
A Classification for Model-Based Security Testing
Michael Felderer, Berthold Agreiter, Philipp Zech and Ruth Breu

Institute for Computer Science
University of Innsbruck

Technikerstr. 21a, A-6020 Innsbruck, Austria
{michael.felderer, berthold.agreiter, philipp.zech, ruth.breu}@uibk.ac.at

Abstract—Security testing defines tests for security require-
ments of software. Security requirements are non-functional, and
thus require a different way of testing compared to functional
requirements. Model-based testing applies model-based design
for modeling test artifacts or the automation of test activi-
ties. Although model-based testing techniques improve security
testing, these two testing activities have rarely been combined
systematically. Like functional system models improve functional
testing, risk models can improve security testing. This paper
first gives an overview of existing security testing approaches,
and based on that, develops a novel classification for model-
based security tests along the two dimensions risk and automated
test generation. The classification allows for understanding which
areas of model-based security testing are already well-covered by
research and practice, and furthermore, can serve as a guideline
for deciding which testing approach fits specific circumstances.
Based on the classification, we identify tasks for interesting future
research.

Keywords-Secure Systems, Verification and Testing, Security
Testing, Model-based Testing

I. INTRODUCTION

Security testing means to test for security requirements of
software. By the increasing use of software in more and more
areas of our daily life, also the amount of sensitive data
which is processed automatically, e.g., in electronic health or
e-government applications, increases. Consequently, the adher-
ence to security requirements, which aim to protect sensitive
data and the systems processing that data, is constantly gaining
importance. Several classifications of security requirements
can be found in literature, e.g., [1]–[3]. The most prominent
list of security requirements (cf. [3]) distinguishes six types
of security requirements:

• Confidentiality is the assurance that information is not
disclosed to unauthorized individuals, processes, or de-
vices.

• Integrity is provided when data is unchanged from its
source and has not been accidentally or maliciously
modified, altered, or destroyed.

• Authentication is a security measure designed to establish
the validity of a transmission, message, or originator,
or a means of verifying an individual’s authorization to
receive specific categories of information.

• Authorization provides access privileges granted to a user,
program, or process.

• Availability guarantees timely, reliable access to data and
information services for authorized users.

• Non-repudiation is the assurance that none of the partners
taking part in a transaction can later deny of having
participated.

Security testing aims at checking whether these
requirements are satisfied under various conditions. Due
to the openness of modern service-oriented systems, security
testing has gained much interest in the last years [4] and has
become a vast field of research.

Model-based testing (MBT) applies model-based design
for the modeling of test artefacts, or the automation of test
activities [5]. MBT supports the early definition and automatic
validation of tests on the abstract model level. Most of to-
day’s model-based testing approaches consider the automated
generation of test cases from a functional system description.
MBT itself is well-covered in literature, and many tools are
already on the market applying model-based approaches [6].
Furthermore, also partial test models are often encountered in
practice, where domain expertise by a test engineer is needed
for designing tests. Although model-based testing increases the
level of abstraction in different aspects, supports a systematic,
model-based, a-priori security test design, and reduces the
required expertise for security testing, it is not widely used
for testing security requirements today. So far, model-based
security testing (MBST), i.e., model-based testing of security
requirements, is more or less only used for testing access
control policies in academia (see Section II on security testing
approaches).

MBT re-uses functional system knowledge which is
provided by models, so that the test engineer can abstract
from many aspects in that respect. However, for testing
security requirements, the test engineer further needs security
knowledge for being reasonably able to design tests. Since
security is tightly coupled with risk, risk models can
potentially fill this gap. Based on an overview of existing
classical and model-based security testing approaches,
the contribution at hand defines a novel classification of
model-based security testing approaches, and systematically
identifies interesting future research directions to promote
model-based security testing. We classify model-based
security testing approaches along the two dimensions risk and
automated test generation. For each category of security tests,
we describe typical approaches and identify fields which offer
the potential to put the discipline of security testing forward.

109

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Since we want to classify security testing approaches in
this contribution, we first detail what security is. Security
is a non-functional property, and defines how a system is
supposed to be, in contrast to what a system is supposed to do.
Security threats are caused by faults and flaws. Faults may lead
to failures which harm security requirements, and flaws are
security problems which may lead to vulnerabilities. Security
can be classified into three main levels. Each level exhibits its
own security threats, but also offers the corresponding security
requirement to deal with these threats. The three security levels
network security, operating system security, and application
security (cf. [7]) are characterized as follows:

• Network Security involves tackling threats which target
the network. The main threats are (distributed) denial-
of-service, network intrusion, or attacks during message
transport (cf. [8]).

• Operating System Security is related to the basic services
of operating systems and includes protection against
all sorts of malware (virus, worm, spyware, etc.). The
protection mechanisms involve antivirus, anti-malware,
operating system level access control mechanisms, fire-
walls, etc. (cf. [9])

• Application Security deals with the threats targeting
a specific application. It includes unauthorized access,
information theft, and misuse of the application. The
security mechanisms include access control mechanisms
and policies, application level encryption/decryption, etc.

All these security levels can be subject to software tests.
In this paper, we focus on application security and disregard
the network and operating system, nevertheless this does not
limit the applicability of the classification we introduce later.

The remainder of this paper is organized as follows: In
Section II, we give an overview of existing security testing
approaches. In Section III, we define a novel classification
of model-based security testing with the dimensions risk
and automated test generation. Finally, in Section IV, we
summarize and sketch future work in the area of model-based
security testing arising from our classification.

II. SECURITY TESTING APPROACHES

In this section, we give a representative overview of
actual security testing approaches to motivate model-based
security testing that considers risks and partial test generation.
Security testing is often fundamentally different from
traditional software testing because it emphasizes what
an application should not do rather than what it should
do. This fact was also pointed out by Alexander in [10],
where the author distinguishes between positive and negative
requirements modeled as use cases and misuse cases.

For testing positive security requirements, i.e., functional
security properties that are defined in the requirements
specification, classical functional testing techniques can be
applied (Michael and Radosevich [11] provide a detailed
listing of functional testing techniques for testing positive

security requirements, e.g., equivalence testing or decision
tables). Testing positive security requirements can be
performed by the traditional test organization [12].

Negative security requirements express what a system
should not do, respectively what should not happen. The set
of negative requirements is therefore infinite on principle, and
this makes it impossible to achieve complete test coverage. A
promising way to overcome this problem is the derivation of
tests based on a risk-analysis [11]. Due to this fact, risk-based
testing (RBT) techniques [13] are highly relevant for security
testing [14]. Based on a threat model, or based on abuse
cases [15], vulnerabilities can be identified and prioritized
relying on a risk analysis.

Tests can be designed in a classical operational way or, very
frequently, as penetration tests which attempt to compromise
the security of a system [16] by acting like an attacker trying
to penetrate the system and exploit its vulnerabilities. Specif-
ically, it tests missing functionality or side-effects of the sys-
tem. Often also the environment of a system is the target of at-
tacks instead of the system itself (e.g., exploiting an unpatched
operating system). Furthermore, there are several penetration
testing strategies [17], e.g., internal, external, or blind testing
strategy, and penetration testing tools available [18], e.g.,
port or vulnerability scanners. Moreover, several standards
for penetration testing exist, among which the Open Source
Security Testing Methodology Manual (OSSTMM) [19] is the
most prominent one. The OSSTMM methodology covers the
whole process of risk assessment involved in a penetration
test, from initial requirements analysis to report generation.

Besides penetration testing, another well-known approach
to functional security testing is fuzzing [20]. The very basic
idea behind a fuzzer is to test a protocol implementation on
possible security flaws due to improper handling of malicious
input. However, as Takanen et al. show in their book [20],
fuzzing may also be used for testing other types of software
in terms of security. Yet, what makes fuzzers difficult to use
is the fact that a fuzzer by design cannot be general-purpose.
Hence, for each new software to test, a specific fuzzer has to
be implemented from scratch, which in fact is a challenging
task. For instance, Taber et al. [21] present a fuzzer dedicated
to security testing SIP-based VOIP applications. Yet, fuzzers
still suffer from their randomness, put another way, testing
with a fuzzer lacks all aspects of a structural approach.
However, as done in [22], combining the idea of fuzzing with
the concept of model–based testing, allows for systematic
and automated testing of software applications.

On a more abstract level, model-based testing approaches
have been applied for testing access control policies.

In [23], the authors describe a model–based testing approach
for checking whether access control policies are properly
enforced by the system under test (SUT). The functional model
is written in the B language [24] and used for the security
test generation from so called test purposes. Test purposes are
defined as regular expressions and describe a general sequence

110

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

of operation calls to induce a certain situation on the SUT. The
approach aims at the automated generation of test cases from
the SUT.

A similar approach is used in [25] for testing smart cards
where the access control rules are defined by test purposes.
Another model-based approach for testing role-based access
control policies is presented in [26]. The creation of test
targets (actual access requests) is based on three different
strategies: (1) only taking into account roles and permissions,
(2) considering all rules in a policy and (3) completely at
random. The tests target the policy decision point to check
whether its decisions are correct or not.

Usually, models that are used for test generation are sup-
posed to be correct and attack-resistant. In an attack-driven
approach, a common practice is to modify the model such that
it contains errors that can be revealed by attacks. The model
mutation makes it possible to simulate attack scenarios on the
model such that the response provides an observable answer to
the attack. If a test representing an attack is executed against
the SUT and reacts as expected from the modified model,
then a vulnerability has been identified. In the mutation-based
testing approach of DeMillo et al. [27], modified models are
used in the standard test generation process. The mutation
guides the test generation with a focus on the introduced
errors.

Traon et al. [28] present a set of security mutations in access
control policies used to drive the test generation. The generated
tests are used to request access to secure data. The success of
the access, allows to conclude the presence of failures in the
SUT.

Jurjens [29] uses fault-injection techniques to introduce
security faults in UMLsec models [30], and model-checkers
are then used to build traces leading to the faults. The traces
are then used as test cases for the system.

The model-based testing approaches mentioned above focus
on the test generation from complete models where all security
tests are derived fully automated from a formal model. Such
models are costly to create and hard to maintain, and there-
fore only rarely applied in practice. Thus, we also consider
partial security test generation where some security tests are
generated automatically from a security model, and others are
added manually. In classical approaches no test models are
created, and the automatic test generation is missing.

Fig. 1 shows and compares the three degrees of automatic
security test generation from software (components), i.e.,
complete, partial, and missing.

In the case of complete test generation, all tests are
generated from a formal security model which is depicted as
graph in Fig. 1. In the case of partial test generation, tests
are generated from a formal security model and manually
which is depicted by a graph and a cloud as source of test
generation. The graph and the cloud are linked to show that
the design of the test model and the manual test definition
informally influence each other. Finally, if automatic test
generation is missing, then all tests are generated manually

System Under Test
Test Code

Test Environment

Testing

Security Model

System Under Test
Test Code

Test Environment

Testing

Security Model

Test Generation

Feedback

Test Generation

Feedback

System Under Test
Test Code

Test Environment

Testing

Test Generation

Feedback

complete

partial

missing

Fig. 1. Complete, Partial, and Missing Security Model

which is depicted by a cloud only. Assuming that the security
model is provided, the skills needed by a test designer
increase from complete to missing.

Partial security test generation is very promising because it
does not require complete models and integrates the expertise
of security testers. But partial security test generation is hardly
employed in practice. Additionally, actual MBST approaches
do not consider risk values for the test case generation. To
increase the acceptance of MBST approaches in industry, and
to consider existing risk-based security testing approaches, we
extend the view on model-based security testing. In a novel
classification of MBST approaches, we incorporate risks and
partial test generation. Today, especially testing negative re-
quirements strongly depends on expertise and experience [12].
We intend to lower the required level of expertise needed
for security testing by defining new approaches based on our
classification.

111

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

III. MODEL-BASED SECURITY TESTING CLASSIFICATION

As motivated before, in this section, we classify model-
based security tests along the two dimensions automated
test generation and risk. The automated test generation
dimension describes how much of the system and the
security requirements is captured by formal models. The
fewer information on system and security requirements
is available, the more individual knowledge by the test
engineer is needed to specify meaningful test cases. Fully
automated test generation is only possible with formal
and complete models which are typically not available.
However, a possibility to support the test engineer in test
design is the consideration of risk models, on the one
hand, for deriving test cases, and, on the other hand, for
prioritizing test execution. This results in the classification
of model-based security testing approaches shown in Figure 2.

The degree of “automated security test generation” can be
complete, i.e., all security tests are derived from a model,
partial, i.e., some security tests are generated from a model,
and others are added manually, or missing, i.e., all tests
are defined manually. Assuming that the security model is
provided, needed test design skills increase from complete to
missing test generation. The more complete a security model
is, the more functional are the security requirements. Note
that the degree of automated test generation may vary for
different system components.

The dimension “risk” can have the values integrated into
the model or not integrated into the model. Note that the
boundaries between the different characteristics are fuzzy. In
the following sections we provide examples for each category.

A. Individual Knowledge

If a model does not support automated test generation
and does not consider risk values, then individual knowledge
determines the design of security tests and the selection
of appropriate functional [11] and penetration testing tech-
niques [17]. The efficiency of such techniques heavily relies
on the experience and the specific domain knowledge of the
test designers. However, employing the idea of pattern based
testing allows to, although no better than very rudimentary,
tweak this otherwise quite random testing techniques in terms
of testing process itself.

B. Adapted RBT

If automated test generation is not possible because of a
missing security model but risks have been evaluated, then a
prioritization of tests is possible. Most actual risk-based testing
approaches, e.g., [13] assign risk values to design elements
and can therefore be categorized as risk enhanced model-
based testing approaches without automated test generation.
Wysopal et al. [14] define an adapted risk-based security
testing approach based on threat models. The risk values
in case of adapted RBT approaches are often only defined
as additional informal artifacts, e.g., in spreadsheets. But

the risk assessment itself is typically systematized in such
approaches [31].

C. Scenario-Based MBT

The partial automated generation is supported e.g., by the
Telling TestStories approach [32]. Telling TestStories supports
the automated generation but also the manual definition of so
called test stories, i.e., test scenarios modeled as UML activity
diagrams or UML sequence diagrams plus assigned test data in
a tabular form. Telling TestStories has been applied to model
security tests of service-centric systems [33]. However, the
idea of scenario-based MBT is not only restricted on UML
diagrams, also the application of control flow graphs allows to
derive scenarios by employing graph coverage criteria, geared
towards covering high security sensitive execution traces.
Obviously, following such an approach the graph replaces the
classical perception of a software model, based on notions
of UML. Tuglular et al. [34] suggest an approach to firewall
testing based on Event Sequence Graphs, used to directly
generate test cases.

D. Risk Enhanced Scenario-Based MBT

The Telling TestStories approach mentioned before is scal-
able for integrating risks into the test model to define a
risk enhanced partial test generation process. We consider the
integration of risks into Telling TestStories as future work.

E. Adapted MBT

The adapted model-based testing for security models is
supported by the automated test generation approaches for
access control policies discussed in Section II, e.g., [23], [26],
[27], [29], which automatically generate test cases but do not
consider risk values.

However, the application of adapted MBT in the field is
quite rare, as often a complete model, as required by MBT
approaches, does not exist.

F. Automated RB Security Test Generation

RiteDAP [35] is a model-based approach to risk-based
system testing that employs annotated UML activity diagrams
for automated test case generation and prioritization. RiteDAP
is therefore an approach that manages risks on the model
level and supports the complete automated test generation. But
it does so far not consider the automated test generation of
security tests.

The approach, suggested by Zech [36] actually attempts to
go one step further as RiteDAP by additionally supporting
the automated generation of test cases. Based on attack
patterns and threat profiles, enabling the generation of a risk
model from a system model, test case are generated out of
misuse cases, automatically derived from the aforementioned
risk model. Hence, this approach can be considered as an
approach to automated RB security test generation, based on
a tailored security model. Again, such an approach, building
on a complete model currently lacks acceptance in the field,
as most of the time, as already mentioned before, a complete

112

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

complete partial missing

AutomatedTest Generation

R
is

k

in
te

gr
at

ed
n

o
t

in
te

gr
at

ed

Adapted MBT

Automated RB Security
Test Generation

Scenario-based
MBT

Adapted RBT

Individual
Knowledge

Risk Enhanced Scenario-
based MBT

Fig. 2. Model-Based Security Testing Classification

model, capable of being employed for test generation, simply
does no exist.

According to the presented categorization there exist only
very few model-based security testing approaches that inte-
grate complete or partial automated test generation and risks.
Both, a risk enhanced scenario-based MBT approach and an
automated RB security test generation approach contribute
to utilize the full potential of model-based security testing
of positive and negative security requirements. We therefore
motivate the further investigation and development of risk-
aware and automated MBST approaches based on existing
frameworks such as Telling TestStories or RiteDAP.

IV. CONCLUDING REMARKS

In this contribution, we have first explained the benefits
of model-based testing, which is already widely used today.
To employ model-based approaches for testing security re-
quirements, security models are needed which describe how a
system is supposed to behave. The security model lowers the
level of required security expertise of the test designer due to
several reasons.

First, such a security test model improves the test designer’s
understanding of the software’s security aspects which results
in more efficient test cases. By using models, the level of
abstraction is raised which enables more people to design
tests. Finally, the model can be employed to automatically
generate test cases. Additionally, security models are often

created in conjunction with a risk analysis. This risk
information can on the one hand be used for deriving test
cases, and on the other hand for prioritizing test execution. We
have developed a categorization along these two dimensions
and provided examples for each category.

Based on an overview of security testing approaches, we
have motivated the increasing importance of model-based
security testing. We especially pointed out that the integration
of risks into test models has not been investigated in detail, but
has high potential for practical application in security testing.

According to our classification and existing security testing
approaches we identify the following future research tasks in
the area of model-based security testing:

• Development of a risk enhanced scenario- and model-
based security testing approach on top of a scenario-based
MBT approach.

• Development of an automated risk-based security test
generation approach grounded on a model-based ap-
proach to risk-based testing.

• Integration of manually, semi-automatically and automat-
ically determined metrics for the assessment of risks
values in the risk model which is the basis for the
integration of risks into a test model.

• Application and evaluation of model-based security test-
ing for service-centric systems such as service-oriented
architectures or cloud applications.

113

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

ACKNOWLEDGEMENTS

This work is sponsored by the SecureChange project (EU grant
number ICT-FET-231101), the MATE project (FWF project
number P17380), and QE LaB - Living Models for Open
Systems (FFG 822740).

REFERENCES

[1] D. Firesmith, “Engineering Security Requirements,” Journal of Object
Technology, vol. 2, no. 1, 2003.

[2] Common Criteria Recognition Arrangement, “Common Criteria for
Information Technology Security Evaluation,” 2009, http://www.
commoncriteriaportal.org/thecc.html [accessed: April 7, 2011].

[3] Committee on National Security Systems, “National Information Assur-
ance Glossary,” CNSS, Tech. Rep., 2006.

[4] G. Canfora and M. D. Penta, “Testing Services and Service-Centric
Systems: Challenges and Opportunities,” IT Professional, vol. 8, pp.
10–17, 2006.

[5] T. Roßner, C. Brandes, H. Götz, and M. Winter, Basiswissen Modell-
basierter Test. dpunkt Verlag, 2010, in German.

[6] H. Götz, M. Nickolaus, T. Roßner, and K. Salomon, iX Studie Modell-
basiertes Testen. Heise Zeitschriften Verlag, 2009, in German.

[7] T. Mouelhi, “Testing and Modeling Security Mechanisms in Web
Applications,” Ph.D. dissertation, RSM, University of Rennes, 2010.

[8] W. Stallings, Network Security Essentials. Prentice Hall, 2002.
[9] T. Jaeger, Operating System Security. Morgan & Claypool, 2008.

[10] I. Alexander, “Misuse cases: Use cases with hostile intent,” Software,
IEEE, vol. 20, no. 1, pp. 58–66, 2002.

[11] M. C. C. and R. Will, “Risk–based and Functional Security Testing,”
Cigital, Tech. Rep., 2009, https://buildsecurityin.us-cert.gov/bsi/articles/
best-practices/testing/255-BSI.pdf [accessed: April 7, 2011].

[12] B. Potter and G. McGraw, “Software Security Testing,” IEEE Security
& Privacy, 2004.

[13] S. Amland, “Risk-based testing: : Risk analysis fundamentals and
metrics for software testing including a financial application case study,”
Journal of Systems and Software, vol. 53, no. 3, pp. 287–295, 2000.

[14] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Software
Security Testing. Addision–Wesley, 2006.

[15] D. Firesmith, “Security use cases,” Journal of Object Technology, vol. 2,
no. 1, pp. 53–64, 2003.

[16] M. Bishop, “About Penetration Testing,” IEEE Security & Privacy,
vol. 5, no. 6, 2007.

[17] SearchNetworking.com, “Penetration Testing Strategies,” 2011, http:
//searchnetworking.techtarget.com/tutorial/Penetration-testing-strategies
[accessed: April 7, 2011].

[18] K. van Wyk, “Penetration Testing Tools,” 2008, available at https:
//buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.pdf
[accessed: April 7, 2011].

[19] P. Herzog, The Open Source Security Testing Methodology Manual 3,
2010, http://www.isecom.org/mirror/OSSTMM.3.pdf.

[20] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2008.

[21] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser, and T. Grechenig,
“Automated Security Test Approach for SIP-based VoIP Softphones,”
Advances in System Testing and Validation Lifecycle, International
Conference on, vol. 0, pp. 114–119, 2010.

[22] Y. Yang, H. Zhang, M. Pan, J. Yang, F. He, and Z. Li, “A
model-based fuzz framework to the security testing of tcg software
stack implementations,” in Proceedings of the 2009 International
Conference on Multimedia Information Networking and Security
- Volume 01, ser. MINES ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 149–152. [Online]. Available: http:
//dx.doi.org/10.1109/MINES.2009.111

[23] J. Julliand, P.-A. Masson, and R. Tissot, “Generating Security Tests
in Addition to Functional Tests,” in AST ’08: Proceedings of the 3rd
international workshop on Automation of software test. ACM, 2008.

[24] K. Lano, The B language and method: a guide to practical formal
development. Springer-Verlag New York, 1996.

[25] P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. Debois, B. Legeard,
B. Chetali, F. Bouquet, E. Jaffuel, L. Van Aertrick, J. Andronick,
and A. Haddad, “An access control model based testing approach for
smart card applications: Results of the POSÉ project,” JIAS, Journal of
Information Assurance and Security, vol. 5, no. 1, pp. 335–351, 2010.

[26] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-Based Tests for
Access Control Policies,” in Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, 2008.

[27] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” Tutorial software quality assur-
ance: a practical approach, 1985.

[28] Y. L. Traon, T. Mouelhi, and B. Baudry, “Testing Security Policies:
Going Beyond Functional Testing,” in The 18th IEEE International
Symposium on Software Reliability, 2007, pp. 93–102.

[29] J. Jürjens, “Model–based Security Testing Using UMLsec,” Electron.
Notes Theor. Comput. Sci., vol. 220, no. 1, 2008.

[30] ——, “UMLsec: Extending UML for Secure Systems Development,”
in UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language. Springer-Verlag, 2002.

[31] E. Veenendaal, “Practical Risk-Based Testing PRoduct RIsk Manage-
ment: the PRISMA method,” Improve Quality Services BV, Tech. Rep.,
2006.

[32] M. Felderer, P. Zech, F. Fiedler, and R. Breu, “A Tool-based method-
ology for System Testing of Service-oriented systems,” in VALID 2010,
2010, pp. 108–113.

[33] M. Felderer, B. Agreiter, and R. Breu, “Security Testing by Telling
TestStories,” in Modellierung 2010, 2010.

[34] T. Tuglular, O. Kaya, C. A. Muftuoglu, and F. Belli, “Directed Acyclic
Graph Modeling of Security Policies for Firewall Testing,” Secure
System Integration and Reliability Improvement, vol. 0, pp. 393–398,
2009.

[35] H. Stallbaum, A. Metzger, and K. Pohl, “An automated technique for
risk-based test case generation and prioritization,” in Proceedings of the
3rd international workshop on Automation of software test, 2008, pp.
67–70.

[36] P. Zech, “Risk–Based Security Testing in Cloud Computing Environ-
ments,” 2011 Fourth IEEE International Conference on Software Testing,
Verification, and Validation, pp. 411–414, 2011.

114

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.pdf
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.pdf
http://searchnetworking.techtarget.com/tutorial/Penetration-testing-strategies
http://searchnetworking.techtarget.com/tutorial/Penetration-testing-strategies
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.pdf
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.pdf
http://dx.doi.org/10.1109/MINES.2009.111
http://dx.doi.org/10.1109/MINES.2009.111

	Introduction
	Security Testing Approaches
	Model-Based Security Testing Classification
	Individual Knowledge
	Adapted RBT
	Scenario-Based MBT
	Risk Enhanced Scenario-Based MBT
	Adapted MBT
	Automated RB Security Test Generation

	Concluding Remarks
	References

