
Using Assertion-Based Testing in String Search Algorithms

Ali M. Alakeel1 and Mahmoud M. Mhashi2

College of Computers and Information Technology
University of Tabuk

P.O.Box 1458, Tabuk 71431, Saudi Arabia
alakeel@ut.edu.sa1

mmhashi@ut.edu.sa2

Abstract—Software programs may contain faults that cause them
to work improperly. Assertion-Based testing has been shown to
be effective in detecting program faults as compared to
traditional black-box and white-box software testing methods.
String search algorithm problem is one of the most important
problems that had been investigated by many studies to find all
the occurrences of a pattern (with size m characters) occurs in
text (with size n characters), where m<<n. String search
algorithms are one of the main elements of Information Retrieval
Systems which are found in a wide range of applications such as
military applications, aircraft software, medical applications, and
commercial applications. Therefore, the correctness of any string
search algorithms is vital. Different errors might occur during
the implementation of any of these algorithms. An example of
error, if the shift distance becomes zero, then the algorithm will
not move forward. In this research, we show that Assertion-
Based software testing may be effective in uncovering software
faults associated with string searching algorithms. Our
preliminary experimentation with this approach shows that
several types of errors associated with string searching
algorithms are uncovered using Assertion-Based software testing.

Keywords-Software testing; Assertion-Based Testing; Program
Assertions; String Search Algorithms.

I. INTRODUCTION
Software programs may contain faults that cause them to

work improperly. The effects of software failure could be very
disastrous and life threatening. For example, a software failure
may cause an airplane to crash, a nuclear factory to meltdown
or even to cause a military missile to hit the wrong target, e.g.,
[22]. For this reason, software testing methods has gained so
much attention from researchers and industry practitioners
since computers were invented.

Software testing is a very labor intensive task and cannot by
any means guarantees the correctness of any software or that
the software is error-free. However, thorough and rigorous
software testing may increase the confidence in the software
under test. There are two main approaches to software testing:
Black-box and White-box. Test data generation is the process
of finding program input data that satisfies a given criteria. Test
generators that support black-box testing create test cases by
using a set of rules and procedures; the most popular methods
include equivalence class partitioning, boundary value analysis,
cause-effect graphing. White-box testing is supported by
coverage analyzers that assess the coverage of test cases with
respect to executed statements, branches, paths, etc.

Programmers usually start by testing their software using
black-box methods against a given specification. By their
nature black-box testing methods might not lead to the
execution of all parts of the code. Therefore, this method may
not uncover all faults in the program. To increase the
possibility of uncovering program faults, white-box testing is
then used to ensure that an acceptable coverage has been
reached, e.g., branch coverage.

Assertion-Based testing [4-5, 7] has been shown to be
effective in detecting program faults as compared to traditional
black-box and white-box software testing methods. Given an
assertion A, the goal of Assertion-Based testing is to identify
program input for which A will be violated. The main aim of
Assertion-Based Testing is to increase the developer
confidence in the software under test. Assertion-Based Testing
is intended to be used as an extra and complimentary step after
all traditional testing methods have been performed to the
software. Assertion-Based Testing gives the tester the chance
to think deeply about the software under test and to locate
positions in the software that are very important with regard to
the functionality of the software. After locating those important
locations, assertions are added to guard against possible errors
with regard to the functionality performed in these locations.

String search algorithms are one of the main elements of
Information Retrieval Systems (IRS) which are found in a wide
range of applications such as military applications, aircraft
software, medical applications, and commercial applications.
If an information retrieval system fails to return the correct
piece of information, the results could be disastrous. For
example, if a medical information retrieval system fails to
return the exact prescribed medicine, this action may
jeopardize the patient's life. Also, if a missile control system
fails to retrieve the exact coordinates of the target, the results
could be disastrous. Therefore, the correctness of any string
search algorithms is vital. String searching algorithms are so
fundamental that most computer programs use them in one
form or another.

In this paper, we show that Assertion-Based software
testing [4-5, 7] may be effective in uncovering software faults
associated with string searching algorithms. Since the time
Assertion-Based testing was proposed in [4] and to the best of
our knowledge, this research is the first to present an
application a proposed testing methodology, i.e., Assertion-
Based testing, to a well known reported algorithms, i.e., string
search algorithms. For the purpose of this research we have
selected a number of well-known published string searching
algorithms, gave them to programmers to implement them and
then used Assertion-Based software testing to test these

1

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

implementations. Our result is presented in a case study
presented in Section IV of this text. It should be noted that the
efficiency, performance or the competency of each string
search algorithm, considered in our study, are not questioned.
Our main objective is to show that Assertion-Based testing
may be effective during the development and testing of such
algorithms.

The rest of this paper is organized as follows. Related work
is discussed in Section II. Section III presents an application of
Assertion-Based software testing method to the string search
algorithms. In Section IV, we present a case study, followed
by our conclusion and future work in Section V.

II. RELATED WORK

A. String Search Algorithms
Exact string searching is one of the most important

problems that had been investigated by many studies, e.g., [8-
21]. The problem of string searching may be stated as follows.
Given a text string (Text) of size n and a pattern string (Pat) of
size m (where n >> m), find all occurrences of Pat in Text [8].

As reported in the literature, many exact string searching
and pattern matching algorithms were introduced and their
performance was investigated against classical exact string
searching algorithm such as Naïve (brute force) algorithm and
Boyer-Moore-Horsepool (BMH) algorithm. Some of these
algorithms preprocess both the text and the pattern, e.g., [9]
while others need only to preprocess the pattern, e.g., [10, 11].
In all cases, the exact string searching problem consists of two
major steps: checking and skipping. The checking step itself
consists of two phases:

1) A search along the text for a reasonable candidate
string

2) A detailed comparison of the candidate against the
pattern to verify the potential match.

Some characters of the candidate string must be selected
carefully in order to avoid the problem of repeated examination
of each character of text when patterns are partially matched.
Intuitively, the fewer the number of character comparisons in
the checking step the better the algorithm is. Different string
search algorithms may differ in the way they implement the
checking process, e.g., [12, 13]. After the checking step, the
skipping step shifts the pattern to the right to determine the
next position in the text where the substring text can possibly
match with the pattern. The reference character is a character in
the text chosen as the basis for the shift according to the shift
table. Some string search algorithms may use one or two
reference characters and the references might be static or
dynamic [14, 15]. Additionally, some algorithms focus on the
performance of the checking operation while others focus on
the performance of the skipping operation [16]. The shift
distance used may differ from one string search algorithm to
another; it ranges from only one position in the Naïve
algorithm, up to m positions in Boyer-Moore-Horspool
algorithm [11], m+1 positions in Raita's algorithm [10], and up
to 3m+1 positions in CSA algorithm [17].

From the previous discussion, it can be noticed that there
are different factors and elements of string search algorithms

that may lead to program errors during the implementations of
these algorithms into real program’s code. Some of these
elements are the starting point of checking, the direction of
checking, the skipping strategy, the number of static or
dynamic reference characters, and different shift distances.
Thus it is possible that errors might occur during the
implementation of any string searching algorithm. For instance,
the shift distance might become zero or the number of
occurrences of Pat in Text found by the algorithm might be less
than or greater than the actual occurrences of Pat in Text. In a
case study, presented in Section IV, we found out that
Assertion-Based testing may be effective in catching some of
the faults associated with string search algorithms.

B. Assertion-Based Softwre Testing
Assertions are recognized as a supporting aid in revealing

faults during software testing, debugging and maintenance,
e.g., [1-7]. Therefore, many programmers place them within
their code in positions considered error prone or have the
potential to lead to software crash or failure. An Assertion
specifies a constraint that applies to some state of computation.
The state of an assertion is represented by two possible values:
true or false. For example, assert(0<index<=100), is an
assertion that constraints the values of some variable “index” to
be in the range of 1 and 100 inclusive. As long as the values of
“index” is within the allowed range the state of this assertion is
true. Any other values beyond this range, however, will cause
the state of this assertion to become false which indicates the
violation of this assertion.

Many programming languages support assertions by
default, e.g., Java and Perl. For languages without built-in
support, assertions can be added in the form of annotated
statements. For example, [4] presents assertions as commented
statements that are pre-processed and converted into Pascal
code before compilation. Many types of assertions can easily
be generated automatically such as boundary checks, division
by zero, null pointers, variable overflow/underflow, etc.
Beyond simple assertions that can easily be generated
automatically, reference [4] presents a method to generate
more complex assertions for Pascal programs. For this reason
and to enhance their confidence in their software, programmers
may be encouraged to write more programs with assertions.

It should be noted that writing the proper type of assertions
and choosing the proper locations to inject them into programs
depend heavily on the tester’s experience and knowledge of the
program under test. As mentioned previously, a simple tool
may be used to automatically generate assertions in certain
locations of the program which guard against errors such as
division by zero, array boundary violations, uninitialized
variables, stack overflow, null pointer assignment, pointer out
of range, out of memory (heap overflow), and integer / float
underflow and overflow [3]. However, there are application-
specific locations in the program itself that may need to be
guarded by assertions depending on the importance of these
locations to the correctness of the application. For example, in
string searching algorithms, computing the location of the
pattern in the input string and index manipulation during the
checking and skipping process are very important to the
correctness of such algorithms.

2

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

1 #include <iostream>
2 #include <iomanip>
3 #include <cstring>
4 using std::cout;
5 using std::cin;
6 #define ASIZE 300
7 #define XSIZE 300
8 void preBmBc(char *x, int m, int bmBc[]) {
9 int i;
10 for (i = 0; i < ASIZE; ++i)
11 bmBc[i] = m;
12 for (i = 0; i < m - 1; ++i){
/* A1: (x[i]>=0 and x[i]<ASIZE) */ // Assertion No. 1
13 bmBc[x[i]] = m - i - 1;
 }
 }
14 void suffixes(char *x, int m, int *suff) {
15 int f, g, i;
16 suff[m - 1] = m;
17 g = m - 1;
18 for (i = m - 2; i >= 0; --i) {
/* A2: (i + m - 1 - f)>=0 and (i + m - 1 - f)<XSIZE) */ // Assertion No. 2
19 if (i > g && suff[i + m - 1 - f] < i - g){
/* A3: (i)>=0 and (i)<XSIZE) */ // Assertion No. 3
20 suff[i] = suff[i + m - 1 - f];
 }
21 else {
22 if (i < g)
23 g = i;
24 f = i;
25 while (g >= 0 && x[g] == x[g + m - 1 - f])
26 --g;
/* A4: (i)>=0 and (i)<XSIZE) */ // Assertion No. 4
27 suff[i] = f - g;
 }
 }
 }
28 void preBmGs(char *x, int m, int bmGs[]) {
29 int i, j, suff[XSIZE];
30 suffixes(x, m, suff);
31 for (i = 0; i < m; ++i)
32 bmGs[i] = m;
33 j = 0;
34 for (i = m - 1; i >= 0; --i)
35 if (suff[i] == i + 1)

36 for (; j < m - 1 - i; ++j)
37 if (bmGs[j] == m)
38 bmGs[j] = m - 1 - i;
39 for (i = 0; i <= m - 2; ++i){
/* A5: (m - 1 - suff[i])>=0 and (i)<XSIZE) */ // Assertion No. 5
40 bmGs[m - 1 - suff[i]] = m - 1 - i;
 }
 }
41 void BM(char *x, int m, char *y, int n) {
42 int i, j, bmGs[XSIZE], bmBc[ASIZE];
 /* Preprocessing */
43 preBmGs(x, m, bmGs);
44 preBmBc(x, m, bmBc);
 /* Searching */
45 j = 0;
46 while (j <= n - m) {
47 for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i);
48 if (i < 0) {
49 cout<<"\nAn occurrence at location "<<j;
50 j += bmGs[0];
 }
51 else{
 /* A6: (i>=0 and i<XSIZE) */ // Assertion No. 6
/* A7: ((y[i + j])>=0 and (y[i + j])<ASIZE) */ // Assertion No. 7
52 if(bmGs[i] > bmBc[y[i + j]] - m + 1 + i)
53 j += bmGs[i];
54 else
55 j += bmBc[y[i + j]] - m + 1 + i;
 }
 }
 }
56 int main()
 {
57 char Text[] = "test This is a test for string test";
58 char Pat[] = "test";
59 int m = 4;
60 int n = 35;
61 cout << "\nInput text: " << Text << "\nPattern: " << Pat;
62 BM(Pat, m, Text, n);
63 cout<< "\n Press ENTER to exit";
64 getchar();
65 return 0;
}

Figure 1. Boyer-Moore Algorithm with Assertions

During our case study presented in Section IV, assertions were
injected in locations that are error-prone and crucial to the
correctness of a string search algorithm. This knowledge is
gained through our investigation of each string search
algorithm considered during our experiment.

III. USING ASSERTION-BASED TESTING IN STRING SEARCH
ALGORITHMS

In this section, we present an application of Assertion-
Based software testing to the Boyer–Moore string search
algorithm [11]. Our complete case study is presented in section
IV.

A. Boyer–Moore Algorithm
The Boyer–Moore string search algorithm [11] is a

particularly efficient string searching algorithm. It has been the
standard benchmark for the practical string search literature.
The algorithm preprocesses the target string (key) that is being

searched for, but not the string being searched in (unlike some
algorithms that preprocess the string to be searched and can
then amortize the expense of the preprocessing by searching
repeatedly). The execution time of the Boyer-Moore algorithm,
while still linear in the size of the string being searched, can
have a significantly lower constant factor than many other
search algorithms: it doesn't need to check every character of
the string to be searched, but rather skips over some of them.
Generally the algorithm gets faster as the key being searched
for becomes longer. Its efficiency derives from the fact that
with each unsuccessful attempt to find a match between the
search string and the text being searched, it uses the
information gained from that attempt to rule out as many
positions of the text as possible where the string cannot match.
Figure 1 shows an implementation of Boyer-Moore Algorithm
after assertions have been added to it. In this program we
inserted a total of seven assertions in different positions of the
code. Assertions are numbered and shown in bold in Figure 1.

After applying Assertion-Based Testing to Boyer-Moore
Algorithm of Figure 1 Assertion #2 was violated. As described
in [4], during Assertion-Based Testing, each assertion found in
the program under test is converted into a corresponding code

3

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

during a pre-processing stage. For example, Assertion#2 of
Figure 1 will be converted into the following code:

18.1 if (!((i + m - 1 - f)>=0))
18.1.1 cout << "\nAssertion 2a Violation!";
18.2 if (!((i + m - 1 - f)<XSIZE))
18.2.1 cout << "\nAssertion 2b Violation!”;

Considering the above segment of code, according to
Assertion-Based Testing presented in [4], Assertion#2 is
violated if either of statements 18.1.1 or 18.2.1 is executed.
During our experiment, Assertion #2 was violated through the
execution of statement 18.1.1. The violation of Assertion #2
has detected a fault in this program which is caused by the use
of an uninitialized variable “f” used in statement#19 in Figure
1. Note that uninitialized variables might cause very serious
bugs in the program due to the nondeterministic values those
variables might take during the course of different program
executions. It should also be noted that many forms of
uninitialized variable go undetected by C++ compiler.

IV. CASE STUDY
For the purpose of this case study, we have selected, from

the literature, seven different string searching algorithms.
These algorithms are implemented in C++ by three
programmers with more than 5 years of experience in software
development. C++ language was selected because it is widely
used in the industry in our area and in America. The programs
are executed and tested using traditional software testing
methods. Specifically the following software testing methods
were used: black-box testing as represented by boundary value
analysis and equivalence class partitioning while white-box
testing is represented by branch coverage. Using these
traditional software testing methods, we were not able to
uncover any faults in any of the seven programs. As stated in
[4], Assertion-Based testing is intended to be used as an extra
and complimentary step after all traditional testing methods
have been performed to the software. Assertion-Based Testing
gives the tester the chance to think deeply about the software
under test and to locate positions in the software that are very
important with regard to the functionality of the software. After
locating those important locations, assertions are added to
guard against possible errors with regard to the functionality
performed in these locations. Therefore, and in order to
uncover any faults, we injected assertions in certain locations
of each of the selected string search algorithms used in this
study and then applied Assertion-Based Testing as described in
[4]. As reported in Table I, we were able to uncover program
faults, in all of the seven programs, which were left uncovered
by traditional software testing methods or by tests performed
by the original authors of those string matching algorithms.

Information presented in Table I may be interpreted as
follows. Column#1 and Columun#2 show the name of the
string search algorithm and the number of assertions inserted in
each one, respectively. Column#3 shows the number of
assertions that were violated during Assertion-Based software
testing. For example, row#3 of Table I shows that in an
implementation of the Horespool algorithm [18], a total of
three assertions were inserted in this program. Two out the

three assertions (66.7%) were violated during Assertion-Based
testing. In this case study, the number of assertions ranges from
3 to 18 assertions. The percentage of assertion violations
ranges from 5.5% to 66.7% and the percentage of the tested
algorithms that contains faults was 100%. It should be noted
that the result of this experiment might be different for
different programs with different types of assertions. The
purpose of this case study is only to show that Assertion-Based
Testing [4-5, 7] may be effective in detecting program faults
when applied to the considered set of string search algorithm
implementations used in this experiment. We emphasize that
the quality and the merits of the string search algorithms
themselves are not questioned and is beyond the scope of this
research.

TABLE I. CASAE STUDY RESULTS

Algorithm’s Name #Assertions #Violations
Boyer-Moore Algorithm 7 1

CSA Algorithm 13 1
Horespool Algorithm 3 2

KR Algorithm 4 1
AXAMAC Algorithm 9 1
COLUSSI Algorithm 18 1

V. CONCLUSION and FUTURE WORK
In this paper, we presented a new approach in which

Assertion-Based testing is utilized to find software faults
associated with string searching algorithms. We performed a
case study in which a set of well-known string search
algorithms are implemented and tested. During this case study,
assertions were inserted in selected locations of each subject
program to guard against possible errors. The result of this case
study is encouraging and shows that Assertion-Based software
testing was able to uncover faults in these programs that were
overlooked by traditional software testing methods such as
black-box and white- box testing. This result indicates that
Assertion-Based testing may be very effective during the
development and testing of string search algorithm. For our
future research, we intend to extend our case study to include a
wider range of string search algorithms especially those which
function as a part of bigger commercial applications.

REFERENCES

[1] Stucki L. and Foshee G., “New Assertion Concepts for Self-
Metric Software Validation,” Proceedings of the International
Conference on Reliable Software, pp. 59-71,1975

[2] Yau S. and Cheung R., “Design of Self-Checking Software,”
Proceedings of the International Conference on Reliable
Software, pp. 450-457, 1975.

[3] Rosenblum, D., “Toward A Method of Programming
WithAssertions,” Proceedings of the International Conference
on Software Engineering, pp. 92-104, 1992.

[4] Korel B. and Al-Yami A., “Assertion-Oriented Automated Test
Data Generation,” Proc. 18th Intern. Conference on Software
Eng., Berlin, Germany, pp. 71-80, 1996.

[5] Alakeel A., “An Algorithm for Efficient Assertions-Based test
Data Generation,” Journal of Software, vol. 5, No. 6, pp. 644-
653, 2010.

4

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[6] Korel B. and Alyami A., “Automated regression test
generation,” Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis, pp.
143 – 152, 1998.

[7] Alakeel A., “A Framework for Concurrent Assertion-Based
Automated Test Data Generation,” European Journal of
Scientific Research, Vol. 46, No. 3, pp. 352-362, 2010.

[8] Stephen G., "String Searching Algorithms", World Scientific,
Singapore, 1994.

[9] Fenwick P., "Fast string matching for multiple searches",
Software–Practice and Experience, Vol. 31, No. 9, pp. 815–833,
2001.

[10] Raita T., "Tuning the Boyer-Moore-Horspool String Searching
Algorithm", Software Practice and Experience, Vol. 22, No. 10,
pp. 879-844, 1992.

[11] Boyer RS. and Moore JS., "A fast string searching algorithm",
Communications of the ACM, Vol. 20, No. 10, pp. 762–772,
1977.

[12] Ager M. S., Danvy O., and Rohde H. K., "Fast partial evaluation
of pattern matching in strings", ACM/SIGPLAN Workshop
Partial Evaluation and Semantic-Based Program Manipulation,
San Diego, California, USA, pp. 3 – 9, 2003.

[13] Fredriksson and Grabowski S., “Practical and Optimal String
Matching”, Proceedings of SPIRE'2005, Lecture Notes in
Computer Science 3772, , pp. 374-385, Springer Verlag, 2005.

[14] Smith P., "On Tuning the Boyer-Moore-Horspool String
Searching Algorithm", Short Communication, Software Practice
and Experience, Vol. 24, No. 4, pp. 435-436, 1994.

[15] Mhashi M., "The Effectof Multiple Reference Characters on
Detecting Matches in String Searching Algorithms," Software
Practice and Experience, Vol. 35, No. 13, pp. 1299 -1315, 2005.

[16] Mhashi, M., "The Performance of the Character-Access On the
Checking Phase in String Searching Algorithms", Transactions
on Enformatica, Systems Sciences and Engineering, Vol. 9, pp.
38 –43, 2005.

[17] Mhashi M. and Alwakeel M, “New Enhanced Exact String
Searching Algorithm” IJCSNS International Journal of
Computer Science and Network Security, Vol. 10, No. 4, pp. 13
– 20, 2010.

[18] Horspool R.N., “Practical fast searching in strings,” Software -
Practice & Experience, Vol. 10, No. 6, pp. 501-506, 1980.

[19] Karp R.M. and Rabin M.O., 1987, “Efficient randomized
pattern-matching algorithms, “IBM J. Res. Dev., Vol. 31, No. 2,
pp. 249-260, 1987.

[20] Apostolico A. and Crochemore M., “Optimal canonization of
all substrings of a string,” Information and Computation, Vol.
95, No. 1, pp. 76-95, 1991.

[21] Colussi L., “Correctness and efficiency of the pattern matching
algorithms,” Information and Computation, Vol. 95, No. 2, pp.
225-251, 1991.

[22] [http://www.pcworld.com/article/110035/software_bug_may_ca
use_missile_errors.html]. Last access date: July 26, 2011.

5

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

