
Generic Data Format Approach for Generation of Security Test Data

Christian Schanes, Florian Fankhauser, Stefan Taber, Thomas Grechenig

Vienna University of Technology

Industrial Software (INSO)

1040 Vienna, Austria

E-mail: christian.schanes,florian.fankhauser,

stefan.taber,thomas.grechenig@inso.tuwien.ac.at

Abstract—Security testing is an important and at the same

time also expensive task for developing robust and secure

systems. Test automation can reduce costs of security tests

and increase test coverage and, therefore, increase the number

of detected security issues during development. A common

data format as the basis for specific test cases ensures that

the implementation of the generation logic for security test

data is only needed once and can be used for various data

formats by transforming the data to the common data format,

generating the test data and transforming back to the original

data format. The introduced approach enables to generate test

data for various formats using a single implementation of the

generation algorithm and applying the results for specific test

cases in different data formats.

Keywords—Software testing; Computer network security;

Fuzzing.

1. Introduction

Software systems are getting more and more complex

today using various programming languages and protocols

developed by many different companies. Security testing

of such systems is required to increase robustness against

attacks. The extent of the attack surface of systems with

different interfaces requires multiple different tools for se-

curity testing, which also increases required resources for

test execution. The generation of the required test data and

the execution of security tests are time consuming and,

therefore, expensive. Automatization of test execution is

required to reduce costs and increasing the test coverage

of a System Under Test (SUT).

Applications for conducting security tests require test data

as input, which can be mutated using methods to alter the

data to structures and values that are specific for security

tests. For generating such information a possible available

input format definition can be used, e.g., XML Schema

Definition (XSD). Our approach considers the automated

extraction of such a format definition based on a set of

test data if such a definition is not available or not accurate

enough for generating proper test data. Such test data can

be gained during development or by using input data of

functional tests.

This work presents an approach using Extensible Markup

Language (XML) as generic data format for test execution.

Using one generic format allows the implementation of

one smart generation algorithm instead of using specific

algorithms for various data formats and allows to use a

reduced tool set for test execution. For additional protocols

only new transformation rules are required and not the new

implementation of a completely new generation algorithm.

For testing a single service multiple tools are required

to test the various layers of the service. For example, a

web service uses Hyper Text Transfer Protocol (HTTP)

as transport protocol, XML or JavaScript Object Notation

(JSON) for data transport and in security critical environ-

ments cryptographic methods are used to ensure protection

goals, which often require X.509 certificates. Our approach

allows to use one tool to generate test data for all of the used

protocols in a web service. As description language we use

XSD [1] introduced by W3C as a standard for describing

how a certain XML document is supposed to look like.

As a prototype we implemented transformation routines for

Abstract Syntax Notation One (ASN.1), which is used for

many Public Key Infrastructure (PKI) protocols of the X.509

standard like revocation lists or certificates [2].

The remainder of this paper is structured as follows:

Section 2 lists related work. Section 3 discusses XML as

a common format for security tests. Section 4 gives details

about the introduced approach for generating test data. The

implemented prototype was used for generating test data for

PKI protocols, which is presented in Section 5. The paper

finishes with a conclusion and ideas for further work in

Section 6.

2. Related Work

Thompson [3] defines security failures as side effects of

the software, which are not specified and make security

testing hard. Fuzzing is one possible technique to find

such side effects by executing the application with many

automatically randomly or rule-based generated input data

[4]–[6].

103

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

If no detailed specification of the interfaces are available

to generate data automatically it is possible to extract test

data from executed functional tests, e.g., by using stored test

data, network traffic [7], [8] or by dynamic binary analysis

[9]–[11].

Transforming from different data formats to XML and

vice versa is discussed by various authors, e.g., for Resource

Description Framework (RDF) [12], relational databases

[13], [14] or ASN.1 [15]. ASN.1 [16] is a format commonly

used by different protocols and applications. Yoon et al. [17]

discuss the usage of ASN.1 for Simple Network Manage-

ment Protocol (SNMP). The ASN.1 format is also used for

various PKI protocols like X.509 [2].

Moreover, different authors discussed the similarity of

ASN.1 and XML [18]–[22] and mapping of ASN.1 and

XML [21].

Due to the widespread usage of XML processing systems

the generation of test data was discussed by various authors.

Different approaches are available, which are based on

different sources for generation like document specification

languages (e.g., XSD or Document Type Definition (DTD)),

based on specific generation rules in a non XML format or

by using example input data. Aboulnaga et al. [23] discuss

a generator, which is based on simple implemented rules,

which allow limited generation of XML data. Bertolino

et al. [24]–[26] implemented TAXI, a XML generator,

which generates documents (instances) based on a given

XML schema and follows the XML-based Partition Testing

approach (XPT), which is a modification of the Category

Partition Method. Xu et al. [27] also use a XML schema

as basis to generate valid and invalid messages for testing

web services. ToXgene by Barbosa et al. [28] is a template

based XML generator, which uses a template specification

language within a XML schema to describe the rules for

generating data. Pan et al. [29] use example instances to

extract allowed values for the generated data additionally to

the document specification.

3. XML as Common Format for Test Data

Generation

Implementing techniques for optimized data generation

for tests is often required for test execution to detect as

many errors as possible with as less effort as possible. For

this our approach considers the usage of a common data

format where optimized algorithms for data generation have

to be implemented only once.

3.1. Definition of Security Test Data

The attack surface of a SUT contains various interfaces

using different protocols and data formats on various layers,

e.g., network or application. Analyzing the attack surface

of an application is important for conducting security tests.

The application takes the input data and, often, at first

performs syntactical validation of the data. For state based

protocols another validation is done by the state machine,

which only allows specific state transitions. Finally, the data

will be handed over to the business logic, which processes

the values. Understanding and considering such validation

steps is important to test the intended piece of software

within the application, which is only seen as black box.

For preparing input data for security tests, semantical,

syntactical and state aspects have to be considered. Se-

mantical aspects consider a standard compliant processing

of the information. The generated values have to fulfill

certain restrictions, e.g., a valid checksum. The definition

can be stated in the technical interface specification, e.g.,

restrictions in XSD, or restrictions in the applications with-

out explicit definition in the interface specification. Both

aspects have to be considered. For testing semantical aspects

structural and state valid data is required because otherwise

the data will be discarded during the validation process of the

SUT and the business logic, which semantically processes

the data will not be triggered. State aspects consider state

based protocols where the underlying state machine expects

data in a specific order and otherwise discards it. The

structure is considered by validating the syntax. It is the

most basic aspect of the SUT interface because a structural

invalid message will be rejected early before handling the

information to the state machine or the business logic. It is

required to generate structural valid documents according to

the interface specification and structural invalid documents

to test the robustness of the system with such data. For

increased coverage of the SUT all of the mentioned aspects

have to be considered when creating test data for security

tests.

Common practice for tests is to inject only one fault per

test case to ensure reproducibility [30]. This applies for

semantical, syntactical as well as for state aspects. Therefore,

valid data is required for security tests to be able to inject

faults on specific positions only.

3.2. Data Generation Approach Based on XML

Figure 1 shows the test data generation process used in our

approach. There are several alternative paths depending on

the available source information for producing test data. One

path is based on existing data definition languages, which

are used directly if they are already available as XSD. If they

are available in a different format they can be transformed to

the used XSD format. Another path is the usage of available

input data, which will first be transformed to XML and based

on XML input data a data definition will be derived as XSD.

The generation is always based on the given or generated

XSD and an optional set of rules or example data to produce

accurate values for the test data.

104

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Figure 1. Process of Test Data Generation Approach Based on a Common
Data Format

3.3. Using Transformation to Generate Data for

Various Formats

Transformation is one of the key aspects of our approach.

By transforming from various data formats to XML/XSD

a generic data generation approach is possible. For many

different data formats there already exist methods for trans-

forming to and from XML [12]–[14], [20], [21], [31].

The approach also allows transformation of data definition

languages, e.g., DTD. This allows the generation of test data

if a data definition is available, which can be transformed

to XSD. After the generation process all the produced XML

test data will be transformed to the destination data format.

3.4. Extraction of Interface Definition Based on

Samples

Additionally, the generation is also possible without a

document specification as can be seen in Figure 1, e.g., based

on a set of input data extracted from the network.

A way to find or rather deduce some kind of schema

is to use a set of XML input data samples. Only valid

XML instances can be used as samples. Such data can be

identified, for example, by executing the application and

logging the generated data.

The approach uses the given samples to deduce rules

which the XML (its structure and content) follow and build

a specification as XML schema. The resulting XML schema

can then be used for the test data generation.

The samples usually can not cover every possible data

variation that is actually allowed and some assumptions

have to be made when deducing rules for a common input

specification. This means that some information about the

actual input specification gets lost and, therefore, the data

that can be generated will be restricted.

4. Automated Generation of Test Data

The presented approach for generating test data uses

XSD as source, which builds the model to generate the

test data. Based on the given XSD, structural valid and

invalid XML documents with valid and invalid values can be

generated. XML is hierarchically structured, which allows to

systematically traverse through the hierarchical tree, starting

at the root-element. Each node (e.g., sequences, elements,

attributes, . . .) of the tree will be processed and based on

schema details, e.g., min-/maxOccurs, choices, various

possible facets, etc. the test data will be generated.

The generated test data will be used for security testing

by using a fuzzing approach. Two different aspects are

considered during test data generation to allow usage by

the fuzzing engine. Firstly, valid test data, which can be

further used to inject faults are generated. This requires

valid structures with valid values to avoid discarding by

validation routines in the SUT. Secondly, a set of test data is

required that is using invalid structures, which do not fulfill

the available data definition.

4.1. Approach for Generation of Valid XML Struc-

tures

In XML schema it is possible to define customized data

types in form of simple and complex types. These types can

then be used like built-in data types to specify the content

of elements or attributes. Simple types are used to constrain

existing data types. They do not allow the definition of

attributes or child elements. Complex types are used for

defining a structure of elements with possible further child

elements, which can again be simple or complex types.

There are three indicators for ordering or choosing these

elements, which are sequence, all and choice. The

sequence indicator specifies that the elements have to be

in a specific order, which has only one valid variant for

ordering the elements, because every other sequence of the

given elements makes the document schema invalid.

The order of the defined elements is irrelevant if the

all indicator is used. Every permutation of those elements

within the all indicator would represent a valid variant of

the complex type.

The choice indicator differs from the others in the way

that from the child elements only one element can be chosen.

Therefore, there is one valid data variation for each element

defined in the choice.

XSD further supports to define elements and attributes

optional or required. If an element is marked as

105

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

optional, then there exist at least two valid variants for this

element. One with the element and one without it. In case of

elements, it is also possible to define the occurrence of such

an element by using the facets (restrictions or “rules” defined

in XSD) minOccurs and/or maxOccurs, which also has

to be considered for the generation of data. If such restric-

tions exist, a variant with the minimum occurrence, one

with the maximum occurrence and one with an occurrence

between those two limits are chosen. If the restriction of

maxOccurs is “unbounded” a predefined maximum value

has to be defined for the element.

The result of the test data generation in form of the

generated XML instances in the end is basically just the

combination of the available valid variants of each element

to form a number of different XML documents. These XML

documents will all be valid according to the given XML

schema, because they were produced by applying every rule

defined in the schema and using them to find meaningful

variants based on the existing restrictions.

4.2. Approach for Generation of Schema Invalid

Variants

In addition to the generation of valid XML documents,

in this section different approaches for manipulating the

structure of an XML document are explained, so that it

is not valid according to its XML schema. Such instances

are required for testing SUT behavior during processing

schema invalid data. For the presented approach only invalid

variants are possible, which are describable in XSD and no

manipulated instances are generated, e.g., non XML well

formed documents, because such documents can not be

transformed back to the required data format, e.g., ASN.1.

For generating invalid variants only complex types and

indicators are considered. Generating invalid simple types

are not required in the used approach because this is done

by the fuzzing approach.

The order of the elements within a sequence is crucial,

which means that the elements can be swapped to produce an

invalid XML instance. In the case of an all or a choice

the order of the elements is irrelevant so it is not possible to

produce invalid instances when shuffling the order. Invalid

instances for all indicators are possible by inserting not

allowed elements.

The maxOccurs and minOccurs attributes are used

for producing an invalid XML instance with a wrong

number of elements. For that, equivalence partitioning is

applied. Moreover, specific security critical values are used

as, for example, byte ranges. The same approach applies to

maxOccurs and minOccurs within an indicator as well.

For example, if a choice is used in which minOccurs and

maxOccurs are 1, no item or several items are selected

from the choice so that the XML instance is invalid.

Attributes can be optional or mandatory by using the

attribute fixed in XSD. For mandatory attributes an invalid

instance is given by skipping the attribute.

4.3. Generation of Proper Values

The generation of proper values is important to get valid

XML documents for test execution. The documents will

further be used as input in a fuzzing engine, which uses

fault injection to prepare the final security test data.

For the generation the definitions of the XSD are used,

which provide information about data types and specific

constraints. Additionally, it is possible to provide a set of

samples to extract proper values from.

The XML schema defines built-in primitive and derived

types. For many types it is possible to define further con-

straining facets for their value space in the XML schema

definition. For example, string allows the facets listed in

Figure 2. During generation special aspects (e.g., format,

value space and facet/restrictions) of all types have to be

considered.

Facet Description

length For a fixed length string

minLength Minimum length of the expected string

maxLength Maximum length of the expected string

pattern Regular expression restriction

enumeration Only allow a set of possible values

whiteSpace Definition of handling white spaces

Figure 2. Relevant Facets for a String Type in XSD

If samples are given for the generation process as shown

in Figure 1 then the values from the samples are extracted.

The example values can be further used for building valid

test data. For this process the XML samples are parsed and

each value is stored in a list together with the position of

the value as XPath statement. Additionally, it is possible to

use predefined values from a configuration file again as a

tuple of the position as XPath statement and the value. This

approach allows manual overriding of the automatic value

generation.

For specific data it is possible to use a predefined gen-

erator implementation, which will build valid data, e.g.,

timestamps, unique IDs, . . .Additionally, the used fuzzing

engine supports the extraction of values of the communica-

tion protocol, which is required for further input data, e.g.,

session ID in the response from the server.

5. Prototype Implementation: Generating Data

for PKI

We implemented the presented approach as a prototype

and used it for generating data for ASN.1 based PKI

106

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

protocols. Our approach uses the BouncyCastle library to

read the ASN.1 structure. We implemented the transforma-

tion between ASN.1 and XML and applied the approach

for generating data for Online Certificate Status Protocol

(OCSP) messages and X.509 certificates.

5.1. ASN.1 and XML

ASN.1 supports a number of different encoding rules, e.g.,

Basic Encoding Rules (BER) or Distinguished Encoding

Rules (DER). The considered encodings are Type Length

Value (TLV) based structures where type is a unique identi-

fier for the type and basically resembles the element name in

XML documents (e.g., <TBSCertificate>). Instead of

using closing elements as used by XML ASN.1 defines the

length of the value. The value can be a simple or complex

type, which is again another TLV structure, which is similar

to those of XML documents.

5.2. Fault Injection for Generating X.509 Certifi-

cates

X.509 certificates are used for many scenarios for securing

infrastructures, e.g., Virtual Private Network (VPN) or Se-

cure Socket Layer (SSL). Thorough testing of such security

gateway implementations is important to ensure secure and

robust implemented security functionality. We generated

X.509 test certificates for security testing infrastructures.

Therefore, we used samples available from functional tests

to generate security test data. Figure 3 shows the process

of generating certificates using a fuzzing approach for fault

injection.

Figure 3. Process of Certificate Fuzzing Using XML

For testing structural robustness problems schema invalid

variants were generated as discussed in Section 4.2. Faults

for value fields for simple data will be injected by the

used fuzzing engine based on random generated data and

predefined attack vectors. This is done for each field in

the X.509 certificate. The used transformation implemen-

tation additionally allows fuzzing of the ASN.1 length and

type fields to ensure robustness of internal ASN.1 parsing

functionality by manipulating the values so that the defined

type and length are not fitting the content of the field.

The algorithm for generation of the data considers the

certificate content, e.g., key, subject, and the signature part,

e.g., signature value, signature algorithm.

Finally, for X.509 certificates a valid signature is required.

For this a valid signature will be attached to the certificate

after transforming back to ASN.1. This allows the usage of

the certificate for the tested use case, e.g., in Figure 3 the

certificate will be used to establish a SSL connection.

6. Conclusion and Further Work

We presented an approach for using XML as a common

format for the generation of security test data, which allows

to test semantical, syntactical and state aspects. For the

generation of security test data various data formats can be

transformed to and from XML, which allows testing dif-

ferent protocols by implementing the generation algorithm

for the security test data only once. This reduces costs and

allows the introduction of a framework for the generation of

test data. For new formats only the transformation routines

have to be implemented.

The approach was applied for security testing ASN.1

based PKI protocols. As samples for the generation algo-

rithm X.509 certificates of the functional tests were used.

The process started by transforming ASN.1 based X.509

certificates to XML, generating test data and transforming

back to ASN.1 for testing a SSL implementation.

For future work the approach should be extended by

automatically detecting semantical constraints, which are not

defined in the XSD to produce semantical valid test data.

Currently, the performance of the implemented prototype

leads to long running generation tasks. A more efficient

implementation is required to increase the number of data

variations for the test execution.

References

[1] W3C, “Xml schema,” http://www.w3.org/TR/xmlschema-0/,
[accessed: 2010-10-20].

[2] Y. Turcotte, O. Tal, S. Knight, and T. Dean, “Security
vulnerabilities assessment of the x.509 protocol by syntax-
based testing,” vol. 3, Oct./Nov. 2004, pp. 1572–1578.

[3] H. H. Thompson, “Why security testing is hard,” IEEE
Security & Privacy Magazine, vol. 1, no. 4, pp. 83–86, 2003.

[4] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of unix utilities,” Commun. ACM, vol. 33,
no. 12, pp. 32–44, 1990.

107

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[5] J. E. Forrester and B. P. Miller, “An empirical study of the
robustness of windows nt applications using random testing,”
in WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposium. Berkeley, CA, USA: USENIX
Association, 2000, pp. 6–6.

[6] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2008, pp.
206–215.

[7] O. Udrea, C. Lumezanu, and J. Foster, “Rule-based static
analysis of network protocol implementations,” Inf. Comput.,
vol. 206, no. 2-4, pp. 130–157, 2008.

[8] W. Cui, J. Kannan, and W. Helen, “Discoverer: automatic
protocol reverse engineering from network traces,” in SS’07:
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium. Berkeley, CA, USA: USENIX Asso-
ciation, 2007, pp. 1–14.

[9] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: auto-
matic extraction of protocol message format using dynamic
binary analysis,” in CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security. New
York, NY, USA: ACM, 2007, pp. 317–329.

[10] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Briz, “Tupni:
automatic reverse engineering of input formats,” in CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 2008,
pp. 391–402.

[11] Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in SIGSOFT ’08/FSE-16: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2008,
pp. 83–93.

[12] D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and
R. Walle, “Xml to rdf conversion: A generic approach,” nov.
2008, pp. 138 –144.

[13] J. Fong, F. Pang, and C. Bloor, “Converting relational
database into xml document,” 2001, pp. 61 –65.

[14] M. Jacinto, G. Librelotto, J. Ramalho, and P. Henriques,
“Bidirectional conversion between xml documents and rela-
tional databases,” 2002, pp. 437 – 443.

[15] ITU-T, “X.693 information technology asn.1 encoding rules:
Xml encoding rules (xer),” X SERIES: DATA NETWORKS,
OPEN SYSTEM COMMUNICATIONS AND SECURITY
OSI networking and system aspects - Abstract Syntax No-
tation One (ASN.1), Nov. 2008, identical standard: ISO/IEC
8825-4:2008 (Common).

[16] ——, “X.680, Abstract syntax notation one (ASN. 1): Spec-
ification of basic notation,” 1994.

[17] J. Yoon, H.-T. Ju, and J. Hong, “Development of snmp-
xml translator and gateway for xml-based integrated network
management,” Int. J. Netw. Manag., vol. 13, no. 4, pp. 259–
276, 2003.

[18] D. Mundy and D. Chadwick, “An xml alternative for perfor-
mance and security: Asn.1,” IT Professional, vol. 6, no. 1,
pp. 30–36, 2004.

[19] D. Mundy, D. Chadwick, and A. Smith, “Comparing the per-
formance of abstract syntax notation one (asn.1) vs extensible
markup language (xml),” in In Proceedings of the Terena
Networking Conference, 2003.

[20] T. Imamura and H. Maruyama, “Mapping between asn.1 and
xml,” Applications and the Internet, IEEE/IPSJ International
Symposium on, vol. 0, 2001.

[21] A. Triglia, “The asn.1 language as a new schema definition
language for xml,” XML Europe 2002 Conference, May 2002.

[22] ITU-T, “X.690: ITU-T Recommendation X.690 (1997) In-
formation technology-ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER),” 1997.

[23] A. Aboulnaga, J. F. Naughton, and C. Zhang, “Generating
synthetic complex-structured xml data,” in In Proc. 4th Int.
Workshop on the Web and Databases (WebDB2001, 2001.

[24] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Taxi–
a tool for xml-based testing,” in ICSE COMPANION ’07:
Companion to the proceedings of the 29th International
Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 53–54.

[25] ——, “Systematic generation of xml instances to test complex
software applications,” in RISE’06: Proceedings of the 3rd
international conference on Rapid integration of software
engineering techniques. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 114–129.

[26] ——, “Automatic test data generation for xml schema-based
partition testing,” in Automation of Software Test , 2007. AST
’07. Second International Workshop on, may. 2007, p. 4.

[27] W. Xu, J. Offutt, and J. Luo, “Testing web services by xml
perturbation,” in ISSRE ’05: Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineering.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
257–266.

[28] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons,
“Toxgene: a template-based data generator for xml,” in SIG-
MOD ’02: Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data. New York, NY,
USA: ACM, 2002, pp. 616–616.

[29] C.-C. Pan, K.-H. Yang, and T.-L. Lee, “A flexible generator
for synthetic xml documents,” in Proceedings of the Interna-
tional Conference on Information Networking (ICOIN 2003),
2003, pp. 1232–1239.

[30] G. J. Myers and C. Sandler, The Art of Software Testing. John
Wiley & Sons, 2004.

[31] E. Day, “The use of asn.1 encoding rules for binary xml,”
http://www.obj-sys.com/docs/ASN1forBinXML.pdf (last ac-
cessed: August 15, 2011).

108

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

