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Abstract—In many applications, faults are triggered by
events that occur in a particular order. Based on the assumption
that most bugs are caused by the interaction of a low number
of events, Kuhn et al. recently introduced sequence covering
arrays (SCAs) as suitable designs for event sequence testing. In
practice, directly applying SCAs for testing is often impaired
by additional constraints, and SCAs have to be adapted to
fit application-specific needs. Modifying precomputed SCAs
to account for problem variations can be problematic, if not
impossible, and developing dedicated algorithms is costly. In
this paper, we propose answer-set programming (ASP), a well-
known knowledge-representation formalism from the area of
artificial intelligence based on logic programming, as a declar-
ative paradigm for computing SCAs. Our approach allows
to concisely state complex coverage criteria in an elaboration
tolerant way, i.e., small variations of a problem specification
require only small modifications of the ASP representation.

Keywords-event-sequence testing; combinatorial interaction
testing; answer-set programming.

I. INTRODUCTION

In many applications, faults only show up if events occur in
a certain order. An example are atomicity violations in multi-
threaded applications where a pair of shared memory accesses
of one thread is interleaved with an unfortunate access
of another thread. Testing such applications thus requires
exercising event sequences. Since the number of event
sequences is factorial in the number of events, exhaustive
testing is infeasible in general. If we assume that bugs are
triggered by the interaction of only a low number of events—
this is empirically supported by respective bug reports—,
testing costs can be reduced drastically without sacrificing
much fault-detection potential by using suitable combinatorial
designs [1], [2]. To this end, Kuhn et al. [3], [4] introduced
sequence covering arrays (SCAs) for combinatorial event
sequence testing. An SCA is an array of permutations of
events such that any ¢ events, possibly interleaved with other
events, will be tested in every t-way order at least once. SCAs

ISBN: 978-1-61208-168-7

are relevant in scenarios where the order of events is decisive,
like testing of user-interfaces, dynamic web applications,
method calls for unit-testing, or multi-threaded programs.

In practice, a direct application of SCAs for testing is often
impaired by additional constraints on the order of events.
Also, the conditions that identify the sequences that should be
covered can vary and often involve quite complex definitions.
For example, to test thread interleavings, one could require
to test all sequences such that one variable is written by one
thread and subsequently read by another thread such that
there is no write operation between them [5], [6].

One approach to address such considerations is to accord-
ingly modify precomputed SCAs as exemplified by Kuhn et
al. [3], [4]. This means that any test sequence which, e.g.,
violates some ordering constraints has to be removed from
the SCA. To maintain coverage, removed sequences have
to be replaced by permutations thereof that comply to the
problem specific requirements. This is not always possible in
a straightforward way and can result in a considerable and
in principle avoidable overhead regarding the size of arrays.
On the other hand, developing and maintaining dedicated
algorithms to compute variations of SCAs usually comes
with high costs and is not preferable if requirements change
over time or one wants to experiment with different designs.

We propose to use answer-set programming (ASP) [7] for
computing SCAs and variations thereof. ASP is a genuine
declarative programming paradigm where a problem is
encoded by means of a logic program such that the solutions
of a problem correspond to the models, called answer sets,
of the program. On the one hand, as an expressive high-level
specification language, it allows to state complex coverage
criteria, involving constraints and complex, possibly recursive,
definitions, in a concise and elaboration-tolerant way, i.e.,
small variations in a problem specification require only small
modifications of the program representation. On the other
hand, SCAs can be efficiently computed through highly
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optimised ASP solvers [8]. Since it requires only little effort
to state quite complex coverage conditions in ASP, a tester
is able to rapidly specify different versions of SCAs.

This paper is organised as follows. In Section II, we review
SCAs and ASP. Then, we show how SCAs can be generated
using ASP in Section III. We present improved, sometimes
optimal, upper bounds regarding the size of many SCAs. We
furthermore present a greedy algorithm, based on ASP, for
computing larger SCAs. In Section IV, we turn towards a
real-world example described by Kuhn et al. [3], [4]. We
discuss how the basic ASP encoding from Section III can be
refined to take different constraints and problem variations
into account. Finally, we discuss related work in Section V
and conclude in Section VI

II. PRELIMINARIES

In this section, we review the formal definition of SCAs
and give a brief background on ASP.

A. Sequence Covering Arrays (SCAs)

SCAs, introduced by Kuhn et al. [3], [4], are combinatorial
designs related to covering arrays. While covering arrays
require that each ¢-way combination of parameters occurs
at least once in a test case for some fixed ¢, SCAs take the
order of events into account and require that each ¢-sequence
of events is tested in at least one test sequence in that order,
where a t-sequence over a set S of symbols is a t-tuple of
pairwise distinct elements of S. Following Kuhn et al. [3],
[4], we formally define SCAs as follows.

Definition 1: A sequence covering array (SCA) with

parameters n, S, and ¢, or an (n,S,t)-SCA for short, is
an n X |S| matrix M of symbols from a finite set S of
symbols such that (i) each row of M is a permutation of
S and (ii) for each t-sequence o = (s1, S2,...,S¢) over S,
there is at least one row ¢ = (a;1, .. .,a;s)) in M such that
o is a subsequence of p.
We say that an (n, S,t)-SCA is of strength t and of size
n. The sequence covering array number SCAN(S,t) is the
smallest n such that an (n,S,t)-SCA exists. An (n,S,t)-
SCA is optimal if SCAN(S,t) = n. We will also denote an
(n,{1,...,s},t)-SCA as an (n, s, t)-SCA with SCAN(s, t)
for brevity.

For illustration, the following matrix M constitutes an
optimal (7,5, 3)-SCA:

5 2 3 1 4
3 2 5 41
1 5 4 3 2
M=]3 4 5 1 2
4 2 5 1 3
2 4 315
1 2 3 4 5
Each of the 7 rows is a permutation of the set S = {1,...,5}

and each 3-sequence over S is covered by at least one row.
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For instance, the 3-sequence (5,3, 4) is covered by the first
row of M. Note that there are 5-4 -3 = 40 such 3-sequences.

A collection of precomputed SCAs of strength 3 and 4,
involving 5 to 80 events, is available online [9].These SCAs
were computed using a simple greedy algorithm introduced
by Kuhn et al. [3], [4]. Note that this algorithm is the
only approach for computing SCAs implemented so far. To
compute a ¢-strength SCA for a set S of events, this algorithm
iteratively computes single rows of the SCA: It computes
a fixed number of permutations of S. Then, it selects the
permutation 7 that obtains maximal coverage of previously
uncovered t-sequences as the next row of the SCA. After
that, 7 in reverse order, 7', is added. Adding 7’ is justified
because 7’ always covers the same number of previously
uncovered t-sequences as 7 [4]. This procedure is iterated
until all ¢-sequences are covered.

One downside of this greedy algorithm is that additional
constraints on the order of events arising from the require-
ments of different test scenarios are hard to incorporate. To
overcome this shortcoming, we use ASP in what follows as
a declarative tool to compute SCAs and demonstrate that
quite complex constraints can be incorporated into a solution
in a concise and elaboration-tolerant way, and with ease.

B. Answer-Set Programming (ASP)

ASP [7] is a relatively new declarative programming
paradigm. The underlying idea of ASP is to declaratively
represent a computational problem as a logic program whose
models, called “answer sets”, correspond to the solutions, and
to find the answer sets for that program using an ASP solver.
Due to the expressiveness of ASP that allows to represent, for
instance, aggregates and recursive definitions, and due to the
continuous improvements of the efficiency of ASP solvers,
such as clasp [10], we argue that ASP can efficiently
and effectively be used to compute SCAs. Indeed, ASP has
been used in a wide range of applications from different
fields, such as semantic-web reasoning, systems biology,
planning, diagnosis, information integration, configuration,
multi-agent systems, cladistics, and super optimisation. For a
comprehensive introduction to ASP, we refer to the textbook
by Baral [7].

We recapitulate the basic elements of ASP in the following.
An answer-set program is a finite set of rules of the form

Qg :— Q1,-..,0m, N0t Gmi1,...,00t ap, (@)

where n > m > 0, ag is a propositional atom or L, and all
ai, ..., a, are propositional atoms; the symbol “not” denotes
default negation. If ag = L, then Rule (1) is a constraint (in
which case ag is usually omitted). The intuitive reading of
a rule of form (1) is that whenever aq,...,a,, are known
to be true and there is no evidence for any of the default
negated atoms @y, 41, ...,a, to be true, then ay has to be
true as well. Note that 1 can never become true.
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An answer set for a program is defined following Gelfond
and Lifschitz [11]. An interpretation I is a finite set of
propositional atoms. An atom a is true under [ if a € I,
and false otherwise. A rule r of form (1) is true under 1
if {a1,...,am} C I and {am41,...,a,} NI = 0 implies
ao € I. Interpretation I is a model of a program P if each
rule r € P is true under I. Finally, I is an answer set of P
if I is a subset-minimal model of P!, where P! is defined
as the program that results from P by deleting all rules
that contain a default negated atom from I, and deleting all
default negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or many
answer sets. For instance, the program

{p:— not ¢, ¢:— not p} )

has two answer sets: {p} and {q}.

When we represent a problem in ASP, some rules “gener-
ate” answer sets corresponding to “possible solutions”, and
some “eliminate” the answer sets that do not correspond to
solutions. The rules in program (2) are of the former kind;
constraints are of the latter kind. For instance, adding the
constraint L : — p to a program P eliminates all answer
sets of P containing p. In particular, adding L : — p to
program (2) eliminates the answer set {p}.

When we represent a problem in ASP, we often use special
constructs of the form [{ai,...,ax}u (called cardinality
expressions) where each a; is an atom and [ and u are
nonnegative integers denoting the lower bound and the
upper bound of the cardinality expression [12]. Such an
expression describes the subsets of the set {ai,...,a}
whose cardinalities are at least [ and at most u. In heads of
rules, cardinality expressions generate answer sets containing
subsets of {ai,...,ax} whose cardinality is at least [ and
at most u. When used in constraints, they eliminate answer
sets that contain such respective subsets.

A group of rules that follow a particular pattern can often
be described in a compact way using schematic variables.
For instance, we can write the program p; : — not p;41,
(1 <i<7) as follows:

index (1), index(2),...,index(7),
p(2) : — not p(i + 1), index ().

ASP solvers compute an answer set for a given program that
contains variables after “grounding” the program, e.g., by the
grounder gringo [13]. A grounder systematically replaces
each rule r with variables by its ground instances that result
from 7 by uniformly replacing each variable by constants
from the program. Variables can also be used “locally” to
describe a list of literals. For instance, the rule 1{p1,...,p7}1
can be represented as 1{p(7) : index(i)}1.

In addition to the constructs above, current state-of-the-art
ASP solvers support many language extensions like functions,
built-in arithmetics, comparison predicates, aggregate atoms,
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maximisation and minimisation statements, as well as weak
constraints.

In the remainder of this paper, we use the syntax that is
supported by the solver clasp along with the grounding
tool gringo when presenting programs [14].

For illustrating problem solving in ASP, consider the
following encoding of the 3-colorability problem (3COL):

colour (red; green;blue) .

1{asgn(N,C) :colour(C)}1
:— edge (X,Y), asgn(X,C),

:— node (N) .
asgn(Y,C) .

The first rule abbreviates three facts that state that red, green,
and blue are colours, respectively. The second rule is a choice
rule. Its intuitive reading is that if N is a node, then both an
upper bound and a lower bound on the number of colours
assigned to this node, expressed by asgn (N, C), is 1. This
means that each node gets assigned precisely one colour from
the set of available colours defined by colour/1. The last
rule is a constraint that forbids that there is an edge between
any two nodes with the same colour. If the above program is
joined with facts over edge /2 and node/ 1 that represent a
graph G, the answer sets correspond one-to-one to the valid
3-colourings of G.

Sometimes, one is not only interested in arbitrary solutions
to a problem but in solutions that are optimal according to
some preference relation. ASP solvers like clasp support
optimisation statements that allow to express such preferences.
For illustration, assume that, for some reason, we want to
minimise the number of blue nodes in the above 3COL
example. This can be expressed by simply adding the
following minimise statement:

#minimize[asgn (N,blue) :node (N)].

The meaning of such a statement is that clasp computes
answer sets where the sum of literals asgn (N, blue),
where N is a node, is minimal among all answer sets.

III. SCA COMPUTATION

We now discuss how ASP can be used to generate SCAs.
Our goal is not only to present approaches to compute generic
SCAs, i.e., SCAs created without additional constraints or
requirements, rather we want to demonstrate that ASP can be
used as an efficient and effective declarative tool to compute
SCAs tailored to specific test scenarios.

Ahead of our discussion in Section IV, addressing how
different problem elaborations can be incorporated into
a single answer-set program, we introduce an answer-set
program for computing generic SCAs. We also introduce a
new greedy approach that combines a simple variation of
the basic ASP encoding with an iterative greedy procedure.

A. Basic Encoding

We first present an ASP program for computing (n, s, t)-
SCAs with ¢ = 3. We assume throughout that s > 2. Note
that this program can be changed in a straightforward way
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°

% guess sequence covering array

sym(l..s). row(l..n).
1{first (N,S) :sym(S)}1 :— row(N).
1{next (N,S,T):sym(T)}1 :— first(N,S).
O{next (N, T,U) :sym(U)}1 :— next(N,_,T).
% the happens-before relation
hb(N,X,Y) :- next(N,X,Y).
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% each symbol occurs once in each row
:— hb(N,S,S).

:— row(N), sym(S),
not hb(N,T,S).

first(N,T), S!=T,

°

% check if each 3-sequence is covered
threeSeq(X,Y,2) :— sym(X;Y;Z),X!=Y,Y!=7,X!=%7.
covered(X,Y, 2) :— hb(N,X,Y), hb(N,Y,Z).

:— threeSeq(X,Y,Z), not covered(X,Y,Z).

Figure 1. ASP encoding IT3(n, s).

to obtain encodings for any fixed ¢ > 3. An encoding for
SCAs where t is not fixed can be obtained using disjunctive
ASP—this is however beyond the scope of this paper.

1) Encoding: We start by expressing that the symbols of
the array are integers between 1 and s, and row indices of
the SCA correspond to integers 1 to n. Note that s and n
function as parameters of the program:

sym(l..s). row(l..n).

For the representation of the SCA, we use the predicate
next (N, X,Y) expressing that in row N symbol Y is the
direct successor of X. We next state that in any row N (i) one
symbol S occurs first, (ii) the first symbol S in row N has
a direct successor T, and (iii) if T is consecutive to S, then
there is at most one symbol U that is consecutive to T:

1{first (N,S) :sym(S)}1 :— row(N).
l1{next (N,S,T):sym(T)}1 :— first(N,S).
O{next (N, T,U) :sym(U)}1 :— next(N,_,T).

So far, the above conditions are only necessary conditions
for an (n,s,3)-SCA. We need further rules to guarantee
that any row is a permutation of the symbols {1,...,s} and
that coverage of all 3-sequences is achieved. We proceed by
formalising the happens-before relation between two events.
In particular, that one event symbol X occurs before another
symbol Y in row N is represented by predicate hb (N, X, Y),
which is simply the transitive closure of the next /3 relation:

hb (N, X, Y)
hb (N, X, 2)

:— next (N, X,Y).
:— hb(N,X,Y), hb(N,Y,Z).

Directly expressing inductive definitions as above is a
particular strength of ASP. Based on the happens-before
relation, we can quite easily state that each event symbol
has to occur precisely once in each row. We express this
by means of two constraints. The reading of the first one
is that it is forbidden that there is a row N such that a
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symbol S occurs before itself. The second constraint ensures
that it is forbidden that there is a row N such that some
symbol S different from the first symbol T does not occur
after T. Together, the constraints imply that next /3 indeed
represents permutations.

:— hb(N,S,S).

:— row(N), sym(S),
not hb(N,T,S).

first(N,T), S!=T,

It only remains to require that each 3-sequence of
symbols is covered by some row. We use predicate
threeSeq (X, Y, Z) to represent the 3-sequences that we
want to cover. A 3-sequence is simply a 3-tuple of pairwise
distinct symbols:

threeSeq(X,Y,2) :- sym(X;Y;Z),X!=Y,Y!=2Z2,X!=2Z.

A 3-sequence (X, Y, 7) is covered if X happens before Y and
Y happens before Z in some row N. We finally define covered
3-sequences and forbid that a 3-sequence is not covered:

covered(X,Y,Z) :— hb(N,X,Y), hb(N,Y,Z).
:— threeSeq(X,Y,Z), not covered(X,Y,Z).

The entire ASP program II3(n, s) with parameters n and s
for generating (n, s,3)-SCAs is given in Figure 1.

Intuitively, each answer set of program I13(n, s) represents
an (n, s,3)-SCA. In fact, the answer sets of I13(n, s) and
the (n, s, 3)-SCAs are in a one-to-one correspondence. This
relation can be formalised as follows:

Definition 2: An answer set X of II3(n,s), for s > 2,
represents an n X s matrix M iff for any i, 1 <17 < s, and
any r, 1 <r <n, M,; = s, and M, ;1 = s precisely in
case X contains the atom next(r, s1, s2).

Proposition 1: Each answer set of I13(n, s) represents a
single (n, s,3)-SCA, and each (n, s, 3)-SCA is represented
by a single answer set of II3(n, s).

For illustration, to compute a (7,5,3)-SCA, gringo and
clasp can be invoked as follows:

gringo sca-3.gr —-c n=7,s=5 | clasp.

File sca-3.gr contains program II3(n, s). The gringo
option —c n=7, s=5 instantiates the program parameters
n and s to 7 and 5, respectively. Any resulting answer
set corresponds to a (7,5,3)-SCA. For instance, in some
answer set, the first row of the SCA M given in Section II-A
is encoded by the atoms next (1,5,2),next (1,2, 3),
next (1,3,1),next(1,1,4). To compute more than
one (7,5,3)-SCA, an upper bound on the number of answer
sets that clasp should compute can be specified as an
integer option (0 means that all answer sets are computed).

2) Discussion: Program II3(n, s) nicely illustrates how
challenging search problems can be concisely encoded using
ASP: The program consists of only 12 rules that closely
reflect the problem statement in natural language. We note
that only little training time is needed to enable a tester to
use ASP for test authoring. This is mainly because of the
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Table I
UPPER BOUNDS FOR SCAN(s, 3) OBTAINED BY KUHN ET AL. AND OUR
ASP ENCODING. A STAR INDICATES AN OPTIMAL BOUND.

s n (Kuhn et al.) n (ASP)
5 8 7
6 10 8*
7 12 8*
8 12 8*
9 14 9
10 14 9
11 14 10
12 16 10
13 16 10
14 16 10
15 18 10
16 18 11
17 20 11

genuine declarative nature of ASP, which does not require
specialised knowledge on data structures or algorithms. A
more experienced ASP user needs about 15 minutes to
develop a program such as the one given in Figure 1.

Also, by using our ASP encoding I13(n, s) and the ASP
solver clasp, we could improve known upper bounds
for many SCAs significantly. A comparison of the SCAs
generated using ASP and the greedy algorithm of Kuhn et al.
is given in Table I. The SCAs that we have computed using
ASP are publicly available [15]. Computation times for the
reported upper bounds range from fractions of a second to
about 20 minutes. We have considered strength 3 SCAs for 5
to 17 events. The known upper bounds reported by Kuhn et
al. [3], [4] could be improved throughout. The more events
are considered, the more drastic are the improvements; e.g.,
for 17 events, we need 45% less test sequences.

For small SCAs—viz. for 5 to 8 events—the new upper
bounds are actually optimal bounds. Optimality of upper
bounds was established using ASP itself. To show that an
(n, s,t)-SCA is optimal, we try to compute an (n — 1, s, t)-
SCA. If this fails, i.e., the ASP solver terminates without
returning an answer set, the (n, s, t)-SCA is indeed optimal.
Since SCAN(8,3)=8, 8 is a trivial lower bound for any
SCAN(s, 3) with s > 8. Note that greedy algorithms, or any
approaches based on incomplete search, are unable to prove
optimal bounds or to establish lower bounds at all.

A limitation of using the ASP encoding IT1?(n, s) concerns
scalability. Though memory usage is always limited by a
polynomial with respect to the input parameters n and s, the
runtime of clasp is worst-case exponential for encoding
II3(n, s). On the other hand, the greedy approach of Kuhn
et al. seems to scale quite well; the authors report on SCAs
of strength three and four for up to 80 events [4].

B. Greedy Algorithm

In the remainder of this section, we introduce and discuss
an ASP-based greedy algorithm, inspired by that of Kuhn
et al. [3], [4], for computing larger SCAs. The motivation
to study such an algorithm is to combine the modelling
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Require: s is the number of symbols.
Ensure: N represents an (n, s, 3)-SCA.

N < N U Xlpext/s
: until N represents an (n, s, 3)-SCA

LN«

2: n<=0

3: repeat

4 n<=n+1l )

5. X <= answer set of I3, (s,n) UN
6

7

Figure 2. Greedy algorithm for computing an (n, s, 3)-SCA.
capabilities of ASP, especially in the light of constraints and
problem elaborations (as detailed in the next section), with
the scalability of a greedy approach.

In this context, we also mention that the greedy algorithm
of Kuhn et al. has a certain weakness, which is related
to the heuristic that for any newly computed sequence the
reverse sequence is added as well (cf. Section II). As we
will show next, this makes the algorithm inherently unable to
compute optimal SCAs in general. Actually, the inability to
find optimal SCAs follows immediately from the observation
that some optimal SCAs, e.g., (7,5, 3)-SCAs, are of odd
size. However, ASP can be used to show that even optimal
SCAs of even size cannot be found by that greedy approach
in general. The idea is to augment program II?(n,s) by a
rule that states that every second row is the inversion of the
previous one. This is simply expressed by the following rule:

next (N, S,T) :— row(N),next (N-1,T,S),N#mod2==0.

Here, predicate #mod is the usual modulo operation. Hence,
the intuitive reading of this rule is that for any row with
even index N, the next relation is the inverse of the next
relation of the preceding row N—-1. We know already from
Table I that any (8,6, 3)-SCA is optimal. However, IT3(8, 6)
augmented by the above rule yields no answer set, which
shows that (8,6, 3)-SCAs cannot be computed by the greedy
algorithm of Kuhn et al. [3], [4]. Next, we present an ASP-
based greedy algorithm inspired by that of Kuhn et al. that
does not rely on adding inverted rows.

1) Encoding: Figure 2 represents our ASP-based greedy
algorithm for computing SCAs. The main idea is to compute
one row of a SCA at a time instead of computing the entire
array. In each iteration, one further row is computed using
ASP where the number of covered 3-sequences is maximised.
For this purpose, we use program ngdy(s,n), which is
depicted in Figure 3. Program ngdy(57 n) takes the number
s of events and a row index n as parameters. Both the ASP
encoding and the greedy algorithm are introduced only for
SCAs of strength 3. However, versions for computing SCAs
of strength greater than 3 are obtained in a straightforward
way. To obtain a program for strength 4 SCAs, for example,
only the last two rules of Hzrdy(s7 n) have to be replaced
by the following two rules:

covered(W,X,Y,2) :- hb(n,W,X), hb(n,X,Y),

hb(n,Y,7).
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% guess single SCA row with index n

sym(l..s).

1 {first(n,S) sym(S)} 1.

1 {next(n,S,T) sym(T)} 1 :— first(n,S).
0 {next(n,S,T) sym(T)} 1 :— next(n,_,S).

% the happens-before relation
hb(N,X,Y) :- next(N,X,Y).
hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

% each symbol occurs once in each row
:— hb(S,S).
:— sym(S), first(n,T),

S!=T, not hb(n,T,S).

% maximize coverage
covered (X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).
#maximize[covered(_,_,_) 1.

Figure 3. ASP encoding I3, (s,n).

#maximize[covered(_,_,_,_)1.

Program ngdy(s, n) is quite similar to II3(n, s). However,
each answer set of Hir ay(8;m) corresponds only to a single
row with index n of an SCA. The idea is to represent
preceding rows with index 1 to n — 1 by means of facts
next /3. These facts are joined with Hg,,dy(s,n). Then,
the answer sets of Hg,,dy(s,n) correspond to those rows
that obtain maximal coverage of previously uncovered 3-
sequences. The encoding follows the guess, check, and
optimise pattern, hence we use guessing rules to span
the search space, constraints to filter unwanted solution
candidates, and rules that express a preference relation on

answer sets. In particular, rule
#maximize[covered(_,_,_)1.

states that we seek for answer sets with a maximal number
of covered 3-sequences.

The algorithm itself is rather simple, see Figure 2: It
takes parameter s as input and computes an (n, s, 3)-SCA.
Initially, the set IV that represents a (partial) SCA by means
of facts next/3 equals the empty set. In each iteration,
I3, (s,n) U N are used to compute the next row of the
SCA that obtains maximal increase of previously uncovered
3-sequences. The respective next /2 facts for that row are
then added to IN. This procedure iterates until no uncovered
3-sequences are left (the ASP solver itself will indicate that
no further optimisation is possible). Since the computation
of optimal answer sets can become very time consuming,
we additionally impose an upper bound on the time that is
spent for optimising answer sets, thus improvements in each
step will not be maximal in general. However, this seems to
be a reasonable compromise regarding runtime and the size
of computed SCAs. The time limit for computing a single
row ranged from 10 seconds to several minutes, depending
on the problem size.
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Table II
COMPARISON OF OUR GREEDY ASP APPROACH AND THAT OF KUHN ET
AL. [3], [4]: UPPER BOUNDS FOR SCAN(s, 3) AND SCAN(s, 4).

s t=3 t=14
Kuhn et al.  ASP Kuhn et al.  ASP
10 14 11 72 55
20 22 19 134 104
30 26 23 166 149
40 32 27 198 181
50 34 31 214 -
60 38 34 238 -
70 40 36 250 -
80 42 38 264 -

2) Discussion: Table II summarises a comparison of our
greedy ASP algorithm with the greedy algorithm of Kuhn
et al. [3], [4] for strength 3 and 4 SCAs involving 10 to 80
events. For strength 3 SCAs, our algorithm is competitive
with that of Kuhn et al. and upper bounds could be improved
throughout by some rows. For strength 4 SCAs, the greedy
ASP approach is feasible for up to 40 symbols where upper
bounds could be improved even more drastically than for
strength 3 SCAs. However, we were not able to compute
SCAs for 40 to 80 symbols, which shows a limitation
of our ASP-based approach that is probably acceptable
unless the need for larger instances with a high level of
interaction is indeed motivated by some application scenario.
This limitation basically comes from the huge number of 4-
sequences that need to be covered and that are represented by
the program. Here, it is to mention that scalability is certainly
a characteristic strength of the simple greedy algorithm of
Kuhn et al., since dedicated data structures, e.g., efficient
bit-vectors, can be used for representing covered sequences.
However, by using ASP we get better bounds for 3-SCAs for
up to 80 symbols and can also improve bounds for 4-SCAs
for up to 40 symbols. Again, we emphasise that our goal
is not to compute generic SCAs but to allow a tester to
express different requirements with little effort, by adding or
changing some rules of the ASP program, which can readily
be done using the greedy ASP approach. We pursue this
issue in the next section.

IV. PROBLEM ELABORATIONS

Next, we turn to the actual strengths of using ASP as
an elaboration tolerant representation formalism for event
sequence testing. We describe how ASP can be used for
generating SCAs in a scenario that involves additional con-
straints and other problem variations that make it impossible
to directly use precomputed SCAs. In particular, we use
a real-world testing problem described by Kuhn et al. [3],
[4] for making our point. The specification of this testing
problem is as follows: There are 5 different devices that have
to be connected to a laptop. These devices can be connected
before or after a boot-up phase. Further actions that have
to be performed on the laptop are opening an application
and initiating a scanning process. The peripherals can be
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connected to the laptop in any order; however, the order of
events influences the functionality of the system. Thus, SCAs
lend themselves as a basis for a suitable testing plan.

There are 8 events relevant for testing: connecting devices
(pl,...,p5), booting the system (boot), starting an appli-
cation (appl), and running a scan (scan). Testing in this
scenario is rather time consuming since it requires setting
up the system manually. Therefore, obtaining an optimal
test plan is a clear desideratum. Following Kuhn et al., only
SCAs of strength 3 are considered to keep the size of the
test plan reasonable.

A. Forbidden Sequences

For 8 events, optimal SCAs of strength 3 comprise 8
rows. However, we cannot use precomputed (8, 8, 3)-SCAs
since certain constraints regarding the order of events have
to be taken into account. While most events can happen
in any order, starting the application cannot happen before
the system is booted, and running a scan requires that the
application is already running.

1) Encoding: Instead of covering all 3-sequences, we want
to generate SCAs such that (i) in each row, boot happens
before appl and appl happens before scan, and (ii) all 3-
sequences such that boot happens before appl and appl
happens before scan are covered by at least one row. We
only have to slightly modify program I13(n, s) to account
for (i) and (ii). First, instead of integers to denote events, we
would like to use more descriptive constant symbols. Thus,
we replace sym(1..s) in II3(n,s) by

sym(boot; pl; p2; p3; p4; p5; appl; scan).

Concerning (i), we define which orderings are excluded and
add a respective constraint that forbids that event a happens
before b if “a before b” is excluded.

excluded (scan, appl) .

excluded (appl, boot) .

excluded (X, Z) :— excluded(X,Y),excluded(Y,Z).
:— hb(_,X,Y), excluded(X,Y).

Regarding (ii), we simply define those 3-sequences that are
not consistent with the excluded orderings as already covered:

covered(X,Y,Z) :- excluded(X,Y), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(X,Z), sym(X;Y;Z).
covered(X,Y,Z) :- excluded(Y,Z), sym(X;Y;Z).

We denote the resulting program as II3(n).

2) Discussion: Recall that for 8 symbols, (8,8, 3)-SCAs
are optimal. Since, IT3(8) does not yield any answer set, it
follows that the stipulation on admissible orderings requires
additional rows. In this case, this is because the number of
3-sequences that can be covered by a single row is reduced if
certain events are required to happen in a strict order. Indeed,
a solution for IT3(9) can be computed, hence 9 is an optimal
bound for an SCA satisfying that each row is consistent with
the specified ordering constraints. The solver clasp needs
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fractions of a second to find an SCA of size 9 and about
one minute for checking optimality.

B. Redundant Sequences

Besides forbidden orderings, we also have to deal with
redundant sequences: If devices are connected to the laptop
before the boot-up phase, the order is not relevant. In fact,
we only require strength 3 coverage for events pl,...,p5,
appl, and scan. Concerning the interaction of events
pl,...,p5, and boot, we regard strength 2 coverage
as sufficient, i.e., we are only interested in whether the
connection of the peripherals happens before or after the
boot-up phase. Hence, we need a variable strength SCA, in
which we seek to have strength 2 coverage for one set of
events and strength 3 coverage for another one.

1) Encoding: First, we add two sets of facts to declare
the sets of events for which we want to obtain strength 2
and strength 3 coverage, respectively:

threeWay (pl; p2; p3; p4; p5; appl; scan).

twoWay (boot; pl; p2; p3; pr4; pd).

Next, we have to modify some rules where appropriate. In
particular, we only want to cover 3-sequences over symbols
from threeWay/1. Hence, we rewrite rule

threeSeq(X,Y,2) :- sym(X;Y;z),X!=Y,Y!=7,X!=Z.

into

threeSeq(X,Y,Z) :- threeWay(X;Y;Z),

X!=Y, Y!=2, X!=%7.

To address 2-way coverage of the symbols from twoWay/1,
we add two further rules:

covered(X,Y) :— hb(_,X,Y).
:— twoWay (X;Y), X != Y, not covered(X,Y).

The resulting program is denoted by II3(n).

2) Discussion: Program II3(n) incorporates both forbid-
den configurations and redundant sequences. Respective
SCAs can be obtained for n = 8 already. SCAs of size 8 are
indeed optimal arrays, which follows from the observation
that TI3(7) yields no answer set at all. It takes on average
0.1 seconds to compute the first answer set of a size 8§ SCA
when using clasp as ASP solver. Showing optimality, i.e.,
that no size 7 SCA exists, needs several minutes.

The solution approach of Kuhn et al. uses a pre-computed
(12,7,3)-SCA to account for the seven events pl,...,p5,
scan, and appl. In a post-processing step, rows that are
not consistent with the ordering constraints (cf. Section IV-A)
are replaced. However, this requires that further rows are
added to preserve coverage. Then, in a further manual post-
processing step, to account for the two-way coverage with
respect to events pl,...,p5, and boot, Kuhn et al. add
boot as the first event of each row. Finally, an additional
row is added, in which all events pl,...,p5 are arranged
prior to boot, thereby obtaining strength 2 coverage between
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Table III
TEST PLAN OF SIZE 8 FOR THE LAPTOP APPLICATION OBTAINED FROM AN ANSWER SET OF I13(8).

Copyright (c) IARIA, 2011.

row event | event2 event3 event4 event5 event6 event7 event §
1 p3(1) p2(r) pl(b) r4 boot appl scan p5

2 boot p4 pl(r) appl p5 p3(1) scan p2(b)
3 boot appl scan pl(xr) p2(b) p4 p3(1) PS5

4 pl(r) p2(b) PS5 p3(1) boot appl scan p4

5 boot p3(b) p5 pl(r) appl p4 p2(1) scan
6 p4 boot p2(b) p5 appl pl(1l) scan p3(r)
7 boot appl scan p5 p3(1) p4 p2(b) pl(r)
8 PS5 boot p2(1) p4 p3(r) appl scan pl(b)

boot and events pl,...,p5. The resulting array consists 2) Discussion: Note that the additional conditions regard-

of 18 rows.

The first thing to note is that using ASP enabled us to
easily embed the additional requirements directly in the ASP
program rather than employing an ad hoc and mostly manual
approach. Furthermore, using ASP significantly reduced the
size of the resulting SCA by 55.56% (cf. Table III).

C. Adding Attributes to Events

The next problem elaboration that we consider is related to
the way the peripherals are connected to the laptop. Devices
pl, p2, and p3 have to be connected to USB ports. Three
ports are available: left, right, and back. In each test
sequence, one port has to be assigned to a USB device.

1) Encoding: Predicate port (N, X, Y) states that USB
device X is connected to port Y in row N of the array. This
assignment should satisfy the following coverage criteria:
(i) each USB device has to be connected to each port at least
once and (ii) connections to the ports after the boot event
should be made in any possible order. The above requirements
can be formalised using few further rules.

In the following rules, we first specify the USB ports
and devices. Then, it is expressed that each USB device is
assigned to precisely one port in each test sequence. Finally,
USB devices must not be connected to the same port in any
sequence.

usbPort (right; left; back).
usbDevice (pl; p2; p3).

ing the USB ports do not result in larger SCAs, still SCAs
of size 8 can be obtained by computing the answer sets of
I13(8). Clearly, 8 is also an optimal bound. The runtime of
the ASP solver is not affected by the additional requirements.

Kuhn et al. deal with the issue of USB ports by adding
respective port assignments in a post-processing step once
an SCA is computed. However, they do not provide details
on which basis this is done, i.e., it is not clear if or in what
sense they strive for systematic coverage.

D. Expressing Preferences

Any answer set of I13(n) represents one admissible test
plan for the application under test. Although each such SCA
satisfies all of the requirements discussed so far, different
SCAs could differ in their fault detection potential.

We next augment program II3(n) by rules that state a
preference relation among solutions, similar to program
ngdy(-, -) from the previous section. In particular, although
any SCA guarantees full 3-way interaction coverage for some
specified events, the degree of 4-way coverage of events may
differ from one SCA to another. We will use the number
of covered 4-sequences as discrimination criterion regarding
the quality of solutions and consequently prefer SCAs that
cover more 4-sequences over SCAs that cover fewer.

1) Encoding: We define program I13(n) as II3(n) aug-
mented by the following rules:

1{port (N, X,Y) :usbPort (Y)}1 :— row(N), covered(W,X,Y,Z) :- hb(N,W,X),hb(N,X,Y),
usbDevice (X) . hb (N, Y, Z).
:— port (N,X,Y), port(N,Z,Y), X != 7. #maximize[covered(_,_,_,_)1].

Next, we state coverage criterion (i):

portCov(X,Y) :— port(N,X,Y).
:— usbDevice (X),usbPort (Y),not portCov(X,Y).

Lastly, we add rules for coverage criterion (ii):

portSeqg(X,Y,Z) :— usbPort(X;Y;Z),
X!=Y,X!=2,Y!=Z.
seqCov (N, X,Y,Z) :—hb (N, boot, X) ,hb (N, X, Y),
hb(N,Y,Z).
pSegCov (R,S,T) :- seqCov(N,X,Y,Z),
port (N,X,R), port(N,Y,S), port(N,Z,T).
:— portSeq(X,Y,Z), not pSeqgCov(X,Y,Z).

Let us denote the resulting program by I13(n).
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The first rule defines which 4-sequences are covered, the
second rule states that the number of covered 4-sequences
should be maximised.

2) Discussion: An SCA of size 8 corresponding to an
answer set of T13(8) is given in Table IIL. In the computation
of the SCA, clasp has been configured to optimise a
solution until no improvements can be found for 15 minutes.

On the other hand, Kuhn et al. has not handled preferences
over solutions at all. The algorithm of Kuhn et al. is tailored
for computing a single SCA. Thus, it may be hard to use such
an algorithm to directly deal with optimisation issues, since
this requires that solutions should be efficiently enumerated.
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This case study demonstrates that often generic SCAs
cannot be used in a real world scenario without significant
modifications. In general, such modifications lead to a
considerable overhead or are not feasible at all. By using
ASP, however, a test author has a tool to state different
requirements relevant for individual scenarios. Often, this
will need only little effort such as adding few rules.

V. RELATED WORK

Since the approach of Kuhn et al. [3], [4] is based on
a greedy algorithm for generating SCAs, which have to
be modified in a post-processing step to meet different
user requirements, the ASP-based approach introduced in
this paper is the first account of an approach for directly
generating SCAs in the presence of expressible constraints
and problem elaborations.

Closely related to our work are techniques for computing
covering arrays (CAs), which we will review next. There,
greedy algorithms that construct one row at a time are
quite common. The most prominent representative is the
AETG system [16]. Our greedy approach to compute SCAs
is close in spirit to AETG-like algorithms since it also
proceeds row by row. Also, meta-heuristics, like simulated
annealing, tabu search, or genetic algorithms, have been
applied for constructing CAs [17], [18], cf. respective
overview articles [1], [2]. However, neither greedy techniques
nor meta-heuristics can guarantee optimal bounds.

As a complete method being able to establish optimality
of arrays, different SAT encodings have been considered [19],
[20]. A distinctive feature of ASP compared to SAT is the
high-level modelling capabilities of ASP that allow to model
problems concisely at the first-order level as demonstrated by
our SCA encodings. SAT is certainly a promising approach
for tackling problems described in Section III, i.e., for
computing SCAs and checking optimality of upper bounds.
However, the problem variations discussed in Section IV
require a formalism that allows for elaboration-tolerant
representations, which is not a characteristic feature of SAT.
Regarding modelling, it is to mention that Hnich et al. [19]
and Banbara et al. [20] initially considered constrained
programming (CP) models, which are subsequently translated
to SAT. Though this has not been considered, further
constraints, at least forbidden tuples, could be incorporated
rather easily into the CP model. A comparison of ASP and
constrained (logic) programming (CLP) is given in a related
article [21]. There, the authors conclude that ASP allows for
more declarative and concise problem representation and is
easier to learn for newcomers than CLP. We also mention in
passing that a vital aspect of the CP models was related to
breaking symmetries, which obscures problem representation
somewhat. Though symmetry breaking is also an issue in ASP,
we experienced that adding symmetry-breaking constraints
to our ASP programs has a quite negative effect on the
performance of ASP solvers for improving upper bounds.
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Cohen, Dwyer, and Shi [22], [23] introduced approaches
that integrate techniques for generating covering arrays
with SAT to deal with constraints. Forbidden tuples are
represented as Boolean formulas and a SAT solver is used to
compute models. They integrated SAT with greedy AETG-
style algorithms and also with simulated annealing. Hence,
their approach is closely related to our integration of ASP
into a greedy procedure. Calvagna and Gargantini [24] follow
a similar approach but they use an SMT solver instead of a
SAT solver, which offers a richer language than plain SAT
solvers. In their approach, constraints are stated as formal
predicate expressions. Besides SMT, Calvagna and Gargantini
also considered a model checker for verifying test predicates.

Bryce and Colbourn [25] distinguish forbidden tuples and
tuples that should be avoided. They refer to the latter as
soft constraints and they present an algorithm for generating
CAs that avoids the violation of soft constraints. However,
their algorithm cannot guarantee that certain tuples are
avoided, hence it cannot deal with forbidden tuples or other
hard constraints. Using ASP, soft constraints can be easily
expressed by means of minimise or maximise statements.
We illustrated in the previous section how one can combine
hard integrity constraints with soft constraints to express that
uncovered 4-sequences should be avoided.

VI. CONCLUSION AND FUTURE WORK

In this paper, we dealt with the generation of SCAs, which
have recently been advocated as suitable combinatorial design
for event sequence testing [3], [4]. In particular, we applied
ASP as a declarative approach for generating SCAs. While
the only previously introduced algorithm is an AETG-like
greedy algorithm [3], [4], ASP can be used as an exact
method that combines high-level modelling capabilities with
highly performative search engines [8].

To summarise, our contribution is two-fold: On the one
hand, we introduced and showed feasibility of a new approach
for generating SCAs that can be readily used as it is.
On the other hand, we regard this work as a contribution
towards methodology. While ASP is well established in other
communities as a method to address problems from the
area of artificial intelligence and knowledge representation,
too little is known about ASP in the software-engineering
community. Hence, we want to promote ASP as an approach
to tackle challenging problems in the realm of combinatorial
testing. Besides improving the state-of-the-art of event
sequence testing, our aim is to show that ASP provides
a tool that enables a tester to rapidly specify problems and to
experiment with different formulations at a purely declarative
level. ASP solvers are then used for computing solutions
without the need of post-processing steps or developing
dedicated algorithms.

For future work, we plan to deal with versions of SCAs
for different testing applications like testing of concurrent
programs where the order of shared variable accesses was
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identified as crucial for triggering certain bugs that are
otherwise hard to evoke [6], [26].
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