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Abstract—Growing complexity of software systems and in-
creasing demand for higher quality systems has resulted in
more focus on software robustness in academia and research.
By increasing the robustness of a software many failures which
decrease the quality of the system can be avoided or masked.
When it comes to specification, testing and assessing software
robustness in an efficient manner the methods and techniques
are not mature yet.

This paper presents the idea of a framework RobusTest for
testing robustness properties of a system with focus on timing
issues. The test cases provided by the framework are formulated
as properties with strong links to robustness requirements.
These requirements are categorized into patterns as specified
in the ROAST framework for specifying and eliciting robustness
requirements. The properties are then used for automatically
generating robustness test cases and assessing the results.

Index Terms—Robustness, real time systems, testing, timing

I. INTRODUCTION

Robustness is an essential software quality attribute that is
defined as [1]:

The degree to which a system or component can
function correctly in the presence of invalid inputs
or stressful environmental conditions.

Timing properties of software have a major role in deter-
mining the degree of robustness of the system. In our previous
work [2] we focused on elicitation and specification of robust-
ness requirements. In that study we have categorized require-
ments for developing a robust system in form of patterns. The
motivation for using patterns is to capture the commonalities
in structure and purpose of the requirements. The patterns
can in general be divided into requirement patterns with the
main focus to detect and solve robustness issues intrinsically
and patterns that provide extrinsic architectural and design
means to prevent robustness issues to surface. The patterns that
provide intrinsic robustness are mainly to assure input stability
or execution stability of the software. Input and events can be
erroneous in two main manners, which can cause instability in
systems, incorrect value or incorrect timing. The majority of
academic research on robustness has so far been focused on
stability of the system given erroneous input [3], [4], [5], [6],
[7]. This paper discusses the stability in the presence of input
and events with invalid timing. In ROAST, there are seven
different patterns that focus on this problem area.

Robustness testing tools for generating random test data
such as Ballista [3] and JCrasher [4] are the most well known
methods of testing robustness of software systems. Using these
frameworks help the user to assess how the system behaves
in presence of input with invalid value. These frameworks
are automated and the user has very little power to specify
what data to test and what the expected result is. Instead,
they use simple oracle frameworks such as CRASH [8], which
is introduced later in this paper to determine whether the
randomly generated input data results in failure in the system.
Moreover, there is no or very little focus on the timing aspects
of the input data in these framework.

Another framework which works on specifying and testing
timing properties of a system is called Timed Input Output
Automata (TIOA). With TIOA the user can model the inter-
faces of the system and specify the expected time intervals
for the communications and between the different states of
the system [9]. This model can then be used to automatically
generate random test cases. To use TIOA the user often
needs to create a sequential and large model of the system.
Furthermore, when it comes to testing, TIOA mostly focuses
on testing for timeout and has no or very little focus on other
causes or patterns that can create robustness issues [9].

This paper presents the structure of RobusTest, which is
a framework included in the ROAST framework for testing
robustness requirements with timing focus. By writing testable
properties, RobusTest automatically generates robustness test
cases. If specified in sufficient detail these properties can be
used as an oracle for the test cases. If there is no specification
of the expected behavior, RobusTest oracle will assure that the
test case will not put the system in a state with catastrophic
consequences using the CRASH benchmarking framework.
RobusTest not only provides to a large extent automatic testing
but also a strong traceability between the generated test cases
and the requirements through properties.

Section II discusses some of the concepts used to build the
RobusTest framework. In Section III, we present the RobusTest
patterns dealing with timing issues, test case generation,
executor and oracle included in RobusTest. Finally, Section V
discusses the current and future work planned for RobusTest.
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II. BACKGROUND

In the first part of this section, the robustness benchmarking
CRASH is introduced. The second part discusses the concept
of property based testing and some of the techniques and tools
available for this topic. Both these concepts are used in the
framework RobusTest.

A. CRASH

The CRASH framework for benchmarking the robustness
of operating systems (OS) was introduced by Koopman and
is described in [8]. This framework acted as a simple oracle
where the availability of functionality and the functions in
the system rather than the correct functionality after the
occurrence of a robustness issue can be measured. CRASH
is used as the default oracle built in to the RobusTest frame-
work. The CRASH framework is explained below, which
will be implemented in our solution as an underlying layer
to the framework. However, using RobusTest framework the
expected functionality can be specified and benchmark on top
of the extent of functionality.

C Catastrophic (OS crashed multiple tasks affected)
R Restart (task/process hangs, requiring restart)
A Abort (task/process aborts, e.g., segmentation
S Silent (no error code returned when one should be)
H Hindering (incorrect error code returned)
Catastrophic class occurs when a fault in a part of the

system under test (SUT) results in failure in other parts or
even crash or hanging of the whole SUT. It usually requires
hardware or software restart of the SUT. The Restart class
occurs when one task hangs and can be resolved by killing
or restarting that task. The Abort class occurs when a single
task is abnormally terminated. The Silent class occurs when
invalid parameters are submitted, but neither an error return
code nor other task failure is generated. The Hindering type
of failures is caused when the diagnosis is incorrect and could
cause incorrect recovery.

B. Property based testing

A property is a statement which specifies how a system
should or should not behave in a specific situation [10] in
contrast to a test case that is set of executions done in a
certain order. Using property based testing (PBT), high level
properties of the system that should hold are stated and
they are used to generate test cases in order to verify and
validate a certain aspect or property of the system. In PBT
a property is specified in a low level specification language.
A PBT specification language should provide temporal and
logical operators and location specifiers to the tester [10]. This
specification written is then used to automatically generate test
cases for that property. The expected behavior of the system
is also specified in the property specification that can be used
by the oracle to automatically analyze the results from the test
execution.

Property-based testing intends to establish formal validation
results through testing. “To validate that a program satisfies
a property, the property must hold whenever the program is

executed. Property-based testing assumes that the specified
property captures everything of interest in the program, be-
cause the testing only validates that property” [10]. Notice that
property based testing is in the same way as robustness testing
a complementary to other types of verification and validation
activities.

Fink et al. have used property based testing to identify
security flaws and vulnerabilities in critical Unix programs
such as sendmail [11], [12]. In the recent years, this type
of testing has received increasing attention from the industry
and research community. One example is the ProTest project1

financed by the European Commission to improve methods
and tools for property based testing. A well known tool for
property testing is QuickCheck, which was initially developed
for functional programming languages such as Haskell and
Erlang but has now been developed for Java and other lan-
guages [13]. An example property written in QuickCheck for
testing the functionality to reverse a list of integers can look
like this [14]:

prop reverse()− >
?FORALL(L, list(int()),

reverse(reverse(L)) == L).

Another relevant study for this paper that uses property
based testing for verification of the timing properties of an
instant messaging server is presented in [14]. Using the Erlang
language Hughes et al. generate test cases with a timing
focus on an instant messaging server and compare the results
of a property based approach with state-machine approach.
However, this study has no focus on robustness testing and
argues how property based testing can perform well for testing
the timing aspects of a system. The timing parts here are
mostly focused on timeout and not other timing aspects.

III. DESIGN OF ROBUSTEST

This section will discuss the design of the framework Ro-
busTest for testing robustness with focus on timing properties.
As discussed earlier there are seven patterns in ROAST with
timing focus that are also used in RobusTest since RobusTest
is a part of the ROAST framework. These are presented in
this section and the first two are discussed in more detail. The
other patterns are presented and discussed in less detail.

Figure 1 shows the overall structure of the RobusTest
framework. The patterns discussed in this paper and [2] will
give a structure to the requirements on the SUT that will be
used by the testers to specify properties. These properties are
then used by the test generator (TG) to generate test cases
automatically. The number of test cases generated can be set
manually by the tester. These test cases are then used by the
test executor (TE) on the SUT. The results from execution
of the tests are sent to the test oracle (TO) for assessment.
Assessment is done based on the expected behavior in the
properties, the results from running the test cases and the
CRASH benchmarking framework.

1http://www.protest-project.eu/
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In order to analyze the robustness of the SUT expected
behavior and response should be specified. However, in some
cases it might be enough to check whether running the test case
has any critical effect on the SUT in form of crash or restart.
The functionality to detect these kinds of failure is therefore
built into the framework. Using the framework without spec-
ifying the expected behavior can in this way detect the most
critical failures. This part of the framework is implemented
using the CRASH benchmarking framework. CRASH is built
in to the TO as the default oracle. However, CRASH can be
supplanted by the expected behavior if provided in the property
and it can even be disabled to generate some types of faults
if that type of fault such as a system restart is an expected
behavior of SUT.

In addition to the automated part of the oracle, it is possible
to specify a concrete expected result for the test cases. The
mechanism for generating test case and analyzing the result
for the two first patterns is given below.

Another important aspect of RobusTest is the alignment of
requirements and test cases. This is one of the main focuses of
ROAST. Traceability between the requirements specified for
the SUT based on the RobusTest patterns and the test cases
generated by RobusTest is ensured through properties.

RobusTest patterns Requirements

Test properties

Test case 

generator 

(TG)

Test cases

Test 

executor 

(TE)

Verdict

Test Oracle 

(TO)

CRASH

Fig. 1. RobusTest framework structure: The circles are parts of RobusTest
and the rectangles are resources provided to or generated by RobusTest. The
round rectangles are resources generated by RobusTest, the dotted rectangles
are already available and the rectangle with a solid border should be specified
by the tester.

A. Specified response to timeout and latency

This pattern specifies the expected behavior of the SUT
in case an input or event is not received by an expected
timeout deadline. To specify a property for this pattern the
following factors can be specified: IUT , t0, tT , SI , E, SE

The description of all the parameters in this section is given
in Table I.

Given these parameters the timeout property can be speci-
fied. This specification can then be used to generate test cases
that are run both before and after the timeout deadline to
compare the behavior of the SUT in case of timeout with
the case when the input is received on time.
SI is used to specify what the test case needs to perform

in order to have the SUT in the appropriate state for starting
the test case. SE is the expected SUT state after the test cases
are run.

To generate test cases for this pattern not only the input
arriving after the timeout deadline needs to be tested but in
some cases test cases with input arriving before the deadline
and very close to the deadline need to be generated to have a
better understanding of the SUT’s timing behavior. Test cases
need to set the state of the SUT to SI and simulate the input
or event E. The SUT is then expected to be in state SE after
these actions.

To generate and analyze test cases for timeout the following
algorithms are used. If the expected result SE is not specified
those steps with SE will be neglected. The following is
the description of three algorithms for three possible cases
occurring when testing this pattern2

Input with timing before the timeout deadline:
1. Set the SUT to state SI . (TG)
2. Generate a random delay tT − δ < t < tT starting on

t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

Input or event not received on deadline:
1. Set the SUT to state SI . (TG)
2. Generate a random delay t > tT starting on t0. (TG)
3. On time tT : (TE)

3.1. CRASH → Fail (TO)
3.2. If the behavior of the SUT is according to SE →

Pass (TO)
Input is sent after the deadline tT :
1. Set the SUT to state SI . (TG)
2. Generate a random delay t > tT starting on t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT . (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

The first algorithm analyzes the behavior of the SUT in
cases where the input or event happens very close to the dead-
line. The purpose for this step is to ensure the correct behavior

2The letters in front of each step indicate what part of the framework is
responsible for executing that step.
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TABLE I
DESCRIPTION OF PARAMETERS THAT NEED TO BE SPECIFIED FOR TEST CASE GENERATION AND ANALYSIS

Parameter Description
IUT The set of interface(s) under test.
t0 The reference time from when the timer should start counting. This is usually connected to an event in the form of an

input received or an event in the execution environment.
tT The amount of time after the reference time until timeout occurs.
SI The initial state of the SUT at the reference time.
E The expected input.
SE The expected behavior and response of the SUT. This might be as simple as the SUT not having any of the CRASH

states. It can even be a specified expected behavior such as receiving a specific error message in case of timeout.
f The maximum acceptable output or input frequency.
EF A follow up set of inputs that are dependent on E that will generate faults in the SUT if received before E.

of the SUT in general when the timeout is not expected to
happen. The second algorithm assesses the behavior in case
a deadline happens when the SUT is supposed to detect the
deadline and take appropriate measures to ensure the rest of
the functionality is not affected by the omitted input or event.
The last algorithm is for generating an input or event after
the deadline has been reached. Since the SUT does not have
control on how the external parts behave and can not normally
avoid them sending inputs or events, this part makes sure that
receiving messages after deadline does not affect the correct
functionality of the SUT.

A property for this pattern is specified in the following
way3:

∀tT − δ < t < tT + δ : setState(SI , {t0}), timeout
(Event(E, {IUT}), t)→ Expected({SEb}, {SEt}, {SEa})

where setState(SI , {t0}) specifies that the state
of the SUT should be set to SI at time t0.
timeout(Event(E, {IUT}), t) specifies that the timeout
happens at time t. Expected({SEb}, {SEt}, {SEa}) specifies
that the expected behavior upon receiving the event E before
timeout is SEb, after timeout SEt, and the expected behavior
in case timeout occurs is specified by SEt.

B. Specified response to input with unexpected timing

This pattern represents cases where an input or event is
received while it was not expected. The reason for too early
input can be either a missing event that causes irregularities
in the reception sequence or input that causes out of order
events or inputs or the SUT not being ready to handle the event
or input. To specify a property for this pattern the following
factors are to be specified: IUT , t0, SI , E, SE .

The difference between this pattern and the timeout pattern
is that in this case there can be a need for more thorough
understanding of the SUT as a whole. Modeling the SUT or
at least parts of it is in some cases inevitable where we want
automated generation of test cases for this pattern while in the
case of timeout it can be enough to specify a property on a
specific interface. The reason is that the initial state is more

3Parameters inside {} are optional in RobusTest.

complex and simulating missing inputs is a more troublesome
work than generating a timeout.

To generate test cases the SUT is configured to SI after
which the event or input E occurs. In the same manner as the
previous pattern this needs to be tested on both sides of the
deadline. SE specifies in what state the SUT needs to be after
this test in each case.

To generate and analyze test cases for inputs and events
occurring with unexpected timing and specially too early
inputs the following algorithms are built into RobusTest.
Similar to the previous pattern, if the expected result SE is
not specified steps including SE will be ignored by RobusTest
and the default oracle (CRASH) is used.

Input with timing after t0:
1. Set the SUT to state SI . (TG)
2. Generate a random delay t0 < t < t0 + δ. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT. (TE)

4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid output according to SE → Pass (TO)

Input or event has been received before the starting time
t0:

1. Set the SUT to state SI . (TG)
2. Generate a random delay t < t0. (TG)
3. Send a valid input according to the description in E to

IUT . (TG)
4. Wait for output from IUT for a certain amount of time

for output: (TE)
4.1. CRASH → Fail (TO)
4.2. Invalid output according to SE → Fail (TO)
4.3. Valid error message output according to SE →

Pass (TO)
4.4. No output received → Pass (TO)

5. When IUT is ready to receive messages if the state of
the SUT is incorrect → Fail

The first algorithm checks the behavior of the system for
inputs received a short while after the SUT is ready to process
inputs, while the second algorithm checks the behavior when
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the SUT is not ready yet to receive any input. This way it is
possible to check the behavior of the SUT in cases which
should not happen and timings that are very close to the
acceptable limit.

A property for this pattern is specified in the following way:

∀t0 − δ < t < t0 + δ : setState(SI , t), earlyEvent
(Event(E, {IUT}), t)→ Expected({SEb}, {SEa})

where setState(SI , t) specifies that the state of the
SUT should be set to SI at a time before t. and the
event E should be generated and sent to IUT at time t.
earlyEvent(Event(E, {IUT}), t) specifies that the event or
input Event(E, {IUT}) is sent to the SUT at time t. The
expected behavior in that case is SEb or SEa depending on
whether t is before or after t0.

C. High input frequency

This pattern tests the behavior of the system when the
input frequency is high and higher than what the system or
module can handle given the resources and processing power.
These tests are specified generically and since the frequency
can be dependent on what platform and hardware the SUT
is running on, RobusTest will increase the frequency of the
input gradually until it comes to a state where the SUT can
not handle the work load. At that point the SUT is expected to
behave in accordance with the specification without crashing.
To specify a property for this pattern the following factors are
to be specified: IUT , SI , f , SE .

Test cases for this pattern start with setting the initial state
SI to the SUT and then generating inputs and events with
higher frequency than f to check the behavior of the SUT in
that case.

D. Lost events

This pattern discusses robustness issues that occur when an
event is expected but is missing. Although this pattern is not
directly a timing pattern it usually has a close correlation to
the timing issues as seen in the first two patterns discussed
above. The following parameters are to be specified in order
to generate test cases for this pattern: E, SI , EF , SE .

The test cases in this pattern aim to test the robustness of
the SUT when an important event is lost or ignored. In order
to simulate this situation the event E is not created or created
in an erroneous manner in the test cases.

E. High output frequency

This pattern discusses the robustness issues resulted from
high output frequency of a module and its consequences for
the whole system or other systems. In the same manner as
high input frequency to specify a property for this pattern the
following factors are to be specified: IUT , SI , f , SE .

The high input from one module or unit can lead to missing
events and messages or overloading other part of the SUT
that might lead to robustness issues. Since the framework
focuses mostly on black box testing it is not always possible
to generate tests for this pattern. Although if the structure of

the SUT allows this, it can be simulated by limiting the output
channels of the system or the input of the receiving unit.

F. Input before or during startup, after or during shut down

The focus of this pattern is to test the behavior of the system
towards inputs received during startup or shut down. The test
cases for this pattern can be generated in the same way as for
input with unexpected timing. The main focus here is though
to check whether inputs during startup and shut down can
change the state of the SUT in a way that causes irregularities
after the SUT has started properly.

G. Error recovery delays

This pattern focuses on the state where the SUT is re-
covering from an error or has degraded functionality. In the
same way as the previous pattern inputs received during error
recovery needs to be handled in a specific way. Although the
SUT is running during these phase but the functionality is
degraded and the transmitting parts and modules need to be
aware of that and the received input needs to be handled
properly according to the requirement specification for the
SUT.

IV. CONCLUSION

This paper has discussed a framework called RobusTest
for testing robustness properties of software systems. In the
current version the framework mostly focuses on timing issues
that lead to robustness vulnerabilities. Testing is done using
properties that are written to specify an expected behavior from
the system. These properties are then used to generate test
cases automatically. The properties are even used to analyze
the results from executing the test cases on the system and is
in this way used as an oracle for the behavior of the system.

In this paper, seven properties from ROAST, which is a
framework for specifying and testing robustness properties in
software, are introduced. RobusTest is a part of ROAST with
focus on the testing part. In the current study, the patterns
with focus on timing issues were presented and the properties
extracted from each pattern were discussed in more detail.
After writing properties based on the patterns there is a clear
link through those properties from the requirements elicited
and specified by ROAST and the test cases generated by
RobusTest.

V. CURRENT AND FUTURE WORK

Given the structure presented in this paper, the framework
is being built for Java as an extension of JUnit. However, this
framework can be implemented in any programming language
and the Java framework is a case study for proof of concept.
The idea is to extract commonalities for requirements in the
same patterns and wrap them in RobusTest for testing those
requirements. In this manner, there will be a common interface
with built in functionality such as generation of test cases and
automated CRASH oracle that can be used to test a specific
type of requirement. This JUnit extension is then to be tested
initially for protocol testing in a communication protocol with
timing restrictions.
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This paper aimed to present the idea and structure of the
framework. However, a small evaluation of the concept was
performed by testing parts of the framework on two simple
programs. The generated test cases were able to identify the
faults that were injected in the programs. However, since
this evaluation was very small compared to the size of the
framework, it is not possible to draw any conclusion regarding
the validity of RobusTest. A more thorough evaluation on two
large open source systems is currently in progress and will be
published in our future publications.

Another important next step is to look at other patterns in
ROAST that are not currently included in RobusTest. Testing
for input with invalid value and testing unexpected conditions
in the execution environment are to be added to RobusTest in
order to have a complete structure and a clear link from the
requirements in those patterns and the test cases.
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