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Abstract—Biodiversity loss driven by climate change, habitat 

degradation, and anthropogenic pressures demands efficient 

wildlife monitoring solutions. Conventional methods are often 

costly, invasive, and limited in spatial or temporal coverage. 

Acoustic monitoring provides a non-intrusive alternative but 

faces challenges related to high data volumes, limited power 

availability, and restricted communication bandwidth in remote 

deployments. This paper presents a low-power distributed 

acoustic sensor network for autonomous wildlife monitoring, 

with emphasis on bird species. Each node combines an ESP32 

microcontroller, a high-sensitivity digital microphone, and a 

Long Range (LoRa) transceiver to capture and transmit event-

triggered audio. Real-time Fast Fourier Transform (FFT) 

analysis detects relevant acoustic activity, triggering Adaptive 

Differential Pulse Modulation (ADPCM) compression and 

LoRa-based transmission to a central receiver. The backend 

decodes the audio, applies the BirdNET Artificial Intelligence 

(AI) model for species identification, and stores results in a 

MongoDB database with web-based visualization. Experimental 

validation demonstrates high detection reliability for species 

with distinctive calls, confirming the system’s scalability, energy 

efficiency, and suitability for long-term biodiversity monitoring 

in remote environments without continuous connectivity. 

Keywords-. LoRa, acoustic sensors, wildlife monitoring, 

bioacoustic, low-power IoT, BirdNET, FFT, ADPCM 

compression, environmental sensing, edge computing. 

I.  INTRODUCTION 

In recent decades, biodiversity conservation has become a 

global priority. Impacts resulting from climate change, 

urbanization, intensive agricultural expansion, and noise 

pollution are causing a drastic decline in many animal species, 

such as birds and insects. These species groups are essential 

to ecological balance due to their role in pollination, biological 

pest control, and forest regeneration [1].  

Therefore, passive and noninvasive wildlife monitoring 

has become a fundamental research and environmental 

management tool. Traditional wildlife monitoring methods, 

such as camera trapping or manual censuses, present 

significant limitations regarding coverage, cost, impact, and 

dependence on the human factor. Faced with these 

restrictions, distributed acoustic sensors have proven to be an 

effective alternative for detecting animal presence through 

their vocalizations or sounds associated with their activity [2]. 

Acoustic technology allows species to be detected even in low 

visibility conditions or at night, greatly expanding observation 

time windows. 

However, one of the main challenges facing acoustic 

monitoring systems is data processing and transmission. 

Continuous audio recording generates large volumes of 

information, which algorithms for artificial intelligence must 

efficiently manage for storage, transmission, or processing. 

Furthermore, these systems must operate in remote areas 

without electrical infrastructure or conventional connectivity. 

In this scenario, Low-Power Wide-Area Network 

(LPWAN) technologies, such as LoRaWAN have emerged as 

promising solutions. LoRaWAN enables data transmission 

over long distances (up to several kilometers) with minimal 

power consumption, utilizing Europe's free 868 MHz 

spectrum. Unlike other alternatives such as Sigfox or 

Narrowband Internet of Things (NB-IoT), LoRaWAN stands 

out for its flexibility, low cost, and open ecosystem, which 

facilitates its adoption in academic and industrial settings [3]. 

This paper proposes designing and implementing a 

distributed network of autonomous acoustic sensors for 

wildlife detection, focusing primarily on birds. The system 

comprises nodes based on ESP32 microcontrollers and high-

sensitivity digital microphones (such as the INMP441), 

capable of performing real-time spectral analysis using FFT. 

Only in the presence of acoustic activity within the expected 

frequency ranges does the system trigger audio recording and 

compression, which is then transmitted in fragments via LoRa 

to another node, which then transmits to its web server. On the 

server, the Python backend is responsible for receiving and 

assembling the audio fragments, decoding them, and 

analyzing them using the locally running BirdNET tool. 

BirdNET has demonstrated high accuracy in species 

classification using convolutional neural networks trained 

with millions of acoustic recordings from birds worldwide. 

After species identification, the data is stored in a MongoDB 

database, from which interactive dashboards are generated for 

visualization and temporal and geographic analysis. The 

added value of this project lies in the combination of four key 

elements:  

• real-time acoustic detection. 

• energy efficiency. 
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• optimized LoRa communication.  

• intelligent local processing. 

This architecture allows the system to be deployed in rural 

or protected areas without constant maintenance or connection 

to mobile or Wi-Fi networks. Furthermore, its modular and 

open design facilitates scalability and adaptation to different 

ecological contexts. 

The need for this type of solution is evident in the face of 

ecosystem management and protection challenges. In 

European countries like Spain, the decline of endemic species, 

such as the lesser grey shrike (Lanius minor) and the black 

stork (Ciconia nigra), requires new monitoring tools that allow 

for rapid and precise action. Ultimately, this project responds 

to a real need to improve environmental monitoring systems 

through low-cost, highly efficient, and minimally intrusive 

technologies. It provides a viable, replicable, and sustainable 

solution for researchers and administrators. 

The main objective of this work is to design, implement, 

and validate a low-power distributed acoustic sensor network 

capable of autonomously detecting and identifying wildlife 

species—particularly birds—in remote environments without 

continuous connectivity, and to integrate the collected data 

into a digital twin for environmental monitoring. The 

proposed system combines energy-efficient hardware, 

optimized communication via LoRa, and artificial 

intelligence-based bioacoustic analysis to provide a scalable, 

low-cost, and minimally intrusive solution that feeds real-time 

information into a virtual replica of the monitored ecosystem. 

The paper is structured as follows. Section II reviews 

related work in acoustic monitoring and low-power 

communication technologies. Section III details the proposed 

system architecture and operation. Section IV presents and 

discusses the experimental results. Finally, Section V provides 

the conclusions and outlines directions for future work. 

II. RELATED WORK 

Numerous solutions have been developed in recent years 
for environmental monitoring and bioacoustics detection of 
wildlife, leveraging Low-Power Wide-Area Networks 
(LPWAN) such as LoRaWAN due to their low consumption 
and broad coverage. 

A notable reference is the work by FentonSigla  [4], which 
presents a distributed acoustic monitoring system 
characterized by energy efficiency and flexibility. Based on 
ESP32 nodes and INMP441 microphones, its architecture 
shares similarities with this project. However, it only extracts 
derived acoustic parameters (such as Sound Pressure Level 
(SPL) or direction of arrival) instead of transmitting audio 
fragments for detailed analysis. 

Other contributions explore complementary approaches, 
such as the Internet of Things (IoT) architecture by 
Mohandass et al. [5] for animal health monitoring and 
intrusion detection, or the work of Ojo et al. [6], which 
experimentally evaluates LoRa propagation in forest 
environments. Likewise, Martínez Rach et al. [7] designed a 
ZigBee-based bioacoustics sensor to detect the red palm 

weevil, focusing on pest monitoring with high accuracy in 
acoustic recognition. 

Beyond connectivity and hardware, several methods have 
been proposed for acoustic activity detection and wildlife 
classification. Traditional threshold-based triggering [8] and 
more advanced spectral analysis using FFT [10] allow event-
driven audio capture, although both are susceptible to false 
activations under noisy conditions. Recent works have also 
incorporated Machine Learning at the edge (TinyML), such as 
Tinybird-ML [9], capable of performing syllable-level bird 
song analysis with low-power consumption. Similarly, call 
density estimation methods [10] directly model the occurrence 
of vocalizations without relying solely on threshold events, 
increasing robustness in complex soundscapes. Another line 
of research uses animal-borne soundscapes loggers [11], 
enabling classification and transmission directly from tags 
attached to animals, particularly for underwater soundscapes. 

One of the most widely adopted tools in classification 
models is BirdNET [13], an Artificial Intelligence (AI) based 
system trained with millions of recordings worldwide. 
BirdNET applies convolutional neural networks to 
spectrograms for species identification and has demonstrated 
high accuracy even in noisy conditions. Its ability to operate 
locally, without dependence on cloud services, makes it 
especially suitable for autonomous monitoring projects such 
as the one presented here. Alongside BirdNET, lightweight 
embedded classifiers based on spectrograms and Mel-
Frequency Cepstral Coefficients (MFCCs) [10] have also 
been explored. However, they remain limited by the 
computational and memory constraints of low-power devices. 

Overall, prior work highlights both feasibility and the 

challenges of combining low-power communication with 

bioacoustics analysis. The present study builds upon these 

contributions by integrating real-time acoustic activity 

detection, efficient LoRa transmission, and BirdNET-based 

classification into a distributed sensor network designed for 

long-term wildlife monitoring. 

III. SYSTEM PROPOSAL 

This section describes the design and implementation of 

the proposed distributed acoustic sensor network for 

autonomous wildlife monitoring. It begins with an overview 

of the system’s architecture, detailing the hardware 

components, communication modules, and operating 

principles. Then, it explains the end-to-end workflow, from 

audio capture and activation strategies to compression, 

segmentation, and LoRa-based transmission. Subsequent 

subsections address the reception, decoding, and artificial 

intelligence-based bioacoustic analysis, followed by the 

storage and visualization of results. 

A. System Overview 

The proposed solution consists of the design and 

implementation of a distributed network of energy-efficient 

wireless acoustic sensors capable of capturing sounds emitted 

by wildlife, identifying relevant events in real time, and 

transmitting the audio fragments to a LoRa-based remote 

processing infrastructure. The information is processed with 
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artificial intelligence tools to determine the detected species 

and is stored in a cloud-based MongoDB database, allowing 

for subsequent visualization and analysis through interactive 

dashboards. 

The developed system is based on a low-power, low-cost 

architecture, designed to operate autonomously in natural 

environments. Each sensor node comprises three main 

elements: an ESP32 microcontroller, an INMP441 digital 

microphone, and a LoRa communication module with its 

corresponding antenna. Their technical characteristics and 

function within the system are described below. 

This section describes the overall operation of the system, 

from audio capture to results visualization. The process is 

divided into three main blocks: the transmitter, the receiver, 

and the backend, as shown in Figure 1.  

The transmitting node captures audio in short windows 

and applies real-time FFT spectral analysis to detect acoustic 

activity in the target band. When a significant event is 

detected, the recording of the entire fragment is triggered, 

which is then compressed using the ADPCM algorithm. Once 

compressed, the file is fragmented and transmitted to the 

receiving node via LoRa.  

At the receiver, the fragments are reassembled to 

reconstruct the original file. Once completed, the file is 

temporarily stored and automatically sent via WiFi to a web 

server for processing.  

In the backend, the ADPCM file is decoded into WAV 

format. The audio is then analyzed using BirdNET to identify 

animal species based on their vocalizations. The results 

obtained and the original fragment are stored in a MongoDB 

database. Finally, all this information is accessible through a 

web panel that allows users to view, filter, and query the 

detected acoustic events in a structured manner.  

 

 
Figure 1. Block diagram of the complete system operation, from audio 

capture to its analysis and insertion into the database. 

B. Acoustic activity detection and audio capture 

The first key component of the proposed system is the 

process of capturing ambient audio by the sensor nodes. Since 

audio fragments contain critical information for detecting 

animal species, their recording must be selective, energy-

efficient, and accurate enough to ensure its subsequent use in 

bioacoustic analysis processes. To this end, the nodes 

implement an intelligent activation strategy, meaning they are 

not continuously recorded but are activated only when they 

detect relevant acoustic activity. This decision was made after 

comparing activation methodologies. 

After evaluating these approaches, FFT spectral analysis 

was selected as the activation strategy because it offers an 

appropriate balance between accuracy, energy efficiency, and 

feasibility of implementation on an ESP32-based platform. 

Table 1 below shows an estimated comparison between the 

different acoustic activation methodologies [12]. 

 
TABLE 1. QUANTITATIVE COMPARISON OF METHODOLOGIES 

Method Precision 
Consumption 

(mA) 
Latency 

Sound 

threshold 
20–40% 1–5 1 ms 

FFT 60–80% 10–20 50–100 ms 

TinyML 85–95% 50–100 
200–500 

ms 

Multiple 

sensors 
70–90% 5–15 10–50 ms 

 

Once an acoustic event is detected in the band of interest, 

the node begins recording an audio fragment. To do this, an 

INMP441 digital microphone is connected to the ESP32 via 

the Inter-IC Sound (I2S) interface, allowing high-quality 

sampling at 16 kHz with 24-bit resolution. The recording 

duration is set to 20 seconds.  

Once the capture is complete, the audio fragment is saved 

to the ESP32's flash memory using the SPI Flash File System 

(SPIFFS). This non-volatile memory, accessible like a small 

virtual disk, allows files to be preserved even after reboots or 

power losses. Throughout the process, the node continues 

monitoring the environment to verify the persistence of 

acoustic activity, thus avoiding storing empty or redundant 

fragments. 

The resulting file represents the basic information unit of 

the system, which will subsequently be compressed and 

transmitted using LoRa technology for remote analysis. 

C. Audio compression and segmentation 

Since LoRa technology presents strict limitations 

regarding bandwidth and maximum packet size (for example, 

51 bytes per packet in the European band with SF12), it is 

essential to apply data compression techniques to reduce the 

amount of information before transmission. In this project, the 

ADPCM algorithm was chosen, widely used in embedded 

applications due to its low computational cost and good 

compromise between compression and fidelity. ADPCM is a 

differential coding technique that predicts the value of the next 

audio sample based on the previous one and transmits only the 

quantized difference. This difference is represented with 

fewer bits than a full sample. In this project, a 4-bit-per-
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sample encoding is used, which reduces the file size by half 

compared to an 8-bit linear Pulse-Code Modulation (PCM), 

and up to 4 times compared to a 16-bit recording. 

The algorithm is efficient enough to run in real time on an 

ESP32 without the need for additional coprocessors, and the 

resulting quality has proven sufficient for bioacoustics 

analysis tasks such as BirdNET classification, especially in 

environments without excessive noise. 

Once the node has captured a 20-second fragment of 

digital audio, the buffer is processed by the ADPCM 

algorithm. The result is a compressed binary file that occupies 

approximately 160KB. 

The main advantage of ADPCM in this context is its low 

CPU and RAM requirements, allowing for efficient real-time 

implementation without compromising system autonomy. 

Furthermore, its simple structure facilitates encoding and 

decoding both on the node and in the backend. 

However, it also has some limitations. Its compression is 

not as efficient as that of codecs such as MP3 or Opus, and it 

is more sensitive to noise in signals with abrupt changes. Even 

so, it has been experimentally verified that files compressed 

with ADPCM maintain sufficient fidelity for BirdNET to 

correctly identify characteristic vocalizations of wild species. 

This file is temporarily stored in memory and later 

segmented into blocks compatible with LoRa payload 

limitations. Segmentation is performed by ensuring that each 

packet contains a header with minimal information such as 

fragment number, node ID, and end-of-transmission flag. This 

allows the complete file to be reconstructed on the destination 

server even if packets are received out of order. 

D. Transmission of compressed audio via LoRa 

A point-to-point wireless communication system based on 

LoRa technology was implemented to transmit compressed 

audio fragments, using two Heltec WiFi LoRa 32 V2 boards. 

These boards operate on the 433 MHz band, which allows for 

more flexible experimental use as they are not subject to the 

duty cycle restrictions inherent to LoRaWAN. The 

modulation was configured with a Spreading Factor of 7, a 

bandwidth of 250 kHz, and a coding rate 4/5, optimizing the 

balance between transmission speed and channel robustness.  

The compressed file, approximately 160 kB for 20 

seconds of audio, is fragmented into blocks of 220 bytes of 

data plus a 2-byte header. Each packet includes a sequence 

identifier and an end-of-transmission indicator, allowing for 

orderly reconstruction at the receiver. A sliding window of 

size three is used to improve efficiency, allowing multiple 

packets to be kept in flight without saturating the channel.  

Based on a Heltec board, the receiver reconstructs the file 

over SPIFFS and acknowledges each packet using ACKs. If a 

packet is not acknowledged, the transmitter automatically 

resends it after a delay. Once all the fragments have been 

received, the receiving node verifies the file's integrity using 

a Secure Hash Algorithm (SHA-256) hash function and, if 

everything is correct, sends the file over WiFi to a web server 

for analysis.  

This scheme has proven effective and robust in a 

laboratory environment, enabling reliable transmission 

without perceptible loss of quality and the need for 

LoRaWAN infrastructure [13]. 

E. Receiving, reassembling and decoding the file 

Once all the compressed audio file fragments have been 

transmitted via LoRa, the receiving node stores them locally 

and reconstructs the complete file in. ADCPM format [14]. 

This reconstruction is based on the indices' order in each 

packet header, allowing the content to be assembled 

accurately even if the fragments arrive out of order or with an 

unavoidable delay.  

When the End-Of-Transmission (EOF) packet is detected, 

the file is considered complete and is saved in the receiving 

node's SPIFFS file system. At that point, the file is 

automatically sent to a web server via WiFi, where it is 

decoded.  

The backend, developed in Python, converts the ADCPM 

file into an audio file in WAV format format. To achieve this, 

a decoder is implemented that reverses the ADPCM 

compression process, reconstructing a 16-bit, 16kHz linear 

PCM signal. This transformation is essential to ensure 

compatibility with acoustic analysis tools such as BirdNET, 

Audacity, or Sonic Visualizer.  

The decoding process is fully automated and is part of the 

system's continuous processing flow. This integration ensures 

that each recording transmitted via LoRa can be reliably 

stored and analyzed, maintaining the fidelity necessary for 

subsequent acoustic classification based on artificial 

intelligence. 

F. Bioacoustic analysis 

Once the audio file has been reconstructed and converted 

to the appropriate format, the next step is automatically 

identifying the species in the recording. To do this, BirdNET 

[15] was used, an artificial intelligence tool developed by the 

Center for Conservation Bioacoustics at Cornell University, 

in collaboration with the Technical University of Chemnitz. 

This platform is specifically designed to recognize bird 

vocalizations, although it can also detect other types of fauna 

in more advanced versions. 

BirdNET works by converting the audio into 

spectrograms, which visually represent how the signal's 

energy is distributed over time and at different frequencies. 

From this representation, a convolutional neural network 

model, pre-trained with millions of recordings, can identify 

characteristic patterns associated with different species. 

One of BirdNET's most significant advantages is that it 

can operate locally, without relying on cloud services. This 

makes it especially useful in projects like this one, which seek 

to maintain system autonomy and minimize the need for a 

permanent connection. For this work, BirdNET-Analyzer was 

used, a version optimized for execution on personal computers 

that is easily integrated into automated analysis flows. 
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BirdNET was chosen for several reasons. On the one hand, 

it is a tool widely validated in scientific work, with excellent 

results even in noisy environments or low-quality recordings. 

On the other hand, it is specifically oriented toward the 

acoustic analysis of wildlife, which fits perfectly with the 

objective of this project. Unlike other, more generic audio 

classifiers, BirdNET returns very detailed information: the 

common and scientific names of the species, the exact time it 

was detected, and the confidence level of the prediction.  

Furthermore, as an open-source project with clear 

documentation and an active community, its integration has 

been relatively simple and offers room for improvement for 

future versions. However, for it to function correctly, the input 

files must meet certain format conditions, which have been 

considered from the early design stages, both in audio capture 

and compression and decoding. 

G. Storing and displaying results 

Once the audio file has been reconstructed and converted 
to the appropriate format, the next step is automatically 
identifying species. For this purpose, the system integrates 
BirdNET-Analyzer [14], executed locally on the backend 
server. 

The tool processes the decoded audio fragments by 
converting them into spectrograms and applying a 
convolutional neural network inference. The backend records 
the species name, confidence score, and time stamps for each 
detected vocalization, storing these results with the original 
audio fragment in the database. 

This integration allows the proposed architecture to 

benefit from a widely validated AI model while maintaining 

local autonomy, without needing cloud-based services. 

Furthermore, the modular design of the backend enables 

future integration of alternative classifiers (e.g., TinyML 

models or call density estimation methods) to complement 

BirdNET or extend recognition to other taxa. 

IV. RESULTS 

Throughout the development of the system, multiple tests 

have been performed to validate the correct operation of each 

module and to assess the performance of different activation 

methods for acoustic event detection. These tests, described in 

the corresponding sections, focus primarily on the evaluation 

of FFT-based activation and the subsequent classification of 

bird species using BirdNET under control conditions. The 

validation process employed recordings from the Xeno-Canto 

platform [16], played back near the microphone to simulate 

realistic field scenarios. Tests were conducted with three bird 

species—Eurasian Nightjar (Caprimulgus europaeus), 

Eurasian Blackbird (Turdus merula), and Mallard (Anas 

platyrhynchos)—using 10 or 11 audio fragments per species. 

These species were selected to represent different levels of 

vocal distinctiveness: the Eurasian Nightjar has a highly 

characteristic and continuous call, the Eurasian Blackbird 

produces more common and melodically variable songs, and 

the Mallard emits short, low-frequency quacks that can be like 

other waterfowl sounds. This diversity allows the evaluation 

of the system under varying degrees of classification 

difficulty. 

Next, we will discuss the accuracy and confidence results. 

For the Eurasian Nightjar, the top 1 classification accuracy 

was 72.7 % (8 out of 11 recordings correctly identified). 

Confidence scores for correct detections were generally high 

but not uniformly near 1.0, with some variability across Figure 

2 recordings. This indicates that, even after compression, 

segmentation, transmission, and reconstruction, the call 

retains enough spectral fidelity for reliable recognition in most 

cases, though a fraction of recordings still leads to 

misclassification. 

 

Figure 2. Species detected by recording and confidence level for Eurasian 
Nightjar. 

 

In contrast, species with more common or less distinctive 

vocalizations, such as the Eurasian Blackbird or the Mallard, 

show a greater dispersion in confidence levels and, in some 

cases, lower results, as seen from Figures 3 and 4. This is 

consistent with the difficulty of automatically identifying 

sounds overlapping with many other species.  

 

Figure 3. Species detected by recording and confidence level for Eurasian 
Blackbird. 

Figures 3 and 4 show the results of the BirdNET model in 

ten analyses performed on recordings of the Eurasian 

Blackbird and Mallard, respectively. Each bar represents a 

species detected by the model in a specific recording, with its 

corresponding confidence level. Unlike the Eurasian Nightjar, 

these recordings show greater dispersion of results, with 

several species identified as possible candidates. In many 

recordings, the Eurasian Blackbird, like the Mallard, Anas 

platyrhynchos, appears with medium or low confidence, while 

in others it is outperformed by acoustic similar or commonly 
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occurring species. This behavior highlights the system's 

sensitivity to song characteristics and the fidelity of the 

transmission process, especially in species with less 

distinctive vocalizations. 

 
Figure 4. Species detected by recording and confidence level for Mallard 

Anas Platyrhynchos. 

To gain a broader view of the system's performance, a 

comparative graph was created representing the BirdNET 

model's reliability for multiple bird species common in urban 

and natural environments in Spain. This comparison is shown 

in Figure 5. The graph uses violin diagrams to represent the 

complete distribution of confidence values obtained by the 

BirdNET model in the different recordings analyzed for each 

species. This type of representation allows us to observe the 

median confidence, the variability, and the density of values. 

The wider the curve in each area, the greater the concentration 

of detections in that confidence range. For the Eurasian 

Nightjar and Common Nightingale species, both with very 

distinctive and melodic vocalizations, the system presents 

consistently high confidence values, close to 1.0. 

 
Figure 5. Distribution of BirdNET model confidence by species. 

In contrast, species such as the Eurasian Blackbird, the 

Magpie, or the Wood Pigeon, whose songs are more common, 

less distinctive, or louder, present more variable and generally 

lower confidence levels. One of the conclusions drawn from 

the tests is that part of the loss in detection reliability, 

especially in species with less distinctive calls, is due to the 

implemented audio compression. To reduce the size of the 

transmitted fragments and adapt to the limitations of the LoRa 

channel and the need for higher transmission speeds, a 

compression scheme based on the ADPCM codec was chosen. 

While maintaining reasonable quality for human vocal 

frequencies and simple song patterns, this introduces 

degradations that affect the spectral integrity of certain birds' 

songs. It has been observed that, in complementary tests 

conducted with the same audio fragments but without 

applying prior compression, the system's reliability increases 

slightly, confirming that compression, although necessary for 

channel efficiency, sometimes negatively impacts the 

identification capacity of the artificial intelligence model. 

Furthermore, it should be noted that the system relies on pre-

trained AI models (BirdNET), whose extensive database does 

not always offer uniform performance for all species. It is 

possible that some of the birds used in the tests are not 

sufficiently represented in the model's training set, 

contributing to lower reliability in certain circumstances. 

These factors, combined with the acoustic characteristics 

of each species, explain the differences observed in the quality 

of the detections and should be considered when interpreting 

the system's results represented in Figure 6. 

 

Figure 6. Location map of the detected species. 

V. CONCLUSIONS AND FUTURE WORK 

This work has presented the design, implementation, and 

validation of a low power distributed acoustic sensor system 

that automatically detects wildlife, focusing on birds. The 

integration of accessible technologies such as ESP32, digital 

microphones, and LoRa communication, combined with 

advanced artificial intelligence models (BirdNET), has 

enabled the development of an efficient and autonomous 

environmental monitoring solution. Additionally, the system 

features a modular design that facilitates expansion, 

integration with additional sensors, and advanced analysis 

through web platforms. 

The results indicate that the system can detect and identify 

species with distinctive calls under real conditions, 

maintaining acceptable performance despite limitations 

imposed by ADPCM compression and the constraints of the 

LoRa channel. Compression, necessary to optimize 

transmission, introduces degradations that affect the 

detection of less distinctive vocalizations, representing a 

challenge to be addressed. 

It has been shown that the AI models and dataset used do 

not offer uniform coverage for all species, affecting reliability 

in some instances.  

Future directions include optimizing compression 

algorithms, incorporating edge AI inference in sensor nodes 

to further reduce data transmission, and deploying the system 

in natural environments powered by renewable energy to 

evaluate autonomy and robustness. Additionally, future work 

should focus on a more comprehensive evaluation of the 
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entire system beyond model accuracy. This includes 

experiments under real deployment conditions with a 

network of low-cost, energy-efficient sensors, reporting key 

performance metrics such as LoRa packet loss rates, battery 

lifetime (closely tied to local processing and transmission 

loads), and overall system reliability in the field. 

In summary, this project represents a significant advance 

toward accessible, scalable, and automated biodiversity 

conservation and monitoring systems, providing innovative 

tools that could be integrated into large-scale environmental 

programs. 
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