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Abstract—SRAM-FPGA systems are simulated with a model
based on the Stochastic Activity Networks (SAN) formalism.
Faults are injected into the model and their propagation is
traced to the output pins using a four-valued logic that enables
faulty logical signals to be tagged and recognized without
recurring to a comparison with the expected output values.
Input vectors are generated probabilistically based on assumed
signal probabilities. By this procedure it is possible to obtain
a statistical assessment of the observability of different faults
for the generated inputs. The analysis of a 2-out-of-2 voter is
shown as a case study.
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I. INTRODUCTION

In the last decade SRAM-FPGAs played a very important
role in the market of silicon devices, thanks to the low
cost and relatively good performance. In the last years
FPGAs have increasingly been employed also in safety-
related applications such as railway signaling [1], radar
systems for automotive applications [2] and wireless sensor
networks for aerospace [3].

The industrial use of electronic devices in safety-critical
systems imposes a rigorous system design and the iden-
tification of hazardous failure modes. This is particularly
true for programmable electronic devices, such as FPGAs,
since the failure modes observable at the boundary of the
system strongly depend on the application implemented in
the device.

Radiations in the atmosphere are responsible for introduc-
ing Single Event Upsets (SEU) and Single Event Transients
(SET) in digital devices [4], [5]. SEUs have particularly
adverse effects on FPGAs using SRAM technology, as they
may alter a bit in the configuration memory, causing a
permanent fault (correctable only with a reconfiguration of
the device) [6]. SETs may temporarily alter the behaviour
of user resources, such as flip-flops and multiplexers.

In this work, we present a simulation based fault injector
for SRAM-FPGA systems that can be used for the analysis
of radiation-induced logic faults. The FPGA is considered
at the netlist level and SEUs and SETs affecting the logic
resources of FPGAs are considered. The simulator is based
on a model of SRAM-FPGA systems described with the
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Stochastic Activity Networks (SAN) formalism [7] and
developed with the Mobius tool [8]. Faults are injected into
the model and their propagation is traced to the output
pins using a four-valued logic (along the lines of the D-
calculus [9]) that enables faulty logical signals to be tagged
and recognized. Input vectors are generated probabilistically
based on assumed signal probabilities. For every generated
test pattern (i.e., a sequence of input vectors), each possible
fault in the adopted model is injected. By this procedure it is
possible to obtain a statistical assessment of the observability
of different faults for the given test patterns.

The remainder of this paper is organized as follows:
Section II, briefly discusses the state of the art in the FPGA
fault injection field; in Section III, the considered fault model
is presented; Section IV, shows the SAN formalism and
the Mobius tool; in Section V, the model of FPGA-based
systems and the fault injector are presented; in Section VI,
the simulator engine, the available measures and an example
of application are shown; Section VII, concludes the paper.

II. STATE OF THE ART

Fault injection is a widely used approach to evaluate
the propagation of faults in digital devices. Fault injection
techniques for SRAM-FPGA based systems can be divided
into prototype-based [10], [11] and simulation-based [12],
[13]. Prototype-based techniques have high performance and
accuracy, but, since they are performed at the end of the
design process, they make corrections expensive. Addition-
ally they often depend on the particular vendor and model
of the FPGA chip. Simulation-based techniques alleviate
these problems offering the designer greater observability
and controllability, but their accuracy may be limited by the
assumptions on the system and fault model.

To the best of our knowledge, simulated fault injection for
FPGAs at the netlist level has been proposed only in [12] and
in [13], but, unlike our method, these tools are not entirely
based on simulation, since they rely on an underlying
prototype-based analysis. Further, with respect to both [12]
and [13], the four-value logic allows us to recognize faulty
signals without recurring either to a golden run or a golden
copy of the system. Our choice of considering the system
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at the netlist level is due to the fact that at the register-
transfer level (i.e., VHDL or Verilog description) faults in
the hardware structure of the system can not be analysed.
Moreover, the SAN model is quite general and allows
different kind of analyses to be performed, such as failure
probability computation [14].

III. FAULT MODEL

An FPGA is a prefabricated array of programmable
blocks, interconnected by a programmable routing architec-
ture and surrounded by programmable I/O blocks [15].

Programming an SRAM-FPGA device consists in down-
loading a programming code, called a bitstream, into its con-
figuration memory. The bitstream determines the function-
alities of logic blocks, the internal connections among logic
blocks and the external connections among logic blocks and
I/O pads. Interconnections are realized internally by routing
switches and externally by I/O buffers. The most common
programmable logic blocks are lookup tables (LUT), small
memories whose contents are defined by configuration bits.

In this work the FPGA system is modelled at the netlist-
level representation produced in the synthesis phase before
the place and route. At this level, the elements visible in the
model are I/O buffers, LUTs, flip-flops, and multiplexers. We
consider both SEUs in the configuration memory of LUTs
and I/O buffers and SETs in multiplexers and flip-flops

A SEU in the configuration memory of a LUT causes
the alteration of the functionality performed by the LUT.
Figure 1(a) shows a SEU causing a bit flip in the configu-
ration bit associated to input (1 1). In this case the logic
function implemented by the LUT changes from an AND to
a constant 0. I/O buffers are connecting resources placed at
the input and output of the chip. Each buffer is opened/closed
by a configuration bit. A SEU in the configuration bit
of a buffer causes an undesired connection/disconnection
between two wires, as shown in Figure 1(b).

A SET in a multiplexer causes the temporary selection
of a wrong signal, as shown in Figure 1(c). Finally a SET
in a memory element, such as a flip-flop (see Figure 1(d)),
causes the storage of a wrong value, until a new value is
written in the flip-flop.

IV. THE SAN FORMALISM

SANSs [7] are an extension of Petri Nets (PN). SANs are
directed graphs with four disjoint sets of nodes: places, input
gates, output gates, and activities. The topology of a SAN
is defined by its input and output gates and by two functions
that map input gates to activities and pairs (activity, case)
(see below) to output gates, respectively. Each input (output)
gate has a set of input (output) places.

The activities replace and extend the transitions of the
PN formalism. Any activity may have mutually exclusive
outcomes, called cases, chosen probabilistically according
to the case distribution of the activity.
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Figure 1. Failure modes of various resources of the FPGA chip.

As in PNs, the state of a SAN is defined by its marking.
The marking of each place is a non-negative integer (called
the number of tokens of the place).

SANSs enable the user to specify any desired enabling con-
dition and firing rule for each activity. This is accomplished
by associating an enabling predicate and an input function
to each input gate, and an output function to each output
gate. The enabling predicate is a Boolean function of the
marking of the gate’s input places. The input and output
functions compute the next marking of the input and output
places, respectively, given their current marking.

Graphically, places are drawn as circles, input (output)
gates as left-pointing (right-pointing) triangles, and activities
as vertical bars. Cases are drawn as small circles on the right
side of activities. Gates with default (standard PN) enabling
predicates and firing rules are not shown.

A. The Mobius Tool

Mobius [8] is a popular software tool that provides a
comprehensive framework for model-based evaluation of
system dependability and performance.

SAN models can be composed by means of Join and
Rep operators. Join is used to compose two or more SANS.
Rep is a special case of Join, and is used to construct a
model consisting of a number of replicas of a SAN. Models
composed with Join and Rep interact via place sharing.
Graphically, a composed model is represented as a tree
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whose nodes are either atomic models (i.e., simple SANs),
or Join and Rep operators.

Properties of interest are specified with reward functions.
A reward function specifies how to measure a property on
the basis of the SAN marking. Measurements can be made
at specific time instants, over periods of time, or when
the system reaches a steady state. A desired confidence
level is associated to each reward function. At the end of
a simulation the Mobius tool is able to evaluate for each
reward function whether the desired confidence level has
been attained or not thus ensuring a high accuracy of the
measurements.

V. MODELLING FPGAS WITH SANS

The FPGA model is split into a number of modules
that interact through shared places [16]. Modules System
Manager, Input Vector, Combinatorial Logic, and Sequen-
tial Logic describe the FPGA operation and module Fault
Injector deals with faults.

The System Manager module orchestrates the activity of
the other modules of the system according to the following
steps: (i) a fault is injected; (ii) an input vector, i.e., an n-
tuple of the input signal values, is applied to the input lines;
(iii) the combinatorial part of the system is executed; (iv)
a clock tick arrives and the sequential part of the system is
executed. Steps (ii) through (iv) are repeated until all input
vectors have been applied.

The Input Vector module applies an input vector to the
input lines of the FPGA.

The Combinatorial Logic module models the combinato-
rial part of the system. The modelled components are lookup
tables, multiplexers, and I/O buffers.

The Sequential Logic module models the flip-flops in the
FPGA. Various types of flip-flops can be modelled.

The Fault Injector module is in charge of injecting faults
into the netlist. For the purpose of this work, the fault in-
jector injects a single permanent fault into the configuration
memory of LUTs and I/O buffers or a single transient fault
in the user resources (flip-flops or multiplexers). The fault
is injected at the beginning of the simulation. Faults are
exhaustively injected in the system one at a time.

Combinatorial and sequential elements are modelled by
a SAN model, called Generic_Component (see Fig-
ure 2(a)). Places spA and spB are used to control the
execution of a component. The output gate OGO implements
the functionality of the component. When the execute
activity of a component completes, the function specified in
gate OGO is executed, and a token is added to spB.

Three shared places (input_lines, output_lines,
and internal_lines) encode the value of the signals on
the input, output, and internal connections of the FPGA. The
shared place faults keeps track of the faults injected in the
system. Components behave correctly or faulty according to
the content of place faults.
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Figure 2. Generic_Component (a) and Fault_Injector (b) module.

The SAN model of the Fault Injector is shown in Fig-
ure 2(b). Places p0 and p1 are used to control the execution
of the fault injector. Place faults is shared with the
combinatorial logic module. Place faults is an array of
C Boolean values, where C is the number of configuration
bits associated to LUTs and I/O buffers, plus the number of
flip-flops and multiplexers. In particular faults[i] equals
1 if the i-th configuration bit is faulty or the associated
user resource is faulty. The output gate OG1 implements the
fault injection function resetting the element of faults
associated to the previously injected fault and setting the
element affected by the new fault. When the inject
activity completes the function specified in gate OG1 is
executed, and a token is added to p1. When every possible
faults have been injected and the associated simulation runs
have been performed, a token is placed into end.

The logical connections are specified in a connectivity
matrix, a data structure accessed by the input and output
functions of the model. This way, the logical connections
are not hardwired in the SAN models, and can be set up
starting from netlist EDIF file generated by CAD tools, such
as the Xilinx ISE tool, on the basis of the specification of
the FPGA-based system.

VI. THE SIMULATOR

The simulator executes the previously discussed model
of FPGA-based systems on a four-valued logic that enables
faulty logical signals to be tagged as such and followed along
their propagation path. In this logic we distinguish correct
values from faulty ones (as in D-Calculus [9]).

Correct and faulty Boolean values are named zero correct
(0.), one correct (1.), zero faulty (O;) and one faulty (1¢).
More precisely, let B = {0,1} and D = {0.,0¢,1.,1},
where B is the set of standard Boolean values and D is the
domain of the four-valued logic. Then we establish a corre-
spondence between B and D by the following mappings:
¢ : D — B, such that ¢(0.) = ¢(05) = 0 and ¢(1;) =
¢(1¢) =1, is a projection function that translates values of
D to values in B ignoring the faulty/correct annotation.
X : D — B, such that x(0.) = 0, x(1.) =1, x(0y) = 1 and
X(1¢) = 0, is a corrective projection that replaces a faulty
value with its complemented Boolean value (i.e. it extracts
a correct value from a faulty one).

Then we define tracking functions for components. These
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FOUR-VALUED TRUTH TABLES FOR AND, OR, NOT, AND D
EDGE-TRIGGERED FLIP-FLOP.

functions trace the propagation of values through compo-
nents. Each non-faulty component implements a Boolean
function f : B™ — B. For such function, its tracking
function f* : D™ — D extends the semantics of f to
the four-valued domain D. For a given n-tuple of inputs

(d1,---,dy) in D™, this function evaluates f both with the
projection of (dy,---,d,) to B"™ (ie., (¢(d1), -, d(dn)))
and with the corrective projection of (dy,---,d,) to B™

(i.e., (x(d1),- -+, x(dy))). This amounts to applying f to the
actual inputs and to the input that would have been applied
in absence of faults. Function f* compares the two results.
If they are equal, the resultis f(¢(dy), -, d(d,)) tagged as
a correct value, otherwise the result is f(¢(dy),- -, ¢(dy))
tagged as faulty.

In particular, we define the four-valued logical operators
A*, V* and —* as the tracking functions of the corresponding
Boolean operators. The semantics of these operators is given
by truth tables (see Table I). We may notice that for the A*
operator, a 0. on one input masks any faulty value on the
other input; similarly for the V* operator a 1. masks any
faulty value on the other input.

We defined the tracking function for the components of
the netlist: I/O buffers, LUTs, multiplexers, and flip-flops.
Flip-flops are modelled with two functions: the first one
models the behaviour of the flip-flop in the presence of
a clock rising edge (called ¢}), the other (¢*) models the
behavior of the flip-flop during the inactive period. For
example, the functions for a standard D-Edge Triggered flip-
flop are shown in Table I. We may notice that the output
(correct or faulty) is unchanged in absence of a rising edge,
while it follows the input when a rising edge occurs.

We now show how to model the generation of faulty
values by faulty components and the propagation of val-
ues through faulty components. Given a Boolean function
f : B™ — B implemented by a logic component, for each
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possible fault 7 of the component we define a faulty function
f; : B™ — B that describes the behaviour of the component
in presence of that fault. This behaviour may be given in
the form of truth table or as an expression. For simplicity,
in the following we will drop the subscript.

Then, the tracking function f* of a faulty function f
compares the output of the faulty component with possibly
faulty inputs to the output of the correct component with
correct inputs. If the two are equal, the result is taken as
correct. Otherwise it is tagged as faulty.

For example, given a two-input LUT implementing the
AND function, let us assume that a fault occurs in the
configuration bit associated with the input t =1 and y = 1
(Figure 1(a)). When the input is (1, 1), the output of the LUT
is 0 instead of 1 (the output of the faulty LUT is always 0).

Function fryr describes the behaviour in absence of
faults: fryr(di,da) = di A da, whereas function fLUT
represents the behaviour of the faulty LUT: fLUT =0 if
di=1and dy =1, fLUT = f(dl,dg) otherwise.

Table II shows three cases for the tracking function of the
faulty LUT: in the first case, two correct inputs activate the
fault and generate a faulty output; in the second case the
correct input 1. and the faulty input Oy do not activate the
fault. However, the resulting output differs from the output
that should have been produced with 1 and 1, and the faulty
value is propagated. In the third case the correct input 1. and
the faulty input 1¢ activates the fault but the resulting output
equals the output that should have been produced with 1 and
0. We notice that in the course of simulation, the tracking
functions can be calculated off-line and synthesized as truth
tables before starting the simulation.

di dy | f(o(dr), (d2)) | F(x(dr), x(d2)) | F*
I 1. 0 I 05
le 0Oy 0 1 0y
le 1 0 0 0c

Table II
AN EXCERPT OF THE FAULTY LUT TRUTH TABLE

Using this four-valued logic we are able to trace the
propagation of faults and to determine whether they reach
the output, and, if not, to find which components mask
or propagate the fault. This four-valued logic allows the
observability of faults to be measured (a comparison of the
actual output values with the expected ones is not necessary).

A. Simulation and Measurements

The configurable parameters of our simulations are the
number of simulated clock cycles N and the signal proba-
bility of input signals SF;, i.e. the probability of the signal
to be 1 at a given time [17].

In order to measure the fault observability of the system
under analysis we perform multiple simulation runs of the
system. Each simulation run is structured in the following
steps, graphically represented by Figure 3:
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Figure 3.

Functional blocks of the simulator.

1) A test pattern is stochastically generated according
to given input signal probabilities and a number of
clocks.

2) A fault is injected in the system.

3) The netlist is executed until the maximum number of
clock cycles is reached. The following reward function
detects system failures:
if (System_Manager->clock->Mark ()==1) {

for (int 1i=0; i<N_out; ++i)
if (System_Manager->output_lines—>
Index (i) ->Mark () == 1f ||
System_Manager->output_lines—>
Index (1) —>Mark () == 0f)
return 1;
return 0; }

4) If more faults have to be injected, the current fault
is removed and the simulation re-starts from step 2,
otherwise simulation terminates.

Data that can be obtained with our analysis are the list of
observed faults for each generated test pattern, and the total
number of observed faults using the generated test patterns.
From these data we can compute a quality factor, called toral
observability, of the set of test patterns, defined as the ratio
of observed faults to the total number of injected faults.

The above shown reward function allows the analysis of
the observability of faults at the output of the system. Other
analyses can be performed: the behavior of any internal
signal can be observed and, if a certain fault has been
activated and it has not been observed at the output, we can
find where the fault has been masked. Moreover, we can
model different fault hypotheses, such as multiple faults,
or faults confined to a certain area of the device, simply
modifying the initialization of the fault injector module.

B. An Example

In order to analyse the applicability of our method we

considered as a simple case study an 8-bit 2-out-of-2 voter.
The behaviour of the system is the following:

o After a0 — 1 transition of Data_Valid, the circuit starts

reading serially 8 bits from Stream_A and Stream_B.
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Figure 4. The netlist of the 8 bit 2-out-of-2 voter.
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Figure 5. Total observability vs. test pattern length.

o If Stream_A and Stream_B are equal, Stream_Out
follows Stream_A and Faulty_Out is 0.

o If Stream_A and Stream_B are different for at least one
bit, Stream_Out is set to 0 and Faulty_Out to 1 for the
rest of the byte.

We synthesised the system for the Xilinx Virtex 6 device
into a netlist with the Xilinx ISE tool. The resulting netlist,
(Figure 4), has 4 input signals, 2 output signals, 6 I/O
buffers, 8 LUTs, and 6 flip-flops. We then used a parser
from EDIF to our specification language to instantiate the
model.

In every simulation we set the signal probability of the
four input signals of the system to the same value.

In a first scenario we calculated the total observability of
the system for SP = 0.1, SP = 0.5 and SP = 0.9, varying
the number of simulated clock cycles. The resulting total
observability is shown in Figure 5.

In a second scenario we calculated the total observability
of the system for N =4, N = 8 and N = 12 clock cycles,
varying the signal probabilities of the input signals. The
resulting total observability is shown in Figure 6.

Each simulation run took from 0.3 to 0.5 seconds to be
carried out. In order to reach a confidence level of 0.95
with a confidence interval of 0.1, we needed from 2000 to
3000 simulation runs. The complete analysis required a few
minutes to be performed.
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Figure 6. Total observability vs. input signal probability.

VII. CONCLUSIONS AND FUTURE WORK

A simulation based fault injection tool for FPGA systems
is shown. The FPGA system is modelled at netlist level. The
considered fault model is fine-grained as the effect of SEUs
affecting any configuration bit of a LUT and an I/O buffer
can be simulated, as well as the effects of SETs in flip-flops
and multiplexers. In this work the fault injector has been
used for fault observability analysis. These measures can
be used for giving details on the places in the logic design
where injected faults have been/have not been observed. This
information, given as feedback to designers, allows them
to increase the system observability by reworking the logic
around these places, for example by adding test points for
the diagnosis of faults. As future work we intend to analyse
the observability of other types of faults, such as faults in
the routing architecture. Moreover, we intend to implement
the generation of selective test patterns for fault diagnosis.
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