
MBPeT: A Model-Based Performance Testing Tool

Fredrik Abbors, Tanwir Ahmad, Dragoş Truşcan, Ivan Porres
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Tanwir.Ahmad, Dragos.Truscan, Ivan.Porres}@abo.fi

Abstract—In recent years, cloud computing has become
increasingly common. Verifying that applications deployed
in the cloud meet their performance requirements is not
simple. There are three different techniques for performance
evaluation: analytical modeling, simulation, and measurement.
While analytical modeling and simulation are good techniques
for getting an early performance estimation, they rely on an
abstract representation of the system and leave out details
related for instance to the system configuration. Such details
are problematic to model or simulate, however they can be
the source of the bottlenecks in the deployed system. In this
paper, we present a model-based performance testing tool that
measures the performance on web applications and services
using the measurement technique. The tool uses models to
generate workload which is then applied to the system in real-
time and it measures different performance indicators. The
models are defined using probabilistic timed automata and
they describe how different user types interact with the system.
We describe how load is generated from the models and the
features of the tool. The utility of the tool is demonstrated by
applying to a WebDav case study.

Keywords-Load Generation. Model-Based Performance Test-
ing. Monitoring. Probabilistic Timed Automata. Models.

I. INTRODUCTION

With the recent advancements in cloud computing, we
constantly see more software applications being deployed
on the web. This opens up a broader window to reach out
to new users. As traffic increases, the overall quality of
such applications becomes an even more important factor,
since most of the processing is done on the server side.
Evaluating that these kinds of systems meet the performance
requirements is no longer a trivial task. High response times,
technical issues, and display problems can ultimately have a
negative impact on the customer satisfaction and ultimately
the profitability of the company. As a result, effective perfor-
mance testing tools and methods are essential for verifying
that systems meet their performance requirements.

The idea behind performance testing is to validate the
system under test in terms of its responsiveness, stability,
and resource utilization when the system is put under certain
synthetic workload in a controlled environment. The idea
behind the synthetic workload [1] is that it should imitate
the expected workload [2] as closely as possible, once the
system is in operational use. Otherwise it is not possible to
draw any reliable conclusions from the test results.

Jain [3] suggests three different techniques for perfor-
mance evaluation: analytical modeling, simulation, and mea-
surement. While analytical modeling and simulation are
good techniques for getting early performance estimation,
they rely on an abstract representation of the system and
leave out details related to the system configuration. Such
details are problematic to model or simulate, however, they
can be the source of the bottlenecks in the system. With the
measurement technique one has to wait until the system is
ready for testing while with the two former techniques one
can start testing while the system is being developed.

Traditionally, performance tests usually last for hours, or
even days, and only test a predefined number of prerecorded
scenarios that are executed in parallel against the system
under test (SUT). The major drawback with this approach
is that it certain inputs that the system will face might
be left untested. Therefore, we suggest the use of models
that describes how the virtual users (VUs) interact with the
system and a probabilistic distribution between actions. The
synthetic workload is then generated from these models by
letting virtual users execute these models.

In this paper, we present a tool that evaluates the perfor-
mance of a system. The main contribution of this work is
that the load applied to the system is generated in real-time
from models, specified using Probabilistic Timed Automata
(PTA). A tool designed in-house is used to generate the load
and monitor different performance indicators.

We use our tool to answer the following questions about
the system under test:

• What are the values of different Key Performance
Indicators (KPIs) of the system under a given load?
For instance, what are the mean and max response times
and throughput for a given number of concurrent users?

• How many concurrent users of given types does the
system support before its KPIs degrade beyond a given
threshold?

The rest of the paper is structured as follows: In Section
II we discuss the related work. In Section III we give an
overview of challenges with load generation and in Section
IV we present our tool. Section VI presents a case study
and a series of experiments using our approach. Finally,
in Section VII, we present our conclusions and we discuss
future work.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

II. RELATED WORK

There exist a plethora of commercial performance testing
and load generation tools. However, most of them generate
load from static scripts or pre-recorded scenarios that are
scripted and executed in batches. In this section, we have
focused our attention on tools that use models as input.

Denaro et al. [4] propose a tool for testing the perfor-
mance of distributed software when the software is built
mainly with middleware component technologies, i.e. J2EE
or CORBA. The authors claim that most of the overall
performance of such a system is determined by the use and
configuration of the middleware (e.g. databases). The authors
also note that the coupling between the middleware and the
application architecture determines the actual performance.
Based on architectural designs of an application the authors
can derive application-specific performance tests that can be
executed on the early available middleware platform that is
used to build the application with. Their tool differs from
ours in the sense that they target middleware components
only and they make use of stubs for components that are
not available during the testing phase.

Barna et al. [5] present a model-based testing tool that
tests the performance of different transactional systems. The
tool uses an iterative approach to find the workload stress
vectors of a system. An adaptive tool framework drives the
system along these stress vectors until a performance stress
goal is reached. Their tool differs from ours in the sense that
they use a model of the system instead of testing against
the real system. The system is represented as a two layered
queuing model and they use analytical techniques to find a
workload mix that will saturate a system resource.

Another similar approach is presented by Shams et al. [6].
There, the authors have developed a tool that generates valid
traces or a synthetic workload for inter-dependent requests
typically found in sessions when using web applications.
They describe an application model that captures the depen-
dencies for such systems by using EFSMs. Their tool outputs
traces that can be used in well known load generation tools
like httperf [7]. Their approach differs from our in the sense
that they focus on off-line trace generation while we apply
the generated load on-line to the system.

Ruffo et al. [8] have developed a tool called WALTy. The
tool that generates representative user behavior traces from
a set of Customer Behavior Model Graphs (CBMG). The
CBMGs are obtained from execution logs of the system and
a modified version of httperf is used to generate traffic from
these traces.

III. LOAD GENERATION CHALLENGES

In performance testing, one of the main challenges is
the load generation. The reason why load generation is
such a challenge is that there are so many ways to get it
wrong. For instance, important user types may not have
been identified. These important user types might have a

significant impact on the performance of the system. Another
example is that the users that one is simulating during testing
behave differently than users in the real world. This can lead
to the fact that the generated load does not conform to the
load that real users would put on the system. In other words,
for load generation to be successful, one needs to be able to
generate load that represent the real user load as closely as
possible. Failure to do so, often leads to incorrect decisions
regarding the performance of the system.

In real life, users need some time to reflect over the
information that they have received. This is what usually is
referred to as think time. The think time specifies how long
the user normally waits before sending a new request to the
system. Defining a think time for an action is not always as
simple as it might seem. For example, to get really accurate
results, one needs to consider the time it takes for a web page
to be rendered in the client machine and the time it takes
for the user to find a new action. Usually the think-time is
different for different actions. Hence, in the load generation
process, there need to be a way to define a think time value
for each individual action.

Traditionally, load generation has been achieved by defin-
ing static scripts or pre-recorded scenarios that are run or
played back in batches or certain quantities. Even if the
scripts are somewhat parameterized, they do not behave
like real life users would do. For performance testing, and
especially load generation, to make sense one must allow
the virtual user to behave as dynamically as real users.

IV. MBPET TOOL

In our approach towards model-based performance test-
ing, we have developed a tool called MBPeT. The tool has
essentially three high levels purposes: (1) to generate load
according to input parameters and send it to the system,
(2) to monitor the key performance indicators (KPIs) and
other system resources, and (3) to present the results in a
test report. The key performance indicators [9] or the KPIs
are quantifiable values that one wants to measure and track.
Example of typical KPIs are: response time, mean time
between failure, number of concurrent users, throughput, etc.

MBPeT accepts as input a set of models expressed as
probabilistic timed automata, the target number of virtual
users, a ramp function, duration of the test session, and it
will provide a test report describing the measured KPIs.

A. Performance Models

The behavior of virtual users is described with proba-
bilistic timed automata (PTA) [10]. The PTA (see Figure 1)
describes a set of locations and a set of transitions that take
the automaton from one location to another. A transition
can have four different labels: a clock zone, a probability
value, an action, and a reset. The clock zone is an integer
value describing discrete time. The clock zone specifies how
long the PTA waits until firing a transition and, in our

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

case, it is the equivalent of the think time. In the figure
below, this is represented with the variable X. It is, however,
possible to define more than one clock variable. In case of
a branch in the PTA, the transition that is taken is based
on its probabilistic value. Consider location 6 in the PTA
figure below. One can reach location 7 with a probability
of p5 or reach location 2 with the probability of p4. Upon
taking a transition, the associated action is being executed
against the system. Whenever the action is executed there is
a possibility to reset the clock variable. In the PTA below
this is represented with X:= 0. Every PTA has an end
location, depicted by a double circle, which eventually will
be reached.

Figure 1. An example of a probabilistic times automata.

We believe that the PTA models are well suited for model-
based performance testing and that the probability aspect that
the PTA holds is good for describing dynamic user behavior,
allowing us to include a certain level of randomness in
the load generation process. This is important because we
wanted the VUs to mimic real user behavior as closely as
possible and real users do not follow static instructions. With
the help of the probability values we can make it so that
a certain action is more likely to be chosen over another
action, whenever the VU encounters a choice in the PTA.

B. Tool architecture

The tool has a distributed architecture: a master node
controls several slave nodes (see Figure 2.) The actual load
generation is performed on the slave nodes. The master
node just controls the load generation and initializes more
slave nodes when needed. Each slave node is responsible for

generating load for the VUs. The number of VUs a slave
node can support is dependent on its capacity. In addition,
each slave monitors its local resource utilization, collects
KPIs for the system under test and reports the values to the
master node.

Network

Slave
Node 1

Slave
Node 2

Master
Node

Slave
Node N

.

.

.

SUT

Figure 2. Master-Slave architecture for the MBPeT tool.

The internal architecture of the master node (Figure 3)
includes the following components:

The Model Parser is responsible for reading the input
models and building an internal representation of the model.
In addition, it validates the models with respect to basic well-
formness rules such as: all locations are connected, there is
entry and an exit state, the sum of the probabilities of the
transitions originating from a given node equals to 1, etc. We
chose the dot language as a plain text representation for the
PTAs. The reason for choosing the dot language is that we
wanted to have a simple and lightweight way of representing
models that both humans and machines can understand.

The Core module is the most important component of the
master node. It takes care of reading the input parameters,
initializing the test configuration by distributing relevant
data to slave nodes, initiating load generation and collecting
individual test reports from slaves. The test configuration
contains information about the IP-addresses for the slave
nodes and the master, the length of the test duration, a
ramping function, and the number of concurrent users.

The master node uses two different Test Databases: User
DB and User-Resource Data Base. The User DB contains
data about the users, for instance user name and password,
whereas the User-Resource Data Base contains information
about the resources (documents, pictures, folders, etc) the
users have on their own space on the server. The core module
is responsible for initializing the data bases before the load
generation begins.

The Test Report Creator module is in charge of pro-
ducing an HTML test report once all the slave nodes have
reported back to the master node all the gathered data from
the test run. The report creator module aggregates the data
and computes mean and max of the monitored values and
for the specified KPIs.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Master Node

Model Parser

Models Configuration

User DB

User‐
Resource
Data Base

Core

Test Report
Creator

Test
Report

Output to
Slave node

Input from
Slave node

Figure 3. The structure of the master node.

The slave nodes consist of several modules (see Fig-
ure 4). The input received from the master node includes:
the internal representations of the test models and specific
test configuration. All the slave instances have identical
configuration and implementation.

The Load Generator is in charge of generating load that
is sent to the system under test. One instance of the PTA
models is used by each VU to generate traces which results
in sequences of actions based on specified probabilities and
thin times that are sent to the SUT.

The models that we use contain abstract actions and can
therefore, as such, not be directly used directly against the
SUT. An Adapter module is used is to concretize every
action into machine readableS format. For example, in the
case of a HTTP-based system, a login() action needs to
be implemented in the adapter code to be sent as a POST
request over the HTTP protocol. A second example below
shows how an upload file(image/jpg) action on a WebDav
server could be translated by an adapter:

PUT /webdav/user1/picture.jpg HTTP/1.1
Connection: Keep-Alive
Host: www.examplehost.com
Content-Type: image/jpg

A new adapter has to be implemented for each new SUT,
however, it is possible to use different libraries in the adapter
code to make the adaptation much easier. For example, in
the case of the ”login()” action describe above, a standard
HTTP library could be used to send the login to the SUT.

During the testing process each slave node monitors, via
a Resource Monitor, the local resource utilization (CPU,
memory, disk, and network) in order to make sure that the
slave itself does not saturate and become a bottleneck in the
configuration. If, for instance, the CPU utilization goes over
a certain threshold, we can not guarantee anymore that the

load is generated at the same rate as it should be. The slave
node also monitors the response time for each action sent
to the SUT and the error rate of these actions.

The Reporter module is in charge of putting the measured
values together in an organized form and reports them back
to the master node at the end of the testing process. The
reporter is also responsible for notifying the master node if
the local resource utilization threshold has been exceeded.

Slave Node

Load Generator

Adapter

Resource
Monitor

Reporter

Input from
Master node

Output to
Master
Node

Figure 4. The structure of a slave node.

V. PERFORMANCE TESTING PROCESS

In our approach, the testing process (see Figure 5) con-
tains three distinct phases: test setup, load generation and
test reporting.

A. Test Setup

The test setup phase takes care of initializing the test
databases and the configuration of the slave nodes. This is
done before the actual test run in order to avoid any negative
impact on the bandwidth or resource utilization of the tester.

1) Test database initialization: One of the main chal-
lenges in performance testing is providing test data and
configuring the system under test with a configuration as
close as possible to the production environment [9]. As such,
every time before starting the load generation phase, we
configure the system under test and the tool with synthetic
data using a populator script: on the system side, the script
will automatically configure the web server with the given
user configuration and if needed with the corresponding user
spaces. On the MBPeT tool side the script will populate
the user and test data databases with user credentials and
corresponding information/files that the user will eventually
upload to the server.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 5. Activity diagram describing the load generation process.

2) System state: In certain cases, the current state of the
SUT has to be captured before starting the test run. This
is useful in stateful systems, in situations where the load
generation should start from a given state of the SUT. For
this, the master node queries the SUT for the user space
resources, and stores the information in the URDB.

3) Slave initialization: When starting the testing process,
the number of available slave nodes and their configuration
(e.g., IP addresses) is provided to the master node. As
mentioned previously, the master node will distribute the
load incrementally on the slave nodes, one at the time, until
the node saturates. However, all the available slave nodes are
initialized with necessary test data and they are just idling.

B. Load generation

Different parameters of the testing process are provided
as command line parameters. The tool can be used in two
modes. The first use is to run with a certain target number
of concurrent users. The tool will then slowly ramp up to
the target number of users, run for the specified test duration
and report back the aggregated values. The second use, and
maybe the more interesting one, is to specify the target KPI
value, for instance a target average response time, and let the
tool find out the maximum number of concurrent users that
the SUT can serve without exceeding the specified threshold.

To generate the load from the models, a few additional
things have to be specified. First, one should input the
models and a test configuration to the tool. Second, one
needs to specify a stopping criterion for when the tool should
stop generating load. This stopping criterion can be of two
types: a time duration or a given threshold value. If a time
duration is given, the tool will generate load based on the
given models and target number of concurrent users, and
stop generating load after the given amount of time has
passed. If threshold values are given for a particular resource,
e.g., the CPU, the tool will monitor that resource and ramp
up the number of users until the threshold value is reached.
All this information is specified in the configuration file. The
load generation process will be discussed in more detail in
Section VI

C. Test Reporting

When the specified test duration runs out or the tool
detects that a certain threshold KPI value has been exceeded,
the testing process is aborted and the test run is summarized.
Consequently, each slave node reports back to the master
node the data that it has collected during the test run. Based
on the collected data the master node produces a test report
of the test run.

The test report contains information such as, the duration
of the test, number of generated users, amount of data sent to
the system, response times for different actions, etc. The test
report also shows diagrams of how various monitored values
changed over time when the user amount was increased, e.g.,
response time, CPU, and resource utilization.

VI. EXPERIMENTS

In this section, we demonstrate our tool by using it to
test the performance of a Webdav [11] file server. Webdav
(Web Distributed Authoring and Versioning) is an extension
to the HTTP protocol and provides a framework for users to
create, change, and move their documents and files stored on
web servers. Webdav also maintains the file properties, e.g.,
author, modification date, file locking, etc. These features
facilitate creation and modification of files and documents
stored on web servers.

The SUT featured a Linux machine with 8-core CPU,
16GB of memory, 1Gb Ethernet, 7200 rpm hard drive, and
Fedora 16 operating system. The file server ran a WebDav
installation on top of an Apache web server. The system
was configured for 1500 users, each with its own user
space. The slave nodes that generated the load had the exact
same configuration and were connected via a 1Gb Ethernet
network to the SUT. In total we have used 3 slave nodes,
but nothing prohibits us from extending this configuration.

By analyzing the Apache server logs of a previous Web-
Dav installation with the AWStats [12] tool, we identified
three user type: heavy, medium and light user, respectively,
based on the average bandwidth each user type used for

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

1 2x=3 / login() / X:=0

3
0.40

40.25

5

0.13

6

0.17

13

0.05 / exit()

70.70

8
0.20

9

0.10

x=3 / random_dir() / X:=0

x=4 / delete_file() / X:=0

100.60

11
0.25

12

0.15

X=2 / upload_file(video/mpeg) / X:=0

x=3 / upload_file(audio/mpeg) / X:=0

x=4 / upload_file(image/jpeg) / X:=0

x=4 / download_file(video/mpeg) / X:=0

x=2 / download_file(audio/mpeg) / X:=0

x=5 / download_file(image/jpeg) / X:=0

Figure 6. Probabilistic time automaton for a heavy user.

transferring. The model depicting the distribution of these
users is shown in Figure 7. We have also identified three
types of file types (jpeg, mp3, avi) that the users usually
transferred having on average file sizes of 3 MB, 5 MB,
and 10 MB, respectively.

0

1

0.2 / heavy_user 0.3/ medium_user 0.5 / light_user

Figure 7. Distribution between different user types.

Figure 6 shows a PTA of the heavy user type in terms of
user actions, the probability for those actions, and the think
time for each action. Eventually the user will find an exit()
action and leave the system. Similar models were created
for the medium user and the light user types. The PTA
models for each user type can be completely different or
be similar only varying in the distribution between actions.
In our experiments we had the latter option.

The load generation process proceeds as follows: the
master node takes as input the performance models, the
test duration, the ramp function, the number of concurrent
users and the target KPIs. The master node initiates load
generation on the slaves in an incremental order. Each slave

node monitors its local resource utilization and the KPIs of
the SUT during the load generation. If the threshold for the
local resource utilization on the slave node is exceeded, the
slave node notifies the master node that it can not anymore
generate new virtual users. The master then initiates load
generation on another slave node. If the threshold of the
measured KPI has been exceeded (in case a target KPI has
been specified) or the test duration has ended the slave nodes
notifies the master node and the load generation is stopped.

During the load generation on the slaves, the slave nodes
execute the PTA models describing the user behavior as
specified in Section IV-A in parallel processes. For each
user the slave node starts a new process. The slave node
then selects a user type if several are specified. The user
type is selected based on probabilistic choice, see Figure 7.
The virtual user then executes the PTA that belong to the
selected user type inside its own process. Consider location 1
of the PTA in Figure 6. A possible execution of the PTA
would be as follows: A virtual user waits until the clock
variable X reaches 3 and then fires the transition. Upon
firing the transition the action login() is sent to the adapter
of the slave. The adapter creates a HTTP message, gets the
user credential from the User DB, and sends the action to
the SUT. In the adapter a timer is started to measure the
response time. When the response is received it is checked
in the adapter for the status code and the response time is
stored. After that the clock variable X is reset to zero and

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Table I
RESPONSE TIME MEASUREMENTS FOR USER ACTIONS WHEN RUNNING

WITH 1000 CONCURRENT USERS.

Light Users Medium Users Heavy Users
Action Average Max Average Max Average Max

(sec) (sec) (sec) (sec) (sec) (sec)
upload file(video/mpeg) 82.3 133.0 81.5 133.5 85.1 133.3
upload file(audio/mpeg) 158.3 217.4 143.7 214.3 126.2 210.5
upload file(image/jpeg) 56.9 134.1 54.7 126.2 47.2 119.1
download file(video/mpeg) 0.16 2.8 0.16 2.8 0.12 3.6
download file(audio/mpeg) 0.15 3.0 0.18 3.2 0.18 3.0
download file(image/jpeg) 0.13 3.1 0.15 3.7 0.16 1.4

the PTA moves from location 1 to location 2. In location 2
the transition to fire is based on the probabilistic values. For
example, location 4 is reached with a probability of 0.25.
In location 4 the transition is fired when the clock variable
X reaches 3. The random dir() action is sent through the
adapter to the SUT. In this case, the adapter uses the User-
Resource Data Base to select a folder for the user. Upon
receiving the response the clock is reset and the PTA moves
back to location 2. The process is repeated until the exit()
action is fired and the end state is reached. The slave then
chooses a new user type and the PTA corresponding to that
user type is executed in a similar way. In a nutshell, every
user runs independently of each other and decides for itself
which actions to execute.

We have run two experiments with our tool, based on its
two usage modes described in Section V-B

Experiment 1. In the first experiment, we wanted to
answer the following question: What are the mean and max
response times of all actions when system is under the load
of 1000 concurrent users? We ran the test for 1 hour.

In this experiment we found out that the SUT had a
bottleneck, namely the hard disk. Table I shows the average
and max response times values for the actions and user types.

From the table one can see that the response times for
the three upload actions are considerably higher that the
ones for download. This is because a lot of data had to be
written to the hard disk on the SUT, while the slave nodes
simply discarded the data that the virtual users downloaded.
Figure 8 shows the average response time plotted over time
for the three upload actions for the heavy user type.

Experiment 2. In the second experiment, we wanted to
know how many concurrent users of given types the system
supports before the response time degrades beyond a given
threshold? The target threshold limits from the actions can
be seen in Table II.

To figure this out, we had the tool to ramp up the number
of user from 0 to 150 following the user type distribution
in Figure 7 and the tool reported back when the measured
response times exceeded any of the threshold values set
for user actions specified in Table II. Figure 9 shows the
average response times for the three upload actions plotted
over time for the medium user type when ramping up from
0 to 150 users. Similar graphs were created by the tool
for the light and heavy user types. The test report also
includes two tables for this experiment (see Table II and III).

Figure 8. Average response time for uploading picture (bottom), video
(middle), and music (top) when running with 1000 concurrent users.

Table II shows the time and number of users at which the
threshold value for individual actions was exceeded. Table
III shows the average and max response times for individual
action over the entire test durations. The tool reported
that the average and max response times were exceeded
for all of the three upload actions. However, the response
time for upload file(audio/mpeg) for the medium user type
went over the set threshold of 3.5 seconds at 8 minutes
and 44 seconds (524 seconds) into the test run. The tool
was then testing with 74 concurrent users. The distribution
between user types was the following: 50% light users, 28%
medium users, and 22% heavy users.

Figure 9. Average response times for uploading video (bottom), picture
(middle), and music (top) when ramping up from 0 to 150 concurrent users.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a model-based perfor-
mance testing tool that uses probabilistic models to generate

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Table II
TIME AND NUMBER OF USERS AT WHICH THE THRESHOLD VALUE WAS EXCEEDED WHEN RAMPING UP FORM 0 TO 150 USERS

Action Target Response Time Light Users (50 %) Medium Users (28 %) Heavy Users (22%) Verdict
Average Max Average Max Average Max Average Max Pass/Fail

(sec) (sec) (users) (users) (users) (users) (users) (users)
upload file(video/mpeg) 4.5 12 78 (555.0 sec) 94 (669.0 sec) 86 (613.0 sec) 94 (670.0 sec) 78 (558.0 sec) 112 (801.0 sec) Failed
upload file(audio/mpeg) 3.5 10 76 (543.0 sec) 94 (670.0 sec) 74 (524.0 sec) 94 (670.0 sec) 74 (528.0 sec) 94 (671.0 sec) Failed
upload file(image/jpeg) 2.5 8 77 (545.0 sec) 80 (572.0 sec) 74 (524.0 sec) 80 (572.0 sec) 78 (555.0 sec) 101 (719.0 sec) Failed
download file(video/mpeg) 4.5 12 Passed Passed Passed Passed Passed Passed Passed
download file(audio/mpeg) 3.5 10 Passed Passed Passed Passed Passed Passed Passed
download file(image/jpeg) 2.5 8 Passed Passed Passed Passed Passed Passed Passed

Table III
RESPONSE TIMES WHEN RAMPING UP USERS FOR 0 TO 150 USERS

Light Users Medium Users Heavy Users
Action Average Max Average Max Average Max

(sec) (sec) (sec) (sec) (sec) (sec)
upload file(video/mpeg) 4.78 79.17 4.08 40.79 4.72 64.09
upload file(audio/mpeg) 5.34 92.79 5.57 90.20 6.60 92.79
upload file(image/jpeg) 4.22 93.44 4.25 93.04 5.04 87.84
download file(video/mpeg) 0.05 1.98 0.05 1.57 0.04 1.57
download file(audio/mpeg) 0.04 1.44 0.07 2.11 0.04 1.33
download file(image/jpeg) 0.05 2.04 0.05 2.10 0.06 1.99

synthetic workload which is applied to the system in real-
time. The models are based on the Probabilistic Timed
Automata, and include statistical information that describes
the distribution between different actions and think time. The
tool has a scalable distributed architecture with a master
node that controls several slave nodes. The slave nodes
monitor the target KPIs and the local resource utilization,
and after the test duration has ended the monitored values
are sent to the master node which produces a test report.

We have described how load is generated from the PTA
models and we have also discussed the most important
features of the tool. We demonstrated the utility of the tool
on a WebDav case study. We use our tool to answer the two
questions about the system under test: What are the values
of different KPIs when the system is under a particular load
and how many users of given types does the system support
before its KPIs degrade beyond a given threshold?

In the future, we will focus on the creation of the models
and try to optimize the algorithm for load generation even
further. We will strive to have a more formal approach on
how we go from requirements to model. Also we will look
further into load generation, for instance, develop methods
to specify a minimum number of user action that has to be
fulfilled (trace lengths) before the user can exit the system.

We are currently performing larger scale experiments to
evaluate the capabilities of the tool against existing tools
like, JMeter [13] and httperf [7]. Further, we plan to add
target KPI values, for instance response time and perfor-
mance requirements, in the models. By doing that, we can
have performance requirements and address target response
time values for individual actions.

REFERENCES

[1] D. Ferrari, “On the foundations of artificial workload design,”
in Proceedings of the 1984 ACM SIGMETRICS conference
on Measurement and modeling of computer systems, ser.
SIGMETRICS ’84. New York, NY, USA: ACM, 1984, pp.
8–14.

[2] J. Shaw, “Web Application Performance Testing – a Case
Study of an On-line Learning Application,” BT Technology
Journal, vol. 18, no. 2, pp. 79–86, Apr. 2000.

[3] R. Jain, “The Art of Computer Systems Performance Anal-
ysis: Techniques for Experimental Design, Measurement,
Simulation and Modeling (Book Review),” SIGMETRICS
Performance Evaluation Review, vol. 19, no. 2, pp. 5–11,
1991.

[4] G. Denaro, A. Polini, and W. Emmerich, “Early performance
testing of distributed software applications,” in Proceedings of
the 4th international workshop on Software and performance,
ser. WOSP ’04. New York, NY, USA: ACM, 2004, pp. 94–
103.

[5] C. Barna, M. Litoiu, and H. Ghanbari, “Model-based per-
formance testing (NIER track),” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 872–875.

[6] M. Shams, D. Krishnamurthy, and B. Far, “A model-based
approach for testing the performance of web applications,” in
SOQUA ’06: Proceedings of the 3rd international workshop
on Software quality assurance. New York, NY, USA: ACM,
2006, pp. 54–61.

[7] Hewlett-Packard, “httperf,” http://www.hpl.hp.com/research/
linux/httperf/httperf-man-0.9.txt, retrieved: October, 2012.

[8] G. Ruffo, R. Schifanella, M. Sereno, and R. Politi, “WALTy:
A User Behavior Tailored Tool for Evaluating Web Appli-
cation Performance,” Network Computing and Applications,
IEEE International Symposium on, vol. 0, pp. 77–86, 2004.

[9] D. A. Menasce and V. Almeida, Capacity Planning for Web
Services: metrics, models, and methods, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

[10] M. Jurdziński, M. Kwiatkowska, G. Norman, and A. Trivedi,
“Concavely-Priced Probabilistic Timed Automata,” in Proc.
20th International Conference on Concurrency Theory (CON-
CUR’09), ser. LNCS, M. Bravetti and G. Zavattaro, Eds., vol.
5710. Springer, 2009, pp. 415–430.

[11] HTTP Extensions for Web Distributed Authoring and Ver-
sioning (WebDAV), http://www.webdav.org/specs/rfc4918.pdf,
Network Working Group pdf, retrieved: October, 2012.

[12] AWStats, http://awstats.sourceforge.net/, retrieved: October,
2012.

[13] The Apache Software Foundation, “Apache JMeter,”
http://jmeter.apache.org/, retrieved: October, 2012.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

