arrays. These
methods typically maintain a set of configurations at any

given time and iteratively apply a series of transformations
to the set until the set constitutes a t-way covering array.

Greedy algorithms also operate in an iterative manner [6],
[9], [5], [19], [18], [14]. At each iteration, among the sets of
configurations examined as candidates, the one that covers
the most previously uncovered t-tuples is included in the
covering array and the newly covered t-tuples are then
marked as covered. The iterations end when all the required
t-tuples have been covered.

Mathematical methods for constructing covering arrays
have also been studied [20], [13], [21]. Some mathematical
methods are based on recursive construction methods, which
build covering arrays for larger configuration space models
(i.e., the ones with a larger number of configuration options)
by using covering arrays built for smaller configuration
space models (i.e., the ones with a smaller number of con-
figurations) [20], [13]. Other mathematical methods leverage
mathematical programming, such as integer programming, to
compute covering arrays [21].

Our approach differs from existing covering array gen-
erators in that we compute a t-way covering array that
minimizes a given cost function, rather than minimizing the
number of configurations required.

Furthermore, Bryce et al. introduce the concept of “soft
constraints” to mark option setting combinations that are
permitted, but undesirable to be included in a covering
array [3]. Although soft constraints could be used to avoid
costly combinations of options settings, thus to reduce
testing cost, using soft constraints for this purpose can be
considered to be an opportunistic approach. Our approach,
on the other hand, takes the task of reducing the cost as an
optimization criterion.

III. COST-AWARE COVERING ARRAYS

In our approach, we take as input a traditional configu-
ration space model augmented with a cost function cost(.).
Given a covering array ca , cost(ca) returns the expected
cost of testing ca .

Definition 5. Given a configuration space model
M=<O, V,Q, cost(.)> and a value of t, a t-way
cost-aware covering array is a t-way covering array that
minimizes the function cost(.).

Defining the cost function is not a trivial task. For
example, the cost of a given covering array may not simply
be the sum of the cost of the configurations in the array, as
some parts of a configured system can be reused by other
configurations with no or little additional cost. Therefore,
we present a framework for defining the cost function.

Definition 6. Given a configuration space model
M=<O, V,Q>, a component class X={oi1 , oi2 , . . . , oik}
is a set of k distinct options, such that X ⊆ O.

11Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



Definition 7. Given a component class
X={oi1 , oi2 , . . . , oik}, a component x is a k-tuple of
the form {<oi1 , vj1>, <oi2 , vj2>, . . ., <oik , vjk>} for the
configuration options included in X , where k=|X|.

We assume that the set of configuration options O
are divided into p (1 ≤ p ≤ |O|) component classes
X1, X2, . . . , Xp, such that Xi ∩ Xj = ∅ for i̸=j and
X1 ∪ . . . ∪ Xp = O. Consequently, a given configuration
c is composed of p components x1, x2, . . . , xp, such that xi

is a component of component class Xi for i=1, . . . , p.
For example, in our running example depicted in Figure 1,

we have two component classes: X1={o1 , o2 , o3} and
X2={o4 , o5 , o6 , o7}. X1 includes all the compile-time
options, whereas X2 includes all the runtime options.

We distinguish between two types of component classes:
reusable and non-reusable component classes.

Definition 8. A reusable component class Xr is a compo-
nent class whose components can be configured in isolation
and, once configured, they can be reused in other configu-
rations.

Definition 9. A non-reusable component class Xnr is a
component class whose components need to be configured
every time they are used.

Going back to our running example, we observe that X1

is a reusable component class, since, once the system is
built for a given compile-time configuration, the resulting
binaries can be reused in other configurations with different
runtime configurations. On the other hand, X2 is a non-
reusable component class, since the runtime options need to
be configured every time the system is executed.

To determine the cost of a given covering array, we
assume two cost functions: cc(.) and lc(.). The function
cc(x) takes as input a component x (either a reusable or a
non-reusable component) and returns the configuration cost
of x. For example, assuming that the reusable component
x represents a configuration for a library, cc(x) is the
cost of compiling the library with the given configuration.
The function lc(c), on the other hand, takes as input a
configuration c and returns the cost of linking (i.e., gluing)
together the components appearing in the configuration. For
example, assuming that a configuration c is composed of
reusable components xr

1 and xr
2, each of which represents

a library, lc(c) is the cost of linking the two libraries after
they are compiled, i.e., after the cc(xr

1) and cc(xr
2) costs are

paid.

Definition 10. The cost of a configuration c, which is
composed of components x1, x2, . . . , xp, is defined as(∑

1≤i≤p cc(xi)
)
+ lc(c)

However, in the presence of reusable components, the cost
of a given covering array is not the sum of the cost of the

configurations included in the array.

Definition 11. Given a covering array ca={c1, c2, . . . , cN},
let Ri and Si be the set of reusable and non-reusable compo-
nents in a configuration ci, respectively, where 1 ≤ i ≤ N .
The cost of the covering array ca is then defined as follows:

cost(ca)=
∑

x∈
∪

1≤i≤N
Ri

cc(x) +∑
1≤i≤N

(
lc(ci) +

∑
x∈Si

cc(x)
)

Furthermore, reusable components can form a hierarchy.

Definition 12. A reusable composite component is a com-
ponent, which is composed of reusable components and/or
other reusable composite components.

Reusable composite components are constructed by link-
ing the components appearing in the composite, once these
components are configured. Therefore, to account for com-
posite components, the lc(.) function should ensure that the
linking cost of the same reusable composite components is
paid only once.

IV. COMPUTING COST-AWARE COVERING ARRAYS FOR
A SIMPLE COST MODEL

We conjecture that all the methods that have so far been
used to compute traditional covering arrays, such as ran-
dom search-based methods, heuristic search-based methods,
greedy methods, and mathematical methods (Section II), can
also be used to construct cost-aware covering arrays, all
with their own pros and cons. In this work, however, we, as
a proof of concept, present an algorithm to compute cost-
aware covering arrays for a simple, yet important cost model.

In this cost model, the system under test has compile-time
and runtime options. For a given configuration space model
of the system, we define two components Xr and Xnr. Xr

is a reusable component class, containing all the compile-
time options in the model, whereas Xnr is a non-reusable
component class, containing all the runtime options in the
model. We assume that (1) the cost of linking compile-time
and runtime configurations is negligible, i.e., lc(c)=0 for
all c, (2) the compile-time configuration cost is the same
for all compile-time configurations, i.e., cc(xr)=a for some
constant a for all xr, and (3) the runtime configuration cost
of the system is negligible, i.e., cc(xnr)=0 for all xnr.

Under this cost model, the cost of a covering array
ca={c1, c2, . . . , cN} is

cost(ca) = a× |
∪

1≤i≤N

Ri|, (1)

where a is the constant cost of building the system, and
Ri is the set of compile-time components appearing in
configuration ci (1 ≤ i ≤ N ). In other words, under this
model the optimization criterion is to minimize the number
of times the system is built, while covering all t-tuples.
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Although this cost model may seem to be overly con-
strained at a first glance, since our goal is to demonstrate
the differences between the cost-effectiveness of traditional
and cost-aware covering arrays, rather than to compute cost-
aware covering arrays for any given cost function, we believe
that the cost model employed serves well to its purpose.

Furthermore, based on our feasibility studies conducted
on MySQL – a highly-configurable database management
system, and Apache – a highly-configurable HTTP server,
we argue that this simple cost model still has some practical
importance. For example, we observed that (1) both subject
applications have compile-time and runtime options, (2)
runtime configuration cost for both subject applications is
negligible, (3) the cost of linking runtime configurations
with compile-time configurations is negligible. Although,
for both subject applications, compile-time configuration
costs vary from one configuration to another, since building
these systems from scratch is costly, reducing the number of
times they are built is still of practical value, e.g., building
the entire software suite that comes with the source code
distribution of our subject applications with the default
configuration takes about 80 minutes for MySQL and 8
minutes for Apache, on average.

With all these in mind, Algorithm 1 presents our algo-
rithm. In this algorithm, we use traditional covering array
construction as a computational primitive. In particular, we
assume a generator

∏
(t,M) that constructs a traditional t-

way covering array for the configuration space model M .
Given a configuration space model M and a value of

t, our algorithm operates as follows: (1) a traditional t-
way covering array Ω is generated for only the compile-
time options (line 1), (2) all the compile-time configurations
included in the newly computed array are expressed as
an inter-option constraint Q (line 3-5), (3) a traditional t-
way covering array Ψ satisfying Q, is generated for all the
configuration options (line 6). The output Ψ (line 7) is a
t-way cost-aware covering array, aiming to minimize the
testing cost, i.e., aiming to minimize the number of times
the system is required to be built.

The rationale behind this algorithm is a simple one.
Assuming

∏
(t,M) generates a traditional t-way covering

Ω for only the compile-time options with minimal num-
ber of configurations, Step (1) selects a minimal set of
compile-time configurations covering all t-way combinations
of option settings for the compile-time options. Step (2), by
expressing these compile-time configurations as constraints,
ensures that step (3) computes a traditional t-way cover-
ing array around these configurations without introducing
new compile-time configurations, minimizing the number of
compile-time configurations required, thus the testing cost.
If the traditional covering array generator

∏
produces a sub-

optimal solution, then so will our algorithm.
Figure 1(b) and (c) illustrate the algorithm in our running

example introduced in Section I. First, a traditional 2-way

Algorithm 1 Computes a t-way cost-aware covering
array
Input M=<O, V, ∅>: Configuration space model
Input t: Covering array strength
Let M ′ be the configuration space model for only the
compile-time options in M

1: Ω←
∏
(t,M ′)

2: Q← ∅
3: for each c = {<oi1 , vj1>, <oi2 , vj2>, . . .} in Ω do
4: Q← Q ∨ {oi1 = vj1 ∧ oi2 = vj2 ∧ . . .}
5: end for
6: Ψ←

∏
(t, M=<O, V,Q>)

7: return Ψ

covering array is generated for the 3 compile-time options
o1 , o2 , and o3 (Figure 1b). The array has 4 compile-time
configurations. Second, these configurations are expressed
as a constraint so that no additional compile-time config-
urations can be selected (Figure 1c). Finally, a traditional
2-way covering array satisfying the constraint is generated
for all the options. The resulting cost-aware covering array
requires to build the system under test 4 times.

V. EXPERIMENTS

To evaluate the proposed approach, we conducted a set of
experiments.

A. Experimental Setup

To carry out the experiments, we first implemented our
algorithm. In the implementation, we used a well-known and
widely-used covering array generator ACTS (v1.r9.3.2) [1].

We then determined a configuration space model for a
hypothetical system and varied the model in a system-
atic and controlled manner to obtain other models. For
each configuration space model obtained, we computed a
traditional t-way covering array and a t-way cost-aware
covering array, and compared their cost-effectiveness, i.e.,
compared the number of builds required by these arrays.
The constant cost we assume for each configuration (build)
would vary for different systems but this does not affect our
cost comparisons.

All the experiments were performed on an 8-core Intel
Xeon 2.53 GHz CPU platform with 32 GB of RAM, running
CentOS 6.2 operating system.

B. Independent Variables

In particular we experimented with 3 independent vari-
ables:

• m: The number of compile-time options in the
configuration space model. We experimented with
m=5, 6, . . . , 20.
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Figure 2. Cost Improvements in a) 3-way b) 4-way cost-aware covering arrays with different m.

• m/n: The ratio of compile-time options to the total
number of options in the configuration space model,
where n is the total number of options and n −m is
the number of runtime options. We experimented with
m/n=0.1, 0.2, . . . , 0.9.

• t: The strength of the covering array. We experimented
with t=3, 4.

In all the configuration space models, we, without losing
the generality, used binary options only. Given m and m/n
ratio, the respective configuration space model is obtained
by adding binary runtime options to the model, such that
the requested m/n ratio is attained. Furthermore, we opted
not to experiment with t=2 because for the m and m/n
values used in the experiments, the sizes of the covering
arrays generated were similar to each other. This made it
difficult to analyze the effect of our independent variables
on the cost-effectiveness of cost-aware covering arrays.

C. Evaluation Framework

To evaluate the cost-effectiveness of cost-aware covering
arrays and compare it to that of traditional covering arrays,
we counted the number of unique compile-time configura-
tions required by the arrays. That is, we counted the number
of times the system is required to be built. Note that this is
indeed the optimization criterion dictated by the cost model
our algorithm is designed for (Section IV).

When creating the traditional covering arrays, we config-
ured ACTS to create partially filled covering arrays. In a
partially filled covering array, some option settings are left

unset, indicating that, regardless of the actual settings used
for these, as long as they are valid settings for the respective
options, the array will still be a covering array. Once
a partially filled traditional covering array was obtained,
we followed a greedy approach to pick the best settings
for the unset options so that the number of compile-time
configurations is reduced as much as possible. Had we had
ACTS to create fully filled covering arrays, the unset options
would have been randomly set, which could have increased
the number of compile-time configurations required. There-
fore, the fully filled traditional covering arrays used in the
comparisons represent the best case scenario for the partially
filled covering arrays created by ACTS.

D. Data Analysis

Figure 2a-b present the results we obtained. In these
figures, the horizontal axis denotes the values of m (i.e., the
number of compile-time options) used in the experiments,
whereas the vertical axis depicts the percentage of cost
improvements (i.e., percentage of decrease in the number
of compile-time configurations required) provided by cost-
aware covering arrays over traditional covering arrays. Fig-
ure 2a is for t=3 and Figure 2b is for t=4.

We first observed that the cost-effectiveness of cost-
aware covering arrays were better or the same (but never
worse) compared to that of traditional covering arrays. More
accurately, when t=3, the cost-effectiveness of cost-aware
covering arrays were better than that of traditional covering
arrays in 89% (128 out of 144) of the comparisons. In the
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Table I
3-WAY AND 4-WAY COST IMPROVEMENT (%) AVERAGES FOR DIFFERENT M/N RATIOS.

m/n ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3-way 54.58 46.31 38.86 31.31 25.63 20.27 14.03 6.89 2.48
4-way 55.83 46.80 39.25 31.83 26.88 20.45 14.80 7.72 1.83
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Figure 3. Cost Improvements in 4-way cost-aware covering arrays with
different m/n ratio for m = 19.

remaining comparisons (i.e., 11% of the comparisons), the
cost-effectiveness of the arrays were the same. When t=4,
the cost-effectiveness of cost-aware covering arrays were
better in 94% and the same in 6% of the comparisons.

We then observed that actual cost improvements varied
depending on the m/n ratio used in the configuration
space models. For a fixed m, as the m/n ratio increased,
cost improvements tended to decrease. Table I presents the
cost improvement percentages. For example, when t=4 and
m=19, the cost-aware covering arrays, compared to the tra-
ditional covering arrays, reduced the cost by 59.24%, 52%,
38.89%, 32.1%, 29.17%, 22.99%, 17.72%, 12%, 5.71%
when m/n=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, respec-
tively (Figure 3). Clearly, when m/n=1, regardless of the
value of m, as the configuration space model will include
only compile-time options, there will be no difference be-
tween the cost-effectiveness of traditional and cost-aware
covering arrays.

For the values of m and m/n used, when the m/n
ratio was fixed, the cost improvements tended to be stable
regardless of the value of m. On the other hand, when
m ≤ t, as the compile-time configurations will be tested
significantly, there will be no difference between the cost-
effectiveness of traditional and cost-aware covering arrays.

Furthermore, comparing 4-way and 3-way cost-aware
covering arrays with traditional covering arrays, we observed

that 4-way cost-aware covering arrays tended to provide
slightly more cost improvements than 3-way cost-aware
covering arrays; as t was increased from 3 to 4, the cost
improvements over traditional covering arrays tended to
increase (Table I). For example, when m/n=0.1, the average
cost improvement provided by 3-way cost-aware covering
arrays was 54.58%, whereas 4-way cost-aware covering
arrays provided 55.83% cost improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first introduced a novel combinatorial
object, called a cost-aware covering array. Unlike traditional
t-way covering arrays, which aim to minimize the number
of configurations required to cover all valid t-tuples, t-way
cost-aware covering arrays aim to cover all t-tuples in a set
of configurations, which minimizes a given cost function.
Given a set of configurations, the cost function computes
the actual cost of testing. Furthermore, since computing the
testing cost in configuration spaces is a nontrivial task, espe-
cially in the presence of reusable components, we provided
a framework for defining the cost function. Finally, we pre-
sented an algorithm to compute cost-aware covering arrays
for a particular cost scenario, and empirically evaluated the
cost-effectiveness of cost-aware covering arrays.

All empirical studies suffer from threats to their internal
and external validity. For this work, we were primarily
concerned with threats to external validity since they limit
our ability to generalize the results of our experiment to
industrial practice. One potential threat is that our algorithm
was designed for a particular cost scenario. However, the
cost scenario used in the paper, although simple, is of great
practical importance.

Another possible threat to external validity concerns the
representativeness of the configuration space models used
in the experiments. Although we systematically varied the
models and evaluated the cost-effectiveness of the proposed
approach, i.e., a total of 288 different models were used (16
values of m × 9 values of m/n × 2 values of t), these
models are still one suite of models. A related issue is that
the configuration space models used in the experiments did
not contain any inter-option constraints. While these issues
pose no theoretical problems (our algorithm can be modified
to account for constraints), we need to apply our approach
to more realistic configuration space models in future work.

Despite these limitations, we believe our study supports
our basic hypotheses. We reached this conclusion by noting
that our studies showed that: (1) in practice, the testing cost
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may not be the same for all configurations, (2) accounting for
the presence of reusable components, i.e., the components,
which, once configured, are reused in other configurations,
can reduce the testing cost, (3) minimizing the number of
configurations as is the case in traditional covering arrays
does not necessarily minimize the actual cost of testing,
and (4) the cost-aware covering arrays were generally more
cost-effective than the traditional covering arrays used in the
experiments.

We believe that this line of research is novel and in-
teresting, but much work remains to be done. We are
therefore continuing to develop new approaches that over-
come existing limitations and threats to external validity. In
particular, we are developing tools and algorithms that are
based on metaheuristic search techniques, such as simulated
annealing, to compute cost-aware covering arrays for any
given configuration space model and for any cost function.
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