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Abstract—Test models in model-based testing are typically
represented as state machines in terms of states and transi-
tions. These states and transitions also are typically the focus of
the test modeling approaches. Yet these test models are basical-
ly software components for the test automation domain, and
need to be considered from test automation and software engi-
neering viewpoints. In this paper, we describe a modeling
approach that takes better into account these viewpoints. Tak-
ing these viewpoints into account, we propose a modularization
approach for modeling in model-based testing and present a
tool for supporting this modularization approach.

Keywords-model based testing; test automation;
modularization

I. INTRODUCTION

Model-based testing (MBT) is an advanced test automa-
tion technique focused on generating test cases from state-
based models. In recent years several MBT tools have been
presented and the industrial adoption of MBT techniques has
been increasing [1,2]. The underlying modeling approach in
these different tools is typically state-based, augmented by
some programming language constructs to embed test in-
structions inside the test model to produce executable test
cases from the state-machine transitions. The test generation
is guided by the algorithms analyzing the model and parsing
these programming language constructs to form test se-
quences and test data.

As such, this modeling approach can be seen as similar to
other programming tasks. State transitions are executed to
move from one state to another and these executions are
performed in terms of programming language instructions
embedded in these transitions. Yet the test modeling ap-
proach is based almost solely on state-machine notions–
transitions between states and guard statements defining
when transitions are allowed. While it is recognized that
different domains and abstraction levels are important in
MBT (e.g., [3]), the domain of test automation in itself is not
considered in the common MBT modeling approaches. Rela-
tions between the test models and other software engineering
artefacts are sometimes considered (e.g., [4]) but not the
composition of the test models themselves. As these test
models are in practice software components in themselves,
we believe it is possible to provide a more efficient test mod-
eling approach by introducing good practices from the soft-
ware engineering domain, and specifically the software test
automation domain into the test modeling approach itself.

Based on this background, we present a modularization
approach for test modeling in MBT. This includes further

modularization of the different traditional state-machine
elements (transitions and guards) as well adding new ones
specific to test automation (test oracles as specific transi-
tions). We further present a modeling approach for describ-
ing test input and expected output in terms of a taxonomy of
runtime invariance as described by our earlier work [5].
Finally, we identify a set of additional topics for future study
that we believe will enable taking these approaches further.
Similar to our inspiring domain of generic software engineer-
ing, we believe the end result helps achieve easier test model
creation, evolution and maintenance. This forms a basis for
more effective test modeling. The approach is implemented
in a tool called OSMOTester, available as open-source [6].

The rest of the paper is structured as follows. Section II
describes the background concepts relevant to this paper.
Section III describes our test model modularization ap-
proach. Section IV discusses the concept in a wider context.
Finally, conclusions summarize the paper and future works.

II. PRELIMINARIES

This section introduces the background concepts relevant
for this paper.

A. Modularization
Modularization is one of the basic concepts in software

engineering in general. Van der Hoek and Lopez [7] provide
an overview of software modularization and its different
aspects in software engineering. They show how modulariza-
tion has been considered important from the early days of
programming and has since evolved to all aspects of modern
software engineering, and continues to be an important re-
search question. The aspects they describe include program-
ming languages, software architectures and software evolu-
tion. They also note the need to avoid excess modularization
where not necessary. In terms of addressing modularity, van
der Hoek and Lopez [7] list a number of benefits such as
reduced complexity, enabling parallel work, enabling evolu-
tion (easier understanding, resilience to change, etc.), and
easing reuse. The cost is described in terms of requiring
added effort for composition of the modular pieces to form a
whole.

While this shows that modularity is considered important
and is addressed in many software engineering domains, the
consideration in MBT has focused on state-machine concepts
[8] and not considered modularization in terms of test auto-
mation concepts and model elements generally. These are the
concepts we address in this paper, in providing extended
means to express modularity in test models, including im-
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portant test automation concepts, and in mitigating the costs
by providing automated support for module composition.

Considering modularity in software engineering in gen-
eral, Sarkar et al. [9] list seven main properties of modulari-
ty. Similarity of purpose refers to grouping together elements
related to providing a specific service. Encapsulation refers
to encapsulating the internals of a module from its environ-
ment and external collaborators. Compilability refers to pos-
sible issues in compiling a module due to issues such as
circular dependencies. Extensibility refers to providing
means to extend a specific module without accessing its
internals. Testability refers to the ease of testing the module.
Cyclic dependencies negate many of the benefits of modular-
ization and as such need to be avoided. Module size should
be overall roughly equal. In the following sections we pre-
sent our approach in Section IV also discuss how it relates to
these properties.

B. Example System
Throughout  the  rest  of  this  paper,  we  will  use  a  simple

vending machine example to illustrate the concepts dis-
cussed. This vending machine is a modified version of the
example used in [2]. The relevant part of the operation of the
machine can be described as the set of following properties:

Accepts 10, 20, and 50 cent coins.
When a total of 100 cents have been inserted the action
vend is enabled.
When vend is enabled, no more coins can be inserted
(this assumption is relaxed later).
When vend is activated, a bottle is produced, reducing
the total number available and resetting the number of
inserted cents to 0.
When the machine is empty (no bottles), all actions are
disabled.

Notice that for the sake of providing a concise example,
this model simplifies several aspects such as providing
change to the user when going over the total of 100 cents.

C. Model-Based Testing
The term model-based testing (MBT) can be defined in

different ways. We follow Utting and Legeard [2] who de-
scribe MBT as “Generation of test cases with oracles from a
behavioural model”. The model describes the expected be-
haviour of the system under test (SUT), and is used by a
MBT tool in order to generate test cases, in a form suitable
for the test target, such as method invocation sequences and
input data. The SUT output is checked by the test oracles
also encoded into the model.

A typical model applied in the context of MBT is based
on some form of states and transitions (sometimes referred to
as pre/post conditions, historical or functional notations [8]),
such as an extended finite state machine (EFSM). This de-
scribes the system behaviour in terms of states and transi-
tions between these states. Basically a state can be described
as a relevant combination of system internal variables. A
transition forms an invocation of some functionality of the
SUT, possibly affecting the observed state. Finally, guard
statements over the transitions impose constraints on when a
transition is allowed to happen.

To illustrate these concepts, Figure 1 shows an example
snippet of a state-machine for the vending machine. In this
example, state 1 is where the machine includes 10 bottles
and 100 cents have been inserted. As defined by the example
guard statements, the vend transition to state 2 is allowed if
there are bottles available in the machine and 100 cents have
been inserted.

Figure 1. Vending machine model snippet.

In this case, both of these conditions have been met and
thus this transition is enabled. Once it is taken, the number of
bottles is reduced to 9 as one is deducted and the number of
inserted cents is reset to zero. In this example, state is com-
posed of the number of bottles available as well as the num-
ber of inserted cents.

To produce suitable test cases from such a model, this in-
formation is then transformed to test data for the SUT as
defining the input to be given to invoke this transition on the
SUT. This can be, for example, a message to the vending
machine to produce a vend action. This is information en-
coded into the model by the user.

The test model must also define the expected output for
each taken transition (the test oracle) in order to validate the
correctness of the responses from the SUT for the given
input. For example, the vend request should impact the re-
ported number of bottles and produce a response as the “bot-
tle” itself. This can be encoded in the test model along with
the transition as an expected result, forming a test oracle.

Thus,  to  produce  a  suitable  test  model,  the  model  must
embed in itself means to identify test input to stimulate the
SUT, the expected output for each input to produce a test
oracle that gives verdict if the test passes or not, and a test
harness that actually links the execution of the tests with the
actual SUT.

III. TEST MODEL MODULARIZATION

The typical EFSM modeling notation for MBT was pre-
sented in the previous section. From this, we can list the
following components that are needed to produce a suitable
test model for test generation.

Transitions to define what are the possible test steps
for a specific SUT in its current state.
A representation of the SUT state for the model.
Test oracles to check the correctness of the received
output and the internal state of the SUT when differ-
ent transitions are taken.
Guard statements to define when a specific transition
is allowed to be taken.
Test input to be linked to each transition/test step.

A. Traditional Modeling Approach for MBT
Figure 2 shows an example snippet of a test model for the

vending machine, using the notation of the OSMOTester
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MBT tool. This is based on existing works such as Model-
JUnit described in [2], modified to better address the modu-
larization aspects discussed in this paper. In this example, the
variable sut represents the system and can either directly
delegate the commands to the SUT itself or to a scripter
writing a test script for later execution. The internal state of
the model is composed of the cents and bottles variables. The
guards are methods identified by the @Guard annotation and
providing a Boolean value (true for allowing the transition).
A transition is matched to its guard by the name given for
both the @Transition and @Guard annotations.
private int cents = 0;
private int bottles = 10;
private VendingMachine sut = new VendingMachine();

  @Guard("10cents")
  public boolean allow10cents() {
    return cents <= 90 && bottles > 0;
  }

  @Transition("10cents")
  public void insert10cents() {
    sut.insert(10);
    cents += 10;
    assertEquals(cents, sut.cents());
  }

  @Guard("vend")
  public boolean allowVend() {
    return cents == 100;
  }

  @Transition("vend")
  public void vend() {
    sut.vend();
    cents = 0;
    bottles--;
    assertEquals(cents, sut.cents());
    assertEquals(bottles, sut.bottles());
  }

Figure 2. Example model snippet.

Test oracles are represented inside the transitions by the
assertEquals() method calls (here from the JUnit test frame-
work [10]) that compare the state of the test model to the
state of the SUT. Input is given to the SUT in each transition.
For example, sut.insert(10) in the “10cents” transitions,
where 10 represents the number of cents inserted.

This is an example of the traditional approach to MBT,
where every transition encodes all test components, includ-
ing test input, and test oracles. In this approach, there is also
a direct mapping from a single guard to a single transition.
This is how traditionally most MBT tools expect the test
models to be provided and how they process them (see e.g.,
[1] for comparison).

Figure 2 also illustrated two basic aspects of a test model
in the terminology of this paper. What we term as control-
flow  in  this  aspect  is  the  way  the  MBT  tool  traverses  the
EFSM expressed by this model, in evaluating the guards and
taking  suitable  transitions  as  chosen  by  the  active  test  gen-
eration algorithm. Together with this, we use the term data-
flow to describe how the state variable values of the model
evolve as the MBT tool traverses over the control-flow. For
the vending machine, this translates to the evolution of the
cents and bottles variables over time.

B. Modularizing the Control-Flow Modeling
Besides representing the guards, transitions and states of

the EFSM as their own components, the traditional approach
presented in the previous subsection is not very modular. It
does not consider the separation of the different aspects of
test inputs and test oracles (and associated test output). Fur-
thermore, by assuming a direct one-to-one mapping from
guards to transitions, the flexibility of the EFSM modeling is
limited. As these test models are in practice software compo-
nents themselves, this leads to several problems from their
evolution and maintenance viewpoints such as duplication,
low cohesion and weak separation of concerns.

To address these issues, we introduce new test model
components and refine existing components. This includes
more advanced guard composition, extensions for more
explicit test oracles as components of the test model itself,
and objects for generating input data and evaluating output
data. In this subsection we discuss the control-flow elements
and in the following subsection the data-flow elements.

The typical approach to modeling guard statements in an
EFSM is to provide a specific guard attached to a specific
transition as illustrated by Figure 2, where both the 10 cents
and vend are transitions and have a single dedicated match-
ing guard statement. Taking the guard statement for 10 cents
as an example, it provides assertions over two separate con-
cepts, the number of bottles and the number of cents. To help
separate these concerns and provide a manageable modeling
notation, we extend guard modeling by allowing decomposi-
tion of guard statements for a transition into several separate
guards, and to share a single guard statement across several
transitions as needed.

The decomposition aspect is illustrated in Figure 3. This
decomposition provides for more cohesive structure where
different concerns are addressed by different guards. In this
case, the checks over the different state variables have been
split into separate guard statements, each mapping to their
specific  transition  by  their  name  (e.g.,  “10cents”).  The  end
result is more cohesive guard and better separation of model
concerns.
@Guard("10cents")
  public boolean checkMaxCents() {
    return cents <= 90;
  }

  @Guard("10cents")
  public boolean checkBottles() {
    return bottles > 0;
  }

Figure 3. Guard decomposition.

However, decomposition alone does not fully address the
need for providing cohesive guard statements over all the
different transitions in the model. For example, if we consid-
er the vending machine example, there are several transitions
for  inserting  different  types  of  coins  (10,  20,  50  cents). In
practice, none of these or the vend transition, should be al-
lowed to execute if there are no bottles available. To support
this, we need to provide specific shared guard statements.

This is illustrated in Figure 4 where the first guard
checkBottlesExist() is shared by all transitions in the model,
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and the second one is shared by the three listed transitions
(10, 20, 50 cents). The first of these examples is an example
suitable for our simple vending machine example as is. The
second one is an example of how we might model a common
guard in a case where the user is allowed to insert enough
coins for several bottles at once and we need to check that
the total of inserted coins does not go over the number of
available bottles.
  @Guard
  public boolean checkBottlesExist() {
    return bottles > 0;
  }

  @Guard({"10cents", “20cents”, “50cents”})
  public boolean allowMoreCoins() {
    return bottles >= (cents/100);
  }

Figure 4. Shared guard example.

In addition to having guards and transitions govern how
test sequences are generated, we have to consider the evalua-
tion  of  the  test  results.  This  is  done  by  a  test  oracle  and  is
traditionally part of each transition as shown in Figure 2 (the
assert statements). In many cases, specific checks are needed
for transitions to check their specific results. However, it is
also commonly important to evaluate the general state of the
model against the matching state in the SUT. To support
more explicit modeling of test oracles, we extend our model-
ing notation to add general test oracles for program state over
several transitions. These are similar in decomposition to the
shared guards and identified by the @Oracle annotation.
Figure 5 illustrates this with an example for the two state
variables shown in Figure 2 for the vending machine. In
practice, our MBT tool sees these as specific transitions to be
executed between other transitions. It is also possible to
relate them to specific transitions with the style of
@Oracle(“transition-name”) similar to guards. In our mod-
els, generic oracles apply regardless of existence of specific
ones. Any oracle matching a transition is always evaluated.
  @Oracle
  public void evaluateBottles() {
    assertEquals(bottles, sut.bottles());
  }

  @Oracle
  public void evaluateCents() {
    assertEquals(cents, sut.cents());
  }

Figure 5. Generic oracle example.

As these generic checks can be expressed separately and
evaluated specifically by OSMOTester, they not only allow
for the modular expression of generic test oracles but also
add more power to the verification functionality of the test
model and the MBT approach itself. In Figure 5, the state of
the model and the state of the SUT are now evaluated to
match continuously without the need to express them explic-
itly over each transition. Any deviation is thus captured as
soon as it occurs and not possibly several transitions later in
the vend transition (if at all) as was the case in Figure 2.

Finally, we also need to consider how and where test
generation should be stopped. The typical approach in MBT

is to describe the test model as a state machine with the ex-
pectation that test cases can be generated and the model can
be traversed at different points, where test generation should
practically always be enabled.  The choice of what transi-
tions to take and when to stop the test generation is mainly
up to the test generation algorithm. However, there are points
where it is possible that no transition is enabled and the typi-
cal modeling approach gives no indication to test generation
as to how this should be evaluated. The generic algorithms
used to generate tests from the test model cannot know how
to evaluate this condition for a specific SUT and its test
model. For example, in the case of the vending machine
example, if the vend() transition is taken 10 times, the num-
ber of bottles will reach zero and the shared guard checkBot-
tlesExist() will cause a state where no new transitions are
available. At this point, the test generation tool cannot know
if this should be treated as a failure or as a clue to end test
generation for this step.

To enable the model to express this kind of information,
we add a new annotation called @EndCondition and as illus-
trated in Figure 6. When a method with this annotation re-
turns true, it is taken as an indicator that the current test
generation from this model should be stopped and a new test
case should be started. If no transitions are available and
there is no @EndCondition that returns true, the current test
case is reported by the tool as a failure. This will most likely
indicate a problem in the test model itself. It should be noted
that this annotation is not required for the test generation
algorithms to stop test generation but they can also stop in
other phases where found appropriate by the algorithm. It
can also be used at any point to describe conditions to stop
test generation, regardless of the state of the model.

 We also provide specific notations for setting up new
test cases and shutting down a running system using nota-
tions such as @BeforeTest, @AfterTest, @BeforeSuite, and
@AfterSuite. We borrow these concepts from familiar tools
such as JUnit [10] and TestNG [11], helping also to provide
familiar concepts for other tool users. They basically define
methods that are to be executed before and after a test case or
a test suite respectively, regardless of the algorithms and end
conditions.
  @EndCondition
  public boolean endIfNoBottles() {
    return bottles == 0;
  }

Figure 6. Expressing end conditions.

Using our new control-flow modeling notations we can
thus produce the model shown in Figure 7. Notice that there
is now only a single test oracle where all test assertions are
centralized. The transitions can now focus on performing
actions on the SUT and updating the model state according-
ly. Also, the transition 10cents no longer requires a guard
statement as it is fully covered by the shared guard statement
(also applying to vend). Finally, the model can no longer
enter an unknown state as the end condition for a state with
no bottles is explicitly specified.
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private int cents = 0;
private int bottles = 10;
private VendingMachine sut = new VendingMachine();

  @Guard
  public boolean checkBottlesExist() {
    return bottles > 0;
  }

  @Transition("10cents")
  public void insert10cents() {
    sut.insert(10);
    cents += 10;
  }

  @Guard("vend")
  public boolean allowVend() {
    return cents == 100;
  }

  @Transition("vend")
  public void vend() {
    sut.vend();
    cents = 0;
    bottles--;
  }

  @Oracle
  public void evaluateState() {
    assertEquals(bottles, sut.bottles());
    assertEquals(cents, sut.cents());
    assertTrue(cents >= 0);
    assertTrue(cents <= 100);
    assertTrue(bottles >= 0);
  }

  @EndCondition
  public boolean endIfNoBottles() {
    return bottles == 0;
  }

Figure 7. The model snippet in updated notation.

C. Modularizing the Data-Flow Modeling
The modeling notation described so far in the previous

section shows how we can modularize the control-flow as-
pects of test modeling in MBT. From the viewpoint of data-
flow we need to consider also the input- and output-data
values and their respective constraints. Input data needs to be
generated for the different parameters given to the SUT, and
needs to respect the set of expected constraints for the SUT
functions they are linked to. But since full coverage of most
input combinations is not possible to achieve, we must also
define a set of constraints to define what type of test data
should be generated. The output must similarly consider the
constraints for the output values received from the SUT as
response to the provided stimuli (input).

To support modeling these data-flow constraints, we pro-
vide a generic library of objects we term as invariants ob-
jects. These are based on our previous work in identifying
different aspects of runtime invariance in software behavior
[5]. Each invariant object allows one to specify a set of con-
straints over the data value it represents and to use these as a
basis to perform actions such as generate input data or evalu-
ate the conformance of given (output) values. These allow
for addressing data-flow invariance for a specific value in a
single object, effectively modularizing the constraints over a
single variable in a single object.

An updated model for the vending machine using this no-
tation is shown in Figure 8. This time, the use of the invari-
ant objects for data-flow representation allows for a compact
representation, and this includes transitions for all possible
coin types and vending. By adding the shared guard and end
condition from Figure 7 the model will include all the im-
portant model elements for the vending machine. The invari-
ant objects presented in the figure are specified for integer
data types,  and we currently support  the basic data types of
integers, floating points, Booleans and character strings. The
constraints supported by these are defined according to the
taxonomy presented in [5].

Note that this model slightly changes the expected behav-
ior of the vending machine towards a more realistic one. This
specification now accepts any number of coins and deducts
100 from the number of inserted coins when vend is applied.
It also collapses all insertXXCents() transitions (10, 20, 50)
from the previous models into a single one, where the input
is represented by a single invariant object defining the al-
lowed input values. This is the ci object (short for centInput
for space reasons in the figure) for the input value defini-
tions. Test oracle expectations for both cents and bottles
variables are expressed by the co and bo variables (short for
centOracle and bottleOracle for space reasons in the figure).
  private IntInvariant ci = new IntInvariant();
  private IntInvariant co = new IntInvariant();
  private IntInvariant bo = new IntInvariant();

  public void TestModel() {
    //set up allowed input values
    ci.addValue(10);
    ci.addValue(20);
    ci.addValue(50);

    //set up evaluation constraints
    co.setMin(0);
    bo.setMin(0);
    bo.setMax(10);
  }

  @Transition("insertCoins")
  public void insertCents() {
    int coin = ci.input();
    sut.insert(coin);
    cents += coin;
  }

  @Guard("vend")
  public boolean allowVend() {
    return cents >= 100;
  }

  @Transition("vend")
  public void vend() {
    sut.vend();
    cents -= 100;
    bottles--;
  }

  @Oracle
  public void evaluateState() {
    assertEquals(bottles, sut.bottles());
    assertEquals(cents, sut.cents());
    co.evaluate(cents);
    bo.evaluate(bottles);
  }

Figure 8. Data-flow modularization.
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D. Further modularization support
In the previous sections we have shown how to build a

modularized test model in our notation. So far we have in-
cluded the elements needed to build a useful model for gen-
erating test sequence and test data. Additionally, it is also
important in test automation to be able to express how the
generated test cases cover different requirements, a concept
also supported by different MBT tools [2]. We support this
through a special requirements object as illustrated in Figure
9. Note that defining the requirements twice is not required
(add() and covered() methods) but doing so allows the tool to
report the coverage percentage.
  @RequirementsField
  private Requirements req = new Requirements();
  @TestSuiteField
  private TestSuite s = null;

  public TestModel() {
    req.add(“vend”);
  }

  @BeforeTest
  public void startTest() {
    System.out.println(“Starting Test “+s.count());
  }

  @Transition("vend")
  public void vend() {
    req.covered(“vend”);
    …
  }

Figure 9. Additional supported test model components.

Figure 9 also illustrates how the modeler can access the
test generation history by adding a TestSuite field that will be
initialized by the MBT tool before starting test generation.
This provides useful information for evaluating and debug-
ging the test model itself. It also allows the user access to the
current test case object, for example, enabling the user to set
the test case as passed or failed for any special reporting
extensions in the MBT tool.

So far we have discussed several new notations for MBT
that help produce more modular test models. However, an
important question of decomposing the objects representing
this notation remains. Besides expressing all elements in a
single model, we also support decomposing the model ob-
jects into several sub-models. When these are registered into
OSMOTester, it will parse them all and match all the ex-
pressed model elements into a single internal representation.
This effectively allows one to, for example, represent the test
oracles in one partial model, guards in another, transitions in
a third, and the remaining ones in fourth. Merging is based
on handling the model element naming across the different
model objects as if they were one.

Finally, we also support the basic set of modular aspects
for any MBT tool as discussed in [12]. It is possible to plug
in different test generation algorithms, algorithms for defin-
ing length of generated test suites and test cases, and to at-
tach various test harnesses and test analysis tools. Figure 10
shows an example of a test sequence visualization tool we
provide as a plugin to the core OSMOTester itself, using as
output a test listener interface provided by the core.

Figure 10. Test sequence visualization.

This visualization shows each transition in the test model
as a box, and the sequences of transitions taken as arrows
from one to another. In this case, the user has chosen to use
“10cents” as the default state, which is why the arrows seem
to originate from this box. This is just one of the available
visualizations as an example of something that can be
plugged in to describe the test cases.

E. Modularization Summary
Figure 11 illustrates the overall flow of the different con-

trol-flow modules in our model. Before test suite generation
commences, @BeforeSuite annotated methods are executed.
Before each new test generation, @BeforeTest annotated
methods are executed. @Guard methods are checked for
enabled transitions, of which one is picked by the test gener-
ation algorithm. After each transition any associated
@Oracle methods are executed. If @EndConditions exist,
they are evaluated for stopping criteria for a single test case.
If not, the criterion is left to the test generation algorithm.
@AfterTest methods are executed when a test generation
stops, and @AfterSuite when all test generation stops.

Data-flow support is defined in terms of invariant objects
defining constraints over data-flow values that support gen-
erating input and evaluating output. Coverage requirements
can be expressed in the test model as objects of their own,
and models can be built from separate model objects as best
seen fit. We see further developments in terms of more com-
plex combinations of data-flow and control-flow elements as
discussed next.

In relation to the different properties of modularization
that were discussed in section II.A, we improve on several of
these properties. Similarity of purpose is supported by more
explicit grouping of elements such as test oracles. Extensibil-
ity is supported by allowing composition of the model ele-
ments (test steps/transition components) from several differ-
ent objects and linking them automatically together.  It is
possible to add new test oracles, guards and other elements
as separate model objects without touching existing ones
(also helping address similarity composition). We avoid
cyclic dependencies and enhance compilability by keeping
elements separate and associating by the transition name
metadata only (vs. strict static linking). Our framework is
encapsulated in a set of simple annotations, providing only
minimal exposure on the test models. We make module size
easier to manage with finer granularity of model elements.
Testability is mostly handled in itself by generating tests
from the model and executing them against the SUT as in
MBT in general, verifying both the test model and the SUT.
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@BeforeSuite

@BeforeTest

@Guard

@Transition

@Oracle

@EndCondition

@AfterTest

@AfterSuite

[enabled]

[true]

[false]

Figure 11. Control-Flow Summary.

IV. DISCUSSION

Modularization is one of the key aspects of good soft-
ware engineering in general. As we have discussed and illus-
trated in the previous sections, test modeling in MBT is
practically a software engineering activity in itself. It is basi-
cally about engineering a piece of software that generates a
test suite in terms of the MBT framework, provided by avail-
able tools and libraries. While the traditional test modeling
approaches for MBT have been lacking proper modulariza-
tion mechanisms, we provide a set of means to achieve in-
creased modularity in test modeling. This provides for in-
creased separation of concerns, more cohesion and less du-
plication. As generally in software engineering, this helps
achieve higher maintainability and supports model evolution.

While we advocate the use of our new modularized mod-
eling notation, our approach also fully supports the more
traditional modeling approach. It is possible to fully compose
the model of transitions, guards and embedding all the in-
formation inside these without any modularization. This
means just using a specific subset of our modeling notation
(@Transition and @Guard). It is our experience that the best
result in practice is to combine parts of the different ap-
proaches where most benefit can be gained. That is, modu-
larizing the most common parts while keeping specific parts
where it makes more sense according to the case at hand.

As our models are written in a standard programming
language (Java), it is also possible to decompose the models
into modules in terms of classes and methods. This can help
achieve some of the benefits discussed here in itself (by
using classes and objects), but it is also our experience that

as the model is made more explicit in terms of generic test
oracles, guards and invariant objects, this helps build a more
explicit and understandable model. This also further helps in
the model creation, evolution and maintenance, where hu-
man understanding is typically the key factor in software
engineering. The use of a common programming language
also helps more generic modularization as we can make use
of the wide set of existing Java libraries.

Another aspect related to the modularization of test mod-
els is the modularization of the test models into representing
different viewpoints of the SUT behavior. While the test
models we have presented in this paper describe the expected
correct behavior of the vending machine, another interesting
aspect is the modeling of the failure behavior of the SUT. In
case of the vending machine, this would include trying to
insert incorrect values, access the vending functionality with
less than 100 coins, using negative values, and so on. These
different viewpoints can be modeled as separate models
addressing these specific constraints along with matching
test oracle definitions. This is a form of modularization itself.

Related to the @Oracle elements we have also found that
it is useful to be able to access selected pre-transition state
when checking the overall state after the transition. Similarly
we have noted that this notation can be used for extended
purposes such as supporting data collection for test reporting.
Thus we are looking into options to extend this to support
both with @Pre and @Post transition annotations as exten-
sions of the current @Oracle approach.

In relation to the invariant objects, we described our sup-
port for test modeling in terms of data-flow invariants based
on our earlier work on creating a taxonomy of runtime invar-
iance  in  software  behavior  [5].  While  we  currently  use  this
invariance to provide support for data-flow modeling, the
taxonomy in itself is more extensive in describing also pat-
terns over control-flow and various invariant scopes. This is
a topic for future work in providing more extensive support
for modeling software behavior.

Our experience thus far has been that we can modularize
control-flow in terms of the generalized test oracles and
guard conditions (in a way defining invariant control-flow
patterns), but the more advanced support in terms of runtime
invariance is challenging to express in a textual support in a
way that is natural for human consumption. In terms of data-
flow modeling, we also see the use of data-flow constraints
to support test generation more widely in terms of boundary
conditions, category partitions, and other relevant test data
constraint and analysis definitions. This requires pairing data
generation algorithms with the invariant constraint defini-
tions. At the same time our experience has also been that
using more domain friendly names (e.g., splitting integer
invariants into value range and similar objects) is easier to
understand and we are evolving the expressiveness of the
data-flow elements into this direction. These are some of the
more advanced research topics in relation to invariant objects
that are out of the scope of the modularization approach
described in this paper but relevant for future studies.

Similarly related to extending the modeling approach is
the combination of different properties of invariance ex-
pressed in the model. For example, in the model presented in
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Figure 8, the ci variable presents a set of input constraints for
the generated test data related to the operations over the
coins state variable. At the same time the co state variable
presents a set of constraints over the expected values of the
same state variable. Expressing these relations such as how
the input should be constrained in relation to the current
value of the state variable is challenging. This also applies to
combining these invariants more generally over different
control-flow aspects and data-flow aspects. Some viable
approaches could be found in existing works such as com-
bining evolutionary testing with MBT (e.g., [13]).

Many of these aspects come back to the limitations of the
textual modeling approach in relation to the advanced con-
cepts presented by the taxonomy in [5]. Thus one interesting
aspect in relation to this is the application of visual modeling
tools and domain-specific concepts. We have previously
studied combining visual representations in terms of domain-
specific models (DSM) to provide more visual support for
test modeling [14]. Combining this to provide more intuitive
support for representing complex interactions over the invar-
iant properties is another interesting research topic for future
studies. While DSM commonly considers the models it
builds from the perspective of the application domain of a
specific company, the modeling notation we describe here
can also be seen as a form of a domain specific language for
test modeling in the domain of MBT.

While we have so far discussed mainly aspects related to
dynamic analysis and modeling related aspects, there are also
several points where static analysis can be useful. This in-
cludes algorithms and techniques such as symbolic execution
to generate test paths to reach defined requirements, test end
conditions, automated input data boundary analysis, and
other similar optimizations. These are aspects supported
already in many advanced (commercial) MBT tools. So far,
we have focused on the modularization of the dynamic
runtime aspects. Extending this to the domain of static analy-
sis of these models is out of the scope of our work but an
interesting and relevant topic for future works.

We have applied our approach and tool on several com-
mercial projects and keep evolving it according to our expe-
riences in these projects. Due to the nature of the projects we
cannot disclose their details. However, they have been suc-
cessful in improving the aspects of model creation, manage-
ment and evolution described here. Similarly, it has helped
make the adoption of MBT approach easier, also leading to
reduced costs in test automation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a modularization ap-
proach for test models in model-based testing. This approach
extends the traditional approach that focuses on the state-
machine abstraction by considering common software engi-
neering aspects and specific components of test automation.
While the traditional approach focuses on state-machine
abstractions in terms of guards and transitions, we extend
this to include new state-machine elements for test models,
including shared guards over several transitions, generic test
oracles over the general system tests, and test end conditions.
These are mainly related to the control-flow aspects of be-

haviour modeling, and we further provide added support for
data-flow representations in terms of objects describing
properties of runtime invariance over system behavior.

Finally, we identify potential topics for future works in
terms of extending invariant object representations to con-
trol-flow aspects and their relation to the data-flow over
different scopes (as identified in our previous work), and also
more extensively in terms of test automation components
such as input value boundary and category analysis. We also
identify extensions of the modularization into the domain of
static analysis, and providing more human-friendly modeling
notations for complex models and invariant objects as inter-
esting topics for future work.
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