
On the Pseudo-Bayesian Broadcast Control Algorithm for Slotted ALOHA in Multi
Packet Reception and under Impaired Channel Conditions

Vicente Casares-Giner∗ and Frank Y. Li‡
∗Departamento de Comunicaciones, Universitat Politècnica de València (UPV), València 46022, Spain

‡Dept. of Information and Communication Technology, University of Agder (UiA), N-4898 Grimstad, Norway
Email: vcasares@upv.es; frank.li@uia.no

Abstract—The basic concept of slotted ALOHA as a Random
Access Protocol (RAP) is commonly implemented for ubiquitous
access in many wireless networks. In this paper, we study the
generalization of the network control by Bayesian broadcast to the
environment of M -MRP Multiple Packet Reception (MPR) when
channel impairments are considered. In our M -MPR model, up
to M data packets transmitted in the same time-slot can be
correctly decoded by using capture effect and some advanced
signal processing techniques such as Successive Interference Can-
cellation (SIC) combined with Multiple-Input Multiple-Output
(MIMO). We show that the broadcast or permission probability
that maximizes the throughput (packets per slot successfully
transmitted) is sensitive to channel characteristics. While with
ideal channel conditions of maximum capacity a binary feedback
– collision versus non-collision – is required, and in the more
realistic channel conditions, M + 1 feedback is needed.

Keywords-Pseudo-Bayesian Control, Multiple Packet Reception.

I. INTRODUCTION

For ubiquitous multi-access in wireless networks, a single
channel is shared by a population of devices or users. In order
to share this common transmission medium among users, a
Medium Access Control (MAC) protocol must be properly
designed. When users act in an independent manner, i.e.,
with minimum coordination between them, we need a suitable
Random Access Protocol (RAP). The area of RAPs started
with the seminal work by N. Abramson in 1970 [1], where
the ALOHA protocol was proposed. Later in 1972 [2], Roberts
adds to ALOHA the additional feature of slot synchronization,
so the S-ALOHA was proposed as a substantial improvements
of its throughput, increasing from the 1/2e ≈ 0.1839 channel
utility for pure ALOHA to 1/e ≈ 0.3679 packets/slot for
S-ALOHA. Since then, many RAPs based on the ALOHA
principles have been proposed for wired Local Area Networks
(LANs) and wireless (cellular, Wireless Fidelity (WiFi), etc.)
communication systems. The main advantage of ALOHA
protocol is its easy and simple implementation. Unlike Carrier
Sense Multiple Access (CSMA) protocol, in ALOHA no
sensing functioning needs to be performed. Furthermore, the
hidden terminal effect that can significantly deteriorate the
CSMA performance does not affect the operation of the
ALOHA protocol. A basic background on this matter can be
found in [3] [5] [7].

ALOHA alike protocols are inherently located at the MAC
layer. The improvement of ALOHA protocols can be achieved
when combining with other physical layer techniques such as
Multi-User Detection (MUD), Multiple-Input Multiple-Output

(MIMO) or a combination of both techniques (MU-MIMO).
In MUD, a single receiver is able to decode the intended
signals from interference and noise. MUD techniques include
Maximum-Likelihood (ML), Parallel Interference Cancella-
tion (PIC), Successive Interference Cancellation (SIC), etc.
In MIMO technique, more than one antenna at transmitter
and at the receiver part are installed to get improvements in
parameters such as throughput and channel robustness. For
more details, interested readers are referred to [11]. At the
physical layer, the use of MIMO, MUD and SIC will benefit
the Multiple Packet Reception (MPR) reception technique. So,
a cross layer cooperation based on the use of at the physical
layer and the S-ALOHA protocol at the MAC layer will bring
benefits in the throughput of wireless access system. Thanks
to this cooperation, we can enjoy the M -MPR capability.

Additional contributions in the M -MPR area can be found
in [6] [10]; where the number of packets that can be received
and decoded simultaneously is M , and the stability analysis
of MPR is studied in a deep way. In [12], the authors study
the M -MPR using the principle of MUD at the Base Station
(BS). The authors adopt the adaptive interference canceler
employing the Recursive Least Square Maximum Likelihood
Sequence Estimation (RLS-MLSE) scheme. Through com-
puter simulation and field trial under a realistic scenario, it
is shown that up to three (M = 3) simultaneously transmitted
packets can be detected, even though they limit their study
to M = 2. That is, for M = 2, very reliable of real time
applications, the maximum throughput can exceed 0.7, which
is a significant improvement compared to the convention S-
ALOHA of 1/e ≈ 0.3679.

In [14], a finite number of devices access to a common
wireless channel using S-ALOHA, where the M -MPR scheme
with the all-or-nothing philosophy is assumed. Devices oper-
ate in saturation conditions (there are always packets to be
transmitted) and the permission or transmission probability
is constant. Their analysis lacks of dynamic adaptation of
the transmission probability. In [15], the authors provide an
in-depth analysis of the M -MPR protocol for ALOHA and
CSMA random access algorithms. However, with regard to
ALOHA protocol, the analysis does not take into account the
arrival process that could joint backlogged data packets.

In order to avoid total loss of packets to collisions, several
strategies supporting power transmission have been proposed
for ALOHA packets [17] [18]. Hence, in [18], the authors
study the non-orthogonal random access technique for 5th
Generation (5G) networks in which due to the different level
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of the received power at the BS, it enables the BS to decode
two packets simultaneously using SIC. The analysis is carried
out in terms of access delay, throughput, and energy efficiency.

The capture effect can happen so allowing the decoding of
a number of packets lower or equal to the number of packets
that simultaneously coincide in the same time slot. The authors
of [12] provide an analysis quite parallel to our work but
the novelty of our work is the Bayesian estimation of the
number of users in contention in a framed-slotted ALOHA
environment, as an enhancement to the work by [4]. In [19],
the distribution of new plus backlogged packets are assumed
to follow a Poisson distribution.

In all these previous studies, the main assumption is that the
channel is ideal, i.e., neither fading nor interference happens.
All of them consider that the channel capacity is M and, when
the number of data packets in one slot is not greater than M
all packets can be successfully decoded, otherwise the slot is
considered as collision (garbled).

In this work, we assume a general model where αm,k

for 0 ≤ k ≤ m ≤ M denotes the conditional probability
to detect correctly k packets assuming that m packets were
transmitted. The aim of this paper is to extend the pseudo-
Bayesian broadcast control algorithm of Rivest [4] developed
to Single-Packet Reception (SPR) to the case of MPR. Then,
first we deal with a finite number of active devices and second
we follow with an arbitrary number of active devices. The
closest approach to our work or the most related work with
our paper is the one presented in [16], but they use the all-or-
nothing model defined below.

The rest of this paper is organized as follows. In Sec. II, we
describe the model of the system under study. In Sec. III, the
optimal permission probability for a given number of active
devices is derived. Sec. IV deals with the estimation of the
number of active devices, so with the updating permission
probability based on the Bayesian rules. In Sec. V, we intro-
duce the common assumption of Poisson distribution for the
number of active devices and the Pseudo Bayesian procedure
is described. In Sec. VI, some particular cases are studied. The
paper ends with conclusions in Sec. VII.

II. SYSTEM MODEL

Consider a time-slotted channel. A finite number of active
devices, sufficiently large enough, transmit their packets uplink
towards an Access Point (AP) or a 5G BS, i.e., nest generation
Node B (gNB). A given device becomes active when it has a
packet ready to transmit. Packets are of constant length that
fits with the length of the time-slot.

Devices follow the Immediate First Transmission (IFT)
principle instead of the Delayed First Transmission (DFT)
principle. That is, as soon as a given device becomes active the
corresponding packet joints the set of backlogged packets and
follows the RAP’s rules. In the RAP, all active devices (new or
backlogged) transmit with the same broadcast or permission
probability provided by the gNB instantly in the beginning of
a time-slot. In other words, new and backlogged packets are
treated in the same way. The permission probability is updated

by the gNB in a slot-by-slot basis according to the observed
results in each time slot and according to the expected number
of new active devices (the arrival process).

In the M -MPR model, the channel for transmission-
reception is represented by a set of conditional probabilities,
time invariant, given in the following the MPR stochastic
matrix [6],

A =
α0,0 0 . . . 0 α0,c

α1,0 α1,1 . . . 0 α1,c

...
...

. . .
...

...
αM,0 αM,1 . . . αM,M αM,c

αM>,0 = 0 αM>,1 = 0 . . . αM>,M = 0 1

 (1)

In (1), M> is identified as greater than M and αi,c denotes
the probability the receiver interprets as collision when i
packets are transmitted. The set {αi,j} contains the condi-
tional probabilities that characterize the transmission-reception
characteristics of the wireless channel. Each probability αi,j

is interpreted as follows. For an arbitrary time slot, first, we
assume that no packets are transmitted. Then, with probability
α0,0, the slot is correctly interpreted by the gNB, i.e., as a hole,
and with probability α0,c = 1 − α0,0, the empty slot may be
seen as a garbled or collision time-slot, for instance, due to the
interference and noise of the channel. Second, we assume that
a single packet has been transmitted, the second row of the
MPR matrix. Then, the gNB interprets, with probability α1,0,
as an empty slot (the transmitted packet might vanish due to
channel fading conditions), with probability α1,1, the packet is
correctly decoded and with probability α1,c = 1−α1,1−α1,0,
the slot is observed as a garbled time slot (collision). Third,
we assume that two packets are simultaneously transmitted,
the third row of the MPR matrix. Then, with probability α2,0,
the slot is observed as empty; with probability α2,1, one of the
two packets is correctly decoded while the other one is lost
(the capture effect [8]); with probability α2,2, both packets
are correctly decoded (using SIC techniques [18]), and with
probability α2,c = 1 − α2,0 − α2,1 − α2,2, the observed slot
is seen as garbled, as a collision slot. And so on. Finally,
when in the same observed time slot more than M packets
are transmitted, with probability 1, the gNB interprets as a
collision slot, i.e., for i > M we have αi,j = 0 and αi,c = 1.

In the M -MPR model, the all-or-nothing scheme has often
been considered. Accordingly, the receiving station is able
to successfully decode m simultaneous transmissions with
probability one if and only if m ≤ M and no decoding can be
achieved when m > M , which in turns means that A = I, the
identity matrix. This is the typical assumption in many papers
such as [15], [16], [19]. Our study generalizes this particular
case. For some particular cases, in the same way as in [9], we
consider the case where the set of probabilities {αi,j} being
system feature, are known a priori or a good estimation of
them is known.

III. BROADCAST OR PERMISSION PROBABILITIES

We consider a number of active devices Nt, each one with
a single packet ready to be transmitted at time-slot t. The idea

29Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



is to use the optimal broadcast or permission probability that
maximizes some relevant function, such as the throughput,
defined as the mean number of packets successfully transmit-
ted in time-slot t. Here, we obtain the optimum permission
probability, first when the number of active devices is finite
and second when this number follows a given distribution.

A. For a Fixed Number of Active Devices

We assume a fixed number of active devices, Nt = n,
each one with one packet ready to be transmitted at time-
slot t. We consider that n > M . Nt needs to be estimated,
but initially we assume that the gNB has perfect knowledge
of it. Each active device will transmit with the probability
of permission bM,t and will wait for the next slot with the
probability wM,t = 1 − bM,t (the IFT principle). Then, the
following events are considered, empty slot (hole), slot with
m successes (success=m), with 0 ≤ m ≤ M , and slot with
collision; i.e., the probability of observing a hole,

Pr(hole/(Nt = n, bM,t)) =

HbM,t(n) =
∑M

k=0
Bn

k (bM,t)αk,0,
(2)

where Bn
k (bM,t) denotes the binomial distribution,

Bn
k (bM,t) =

(
n
k

)
bkM,t.w

n−k
M,t , 0 ≤ k ≤ n.

The probability of observing m successes,

Pr(success = m/(Nt = n, bM,t)) =

Sm,bM,t(n) =
∑M

k=m
Bn

k (bM,t)αk,m,
(3)

and, the probability to observe a collision,

Pr(collision/(Nt = n, bM,t)) =

CbM,t(n) = 1−HbM,t(n)−
∑M

m=1
Sm,bM,t(n) =

1−
∑M

m=0
Sm,bM,t(n); (S0,bM,t(n) = HbM,t(n)).

(4)

Observe that the event hole can be regarded as the event
m = 0 success, i.e., HbM,t

(n) = S0,bM,t
(n), and this explains

the last equality in (4). The mean value of the number of
packets successfully transmitted is given, after some simple
rearrangement of terms, by

E(#successes/(Nt = n, bM,t)) =∑M
m=1 mPr(success = m/(Nt = n, bM,t))

=
∑M

m=1 m
∑M

k=m Bn
k (bM,t)αk,m =

∑M
m=1 B

n
m(bM,t)αm,

(5)
where αm =

∑m
k=1 kαm,k (0 < m ≤ M ) is the expected

number of correctly decoded packets when m packets are
transmitted simultaneously in the same time-slot [13]. The
maximum of (5) can be computed by differentiating and root
finding. Then, from (5), we have found for b̂M,t (also, see (5)
in [15] where αm = m),

b̂M,t =

∑min (n,M)
m=1 mαmBn

m(b̂M,t)

n
∑min (n,M)

m=1 αmBn
m(b̂M,t)

= hM,α(b̂M,t) (6)

with α = [α1, α2, . . . , αM ]. In (6) we can apply the fixed
point iteration method, i.e., b̂(i+1)

M,t = hM,α(b̂
(i)
M,t), i = 1, 2, . . .,

with b̂
(0)
M,t ∈ [0, 1] and the optimum permission probability

b̂M,t = b̂
(∞)
M,t is obtained, i.e., the iteration always converges

to the unique solution. Moreover, explicit expressions can be
found for M = 1, 2, and 3. When M = 1, we have α≥2,c = 1,
equivalent to α≥2 = 0 and trivially we obtain b̂1,t = K1/n =
1/n. When M = 2, α≥3,c = 1 (equivalent to α≥3 = 0), the
optimum value of the permission probability, b̂2,t is,

b̂2,t =
(n−1)α2−(n+1)α1+

√
∆

n
[
(n−1)α2−2α1

] > 1
n ; , n = 3, 4, . . .

with ∆ = (n−1)
[
(n−1)

(
α2
1+α2

2

)
−2α1α2

]
= (n−1)

[
n
(
α2
1+

α2
2

)
−
(
α1 + α2

)2]
. For large values of n we can write,

b̂2,t ≈
α2 − α1 +

√
α2
1 + α2

2

nα2
=

K2

n
>

1

n
; , n = 3, 4, . . .

with

K2 = 1 +

√
1+

(
α2/α1

)2
−1

α2/α1
= 1 +

√
1+x2−1

x =

1 + 1
2x− 1

22.2!x
3 + 1.3

23.3!x
5 − 1.3.5

24.4!x
7 + 1.3.5.7

25.5! x
9 . . .

and x =
α2,1+2α2,2

α1,1
= α2

α1
.

(7)

Note that when α2 → 0, i.e., x → 0, the evaluation of (7)
using the closed form (the expression with a square root) may
lead to some imprecise calculation. In this case we could use
the approximation given by the Taylor expansion.

Due to the page limit, we omit the exact analytical expres-
sion for M = 3. In general, for any M , and for large values
of n, b̂M,t can be expressed as b̂M,t ≈ KM/n. In fact, (5) can
be approximated by

E(#successes/(Nt = n, bM,t)) =

≈
∑M

m=1
(nbM,t)

m

m! αme−nbM,t .
(8)

B. For a Random Number of Active Devices.

Now, we assume that Nt follows a discrete probability
distribution, pn,t, with Generator Function (GF), given by,
respectively

Pr(Nt = n) = pn,t; P ∗
t (z) =

∞∑
n=0

pn,tz
n. (9)

Furthermore, we assume that the gNB has a perfect knowl-
edge of pn,t. Therefore, unconditioning (5) with pn,t, the
throughput, which defined as the expected number of successes
at time-slot t, is given by, after some algebra,
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TM,α(bM,t) = E(Pr(success at slot t)/bM,t) =∑M
m=1

bmM,t

m!
dmP∗

t (wM,t)
dwm

M,t
αm.

(10)

The optimum permission probability b̂M,t = 1 − ŵM,t

that maximizes (10), a polynomial in the unknown variable
bM,t, can be computed by differentiating and root finding.
In a practical sense, the computation required to obtain bM,t,
would be time consuming. This can be avoided by using the
approximation b̂M,t ≈ KM/E(Nt). However, the pseudo-
Bayesian broadcast algorithm described in the next section
appears to be an excellent approach [4].

IV. ESTIMATING NUMBER OF ACTIVE DEVICES

In an M -MPR channel, the permission probability b̂M,t to
be used in time-slot t is evaluated according to the procedure
described in previous section. b̂M,t is updated on a slot-by-
slot basis. The update procedure is based on the outcomes in
time-slot t observed by the gNB and on the arrival process
of new packets, i.e., on the number of devices that become
active during time-slot t. For the first item, we apply Baye’s
rule, as suggested in [4]. For the second item we consider a
general distribution {an,t} with GF, A∗(z) =

∑∞
n=0 an,tz

n.
Furthermore, the arrival process is assumed to be independent
of the RAP.

A. Bayesian Updating of the Probability Vector

Assume that the procedure to estimate the probability vector
Nt, pt = [p0,t, p1,t, p2,t, . . .], is reasonably good. Now, we
describe how the gNB updates this probability vector of Nt,
given that slot t was a hole, a success-m, or a collision. Denote
E=Evidence (hole, success-m, collision) and H=Hypothesis
(Nt = n data packets). The Bayes’ rule tells us,

Pr(H/E) =
Pr(E/H)Pr(H)

Pr(E)
. (11)

Then, the gNB will use the evidence available up to time-
slot t to update {pn,t}, given the available evidence. This is
the so called Bayesian broadcast procedure, since it relies
on Bayesian reasoning to estimate pt = [p0,t, p1,t, p2,t, . . .]
according to (11).

Let p′n,t denote the final probability Pr(Nt = n/Et) where
Et is the slot t evidence (hole, success-m, or collision), i.e.,
p′t = [p′0,t, p

′
1,t, p

′
2,t, . . .]. The probabilities p′n,t (Pr(H/E))

are easily obtained using Bayes’ rule by multiplying each
initial probability pn,t (Pr(H)) by the appropriate likelihood
HbM;t

(n), Sm,bM;t
(n) or CbM;t

(n) (Pr(E/H)) (see (2), (3)
and (4)), according to whether a hole, success-m, or collision
was observed, and then normalizing so that the p′n,t add up to
one. Then, the numerator of (11) is evaluated as follows,

If the gNB observes a hole,

p′t =
[p0,tHbM;t

(0), p1,tHbM;t
(1), . . .]

Cht
. (12)

If the gNB observes a success-m event, for m =
1, 2, . . . ,M ,

p′t =
[p0,tSm,bM;t

(0), p1,tSm,bM;t
(1), . . .]

Csm,t
. (13)

Finally, if the gNB observes a collision event,

p′t =
[p0,tCbM;t

(0), p1,tCbM;t
(1), . . .]

Cct
. (14)

where Cht =
∑∞

n=0 pn,tHbM;t
(n), Csm,t =∑∞

n=0 pn,tSm,bM;t
(n) and Cct =

∑∞
n=0 pn,tCbM;t

(n)
are the respective normalization constants. Note that the case
hole can be regarded as a particular case of success-m when
m = 0, i.e., HbM;t

(k) = S0,bM;t
(k) and Cht = Cs0,t.

B. Modeling Successful Packet Transmission

When the gNB observes the evidence Sm (m =
1, 2, . . . ,M ), the number of packets pending to be transmitted
is m less than the estimated number before the access action.
For the evidences H and C the number of packets that are
pending to gain the access in the next time slot t+1 is the same
as the one we have at time slot t. Therefore, considering the
observations, hole, success-m (m = 1, 2, . . . ,M ) or collision,
we have, including the GF of the probability vector,

If a hole is observed,

p
′′

n,t = p′n,t ⇒ P
′′∗
t (z) = P

′∗
t (z). (15)

If a success-m is observed,

p
′′

n,t = p′n+m,t ⇒ P
′′∗
t (z) = P

′∗
t (z)z−m. (16)

If a collision is observed,

p
′′

n,t = p′n,t ⇒ P
′′∗
t (z) = P

′∗
t (z). (17)

C. Modeling the Arrivals of New Packets

Let us assume that new packets arrive independently of the
the contention process. Assuming a memoryless arrival process
on a slot basis, we define an,t the probability that n packets
are generated in time slot t with GF A∗

t (z) =
∑∞

n=0 an,tz
n.

Furthermore, we also assume that ân,t, (Â∗
t (z)), the estimation

of an,t, (A∗
t (z)), it can be done with sufficient accuracy.

D. The Probability Vector at Time Slot t+1

Since the arrival process is independent of the RAP, the GF
of probability vector at time-slot t + 1 is the product of the
two related generating functions, i.e.,

P ∗
t+1(z) =

∑∞
n=0

pn,t+1z
n = P

′′∗
t (z)Â∗

t (z) =
P

′∗
t (z)Â∗

t (z), hole

P
′∗
t (z)z−mÂ∗

t (z), success−m

P
′∗
t (z)Â∗

t (z), collision

(18)

and the optimum broadcast probability b̂M,t+1 for the next slot
t+ 1 is derived using the vector probability given by (18) in
(10) and the root finding procedure. With this last step, the
cycle is completed.
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V. THE PROBABILITY VECTOR: POISSON ARRIVALS

The previous procedure can be simplified by assuming that,
in the same way as in many other works, [4], [5], [6], [12],
[16], [18], [19], the vector of probabilities pn,t at time-slot
t, (new arrivals + backlogged packets) can be approximated
reasonably, by a Poisson distribution with rate νt. In this case,
(9) turns as,

pn,t =
(νt)

n

n!
e−νt , P ∗

t (z) = eνt(z−1). (19)

Observe that now, the slot-by-slot updating procedure for
the probabilities pn,t is simplified to the task of updating the
rate νt = E(Nt), i.e., the single parameter that defines the
Poisson distribution. We recall that νt is the average number
of active devices at the beginning of time-slot t and it must be
estimated. Then, inserting (19) into (10) and with the notation
x = νtbM,t, after some algebra,

TM,α(x) = E(Pr(success at slott)/bM,t) =

=
∑M

k=1
(νtbM,t)

k

k! αke
−νtbM,t =

∑M
k=1

xk

k! αke
−x.

(20)

Notice that the throughput is a function of the product x =
νtbM,t. Let x̂M = KM be the value that maximizes TM,α(x).
Then, setting to zero the first derivative of (20), we have,

dTM,α(x)dx =

M∑
k=1

(
xk−1

(k − 1)!
αk − xk

k!
αk

)
e−x = 0 (21)

Leaving aside the exponential factor e−x, the condition in
(21) can be expressed in the following form,

x =
x
∑M

k=1
xk−1

(k−1)!αk∑M
k=1

xk

k! αk

= hM,α(x) (22)

where we have defined the function hM,α(x).
In addition, it is trivial to check that hM,α(x) < hM+1,α(x)

for 0 < x, we can assert that, . . . x̂M−1 < x̂M < x̂M+1 . . ..
Therefore, additional computing time savings can be achieved
by choosing as the initial estimation for x̂M+1 the previous
value, i.e., x(0)

M+1 = x̂M = KM .
For M = 1, 2, 3, closed form expressions are obtained for

x̂M = KM ; but, in general numerical computation to find KM

is required.
Since Nt is randomly distributed and since b̂M,t is a

probability where x̂M = νtb̂M,t we finally set,

b̂M,t = 1− ŵM,t = min

(
KM

νt
, 1

)
. (23)

Clearly, νt in (23) is unknown so it needs to be estimated
and adapted in a slot-by-slot manner. Let ν̂t denote the
estimation of νt at the beginning of time-slot t (in (23) ν̂t
will be used instead of νt). Then, as we have discussed
before, ν̂t+1, the estimation of νt+1, is supported by two
items. First, by the outcomes of slot t observed by the gNB.
Second, by the arrival process of new packets that joint the

backlogged packets and follow the common RAP. Remember,
the algorithm is supported by the IFT principle.

A. Bayesian Updating of the Probability Vector

If the gNB observes a hole, (12) becomes, after the normal-
ization step,

p′n,t =

∑M

k=0
Bn

k (bM,t)αk,0∑M

k=0

(νtbM,t)
k

k! αk,0

νn
t

n! e
−νtwt ; n ≥ 0. (24)

with GF,

P
′∗
t (z) =

∑M

k=0

(νtbM,tz)
k

k! αk,0∑M

k=0

(νtbM,t)
k

k! αk,0

eνtwM,t(z−1). (25)

We observe that (25) is a weighted sum of M + 1 Poisson
distributions, where each distribution is obtained by shifting
k positions to the right (k = 0, 1, . . . ,M ) the distribution
eνtwM,t(z−1). Consequently, we could reconsider the initial
hypothesis of Poisson distribution for pn,t and to inquire about
a linear combination of M + 1 Poisson distributions as a
better distribution for pn,t. However, to derive this possibility
is beyond the scope of this paper.

The first derivative of P
′∗
t (z) evaluated at z = 1 is,

mean valueE=H = νtwM,t +

∑M

k=0
k

(νtbM,t)
k

k! αk,0∑M

k=0

(νtbM,t)
k

k! αk,0

=

νt − x

∑M

k=0

xk

k! (αk,0−αk+1,0)∑M

k=0

xk

k! αk,0

(26)

with x = νtbM,t and αM+1,0 = 0, see channel characteristics
in (1). Observe that, according to (15), (16), (17), we identify
P

′′∗
t (z) = P

′∗
t (z).

Note that if αk,0 = δk,0 (Kronecker delta) then
meanvalueE=H = νtwM,t = max(νt − KM , 0). In other
words, if bM,t = 1, we are certain that the number of data
packets ready for transmission was zero. Otherwise, this case
cannot be confirmed when bM,t < 1.

If the gNB observes the success-m event (13), i.e., m
packets are successfully decoded, including the normalization
step, we have,

p′n,t =


0;n = 0, 1, . . . ,m− 1;∑M

k=m
Bn

k
(bM,t)αk,m∑M

k=m

(νtbM,t)
k

k!
αk,m

νn
t
n!

e−νtwM,t ; n ≥ m.
(27)

with a generating function,

P
′∗
t (z) =

∑∞
n=0 p

′
n,tz

n =∑M

k=m

(νtbM,tz)
k

k! αk,m∑M

k=m

(νtbM,t)
k

k! αk,m

eνtwM,t(z−1).
(28)

As in (25), we observe that (28) is a weighted sum of M −
m+1 Poisson distributions, where each distribution is obtained
by shifting the same distribution eνtwM,t(z−1) k positions to
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the right (k = m,m+ 1, . . . ,M ). The first derivative of (28)
evaluated at z = 1, gives us, after some simple algebra,

mean valueE=Sm
=

= νt +m− x+

∑M

k=m
(k−m) xk

k! αk,m∑M

k=m

xk

k! αk,m

(29)

with x = νtbM,t.
As soon as at least one of the parameters αk,m (k = m,m+

1, . . . ,M ) is greater than zero (column m of matrix A, (1)),
the first fraction in (29) is greater than or equal to m and
it is a non-decreasing function for x = νtbM,t ≥ 0. First,
it is trivial to see that, for x → 0 the fraction approach to
m (L’Hopital’s rule). To check the non-decreasing property,
we proceed in a similar manner to the checking procedure
we use for hM,α(x) in (22). Then, the interpretation of (29)
is that when the event success-m is observed by the gNB at
least m packets, those that successfully pursue medium access,
were transmitted in the observed time slot. We add further
discussions when dealing with two particular cases in Sec. VI.

Then, from (16), the construction of P
′′∗
t (z) implies that,

after the observation success-m, the distribution of p′n,t must
be shifted m positions to the left. We do this action with the
term z−m, i.e., P

′′∗
t (z) = P

′∗
t (z)z−m. Also, we remark the

fact that the event “hole”, (25), (26), can be seen as a particular
case of the event success-m, (28), (29), for m = 0.

When considering the all-or-nothing channel model, i.e.,
when αk,m = δk,m for 0 ≤ m ≤ M , then mean valueE=Sm

=
νtwM,t = max(νt − KM , 0). In other words, if bM,t was
one, we are certain that the number of data packets ready
for transmission was m. If bM,t < 1, some uncertainty exists
about such an assumption.

When the gNB interprets as collision, i.e., one garbled slot
is observed, (14) becomes, including the normalization step,

p′n,t =

= (νt)
n

n! e−νtwM,t

1−
∑M

k=0

(
n
k

)
bkM,tw

n−k
t (1−αk,c)

eνbM,t−
∑M

k=0

(
n
k

)
bk
M,t

wn−k
t (1−αk,c)

(30)
where αk,c = 1 −

∑k
l=0 αk,l for k ≤ M and αk,c = 1 for

k > M . Its generating function is,

P
′∗
t (z) = P

′′∗
t (z) =

eνtbM,tz−
∑M

k=0
(1−αk,c)

(νtbM,t)
k

k! zk

eνtbM,t−
∑M

k=0
(1−αk,c)

(νtbM,t)
k

k!

eνtwM,t(z−1).
(31)

where the first equality in (31) comes from (17). Notice that,
in opposite way to (25) and to (28), (31) is not represented by
a linear combination of Poisson distributions.

The first derivative of (31) in z = 1 gives us, using the
notation of x = νtbM,t

mean valueE=C = νt + x

∑M

k=0
(αk+1,c−αk,c)

xk

k!

ex−
∑M

k=0
(1−αk,c)

xk

k!

. (32)

Note that it is reasonable to assume that the fraction of (32)
is positive for x > 0. In fact, obviously the denominator is
always positive since ex >

∑M
k=0(1 − αk,c)x

k/k!. Also, the
numerator is always positive as we admit the common sense
assumption that αk+1,c ≥ αk,c, meaning that the probability
of observing a collision with k+1 packets is not less than the
probability of observing a collision with k packets.

B. Modelling Successful Packet Transmission

For arrival, we also simplify the Poisson process with rate
λt. Then, inserting (25), (28) and (31) into (18), we observe
that, in general the resulting estimated probability vector for
time-slot t + 1 is no longer Poisson, i.e., P

′′∗
t (z)eλ̂t(z−1) ̸=

eν̂t+1(z−1). Nevertheless we can approach the resulting distri-
bution of P

′′∗
t (z)eλ̂t(z−1) by one of Poisson for pn,t+1 with

mean value ν̂t+1 equal to the mean value of the computed
vector probability P

′′∗
t (z)eλ̂t(z−1). In other words, we obtain,

by using x = ν̂tbM,t, that
For a hole,

ν̂t+1 = λ̂t + νt − x+

∑M

k=0
k xk

k! αk,0∑M

k=0

xk

k! αk,0

; (33)

For a success-m,

ν̂t+1 = λ̂t + ν̂t − x+

∑M

k=m
(k−m) xk

k! αk,m∑M

k=m

xk

k! αk,m

; (34)

For a collision,

ν̂t+1 = λ̂t + ν̂t + x

∑M

k=0
(αk+1,c−αk,c)

xk

k!

ex−
∑M

k=0
(1−αk,c)

xk

k!

; (35)

Then, the deriving cycle is completed.

C. The Pseudo Bayesian Procedure

Here we summarize how the procedure works. At the end
of time-slot t − 1, the gNB estimates the number of devices
(new arrivals + backlogged), ν̂t, that will be active in the next
time-slot t. Based on (33), (34) and (35), the gNB needs to,

• inform about the permission probability, bM,t =
min(KM/ν̂t, 1), for time-slot t used by all active devices.

• if the gNB observes a success-m (m = 0 is a hole, while
0 < m ≤ M indicates a success with multiplicity m)
decrement the actual estimation ν̂t as,

ω̂t = ν̂t −
(
KM −

∑M
k=m(k −m)

Kk
M

k! αk,m∑M
k=m

(ν̂tbM,t)k

k! αk,m

)
; (36)

• if the gNB observes a collision increment the actual
estimation ν̂t as,

ω̂t = ν̂t +KM

∑M
k=0(αk+1,c − αk,c)

Kk
M

k!

eKM −
∑M

k=0(1− αk,c)
Kk

M

k!

; (37)

the gNB configures,
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TABLE I. M -MPR: OPTIMAL THROUGHPUT TM,α(x̂M ) WITH
x̂M = KM FOR A CHANNEL WITH MAXIMUM CAPACITY; αm = m,

m = 1, 2, . . .M ; I.E. MATRIX A = I, SEE (1).

M → 1 2 3 4
TM,α(x̂M ) 0.36879 0.83996 1.37110 1.94238
x̂M = KM 1.00000 1.61803 2.26953 2.94518

ν̂t+1 = ω̂t + λ̂t (38)

where the estimation value λ̂t can be set equal to the
number of successful packet transmitted in time-slot t.

VI. SOME PARTICULAR CASES

As illustrative examples, we discuss in this section the
obtained results for two cases in M -MPR. First, the all-or-
nothing model and second the non-perfect capture model.

A. The All-or-Nothing Model

In this case, the channel is characterized by the identity
matrix of suitable dimensions, i.e., A = I, which means
that αm,m = 1, i.e., αm = m for all 0 ≤ m ≤ M and
αm,c = 1 for all m > M . These are the transmission-
reception characteristics used in [16]. Then, the throughput,
TM,α(νt, bM,t) is given by,

TM,α(νt, bM,t) =
∑M

m=1

(νtbM,t)
m

(m−1)!
e−νtbM,t =

∑M

m=1

νm
t

(m−1)!
e−νt ; νt ≤ KM → bM,t = 1;∑M

m=1

Km
M

(m−1)!
e−KM ; νt > KM → bM,t < 1.

(39)

For M = 1, the SPR case, K1 = 1 regardless the value
of α1. The maximum achievable throughput is e−1α1 ≈
0.3679α1, then equal to e−1 (S-ALOHA) when α1 = 1.

For M = 2, K2 = (1+
√
5)/2 ≈ 1.618034, see (7), and the

maximum throughput is ≈ 0.839962 (coincident with [12]).
For M = 3, K3 = (S1 + S2 + 1)/3 ≈ 2.26953084

where S1,2 =
3
√
37± 3

√
114, and the maximum achievable

throughput is ≈ 1.37110.
For M > 3 we do not find a closed form expression, so we

resort to numerical calculation as has described above.
Table I shows the maximum throughput TM,α(x) for the

all-or-nothing model in M -MPR for several values of M , in
coincidence with the values obtained in [12].

About the Pseudo Bayesian procedure in this case we notice
that in case of hole or success-m, (36) becomes (the same
action for all those events),

ω̂t = ν̂t − ν̂tbM,t =

ν̂t −min(KM , ν̂t) = max(ν̂t −KM , 0);
(40)

and in case of collision, we have from (37)

ω̂t = ν̂t +

KM+1
M
M !

eKM −
∑M

k=0

Kk
M
k!

; (41)

The final step is achieved when (41) is inserted into (38).

TABLE II. M -MPR: ∆ν̂t FOR A “ALL-OR-NOTHING” CHANNEL;
αm = m, m = 1, 2, . . .M (MATRIX A = I, SEE (1)).

M → 1 2 3 4
hole, m = 0 -1.00000 -1.61803 -2.26953 -2.94518
success, m = 1 -1.00000 -1.61803 -2.26953 -2.94518
“, m = 2 - -1.61803 -2.26953 -2.94518
“, m = 3 - - -2.26953 -2.94518
“, m = 4 - - - -2.94518
“, m = 5 - - - -
“, m = 6 - - - -
collision, m > M 1.39221 1.89876 2.34994 2.76516

The fraction in (41) is the bias or error of the a priori
estimate of ν̂t evaluated at the beginning of time-slot t.
At the end of this time-slot t, after the observation of the
event collision has been taken into account, ω̂t reflects the a
posterior estimate of the number of packets involved in that
collision. In other words, ω̂t is the corrected estimate of ν̂t.
Notice that for ν̂t → 0 the bias approaches to M + 1, i.e.,
ω̂t → M + 1 as expected. That is, since the system is an M -
MPR with the all-or-nothing capability, M+1 is the minimum
number of packets involved in one collision, very close to this
value for very low traffic. Although, surprisingly, the bias in
(41) decreases when ν̂t increases from zero up to ν̂t = KM (in
this interval the probability bM,t keeps constant equal to one)
the net effect is that the a posterior estimate ω̂t increases when
ν̂t increases, as common sense dictates. Note that it is straight-
forward to check that the first derivative of the bias is negative
for any value of x = νtbM,t. However, it is also surprising that
the bias remains constant, for values of ν̂t > KM (in this case
bM,t < 1). That is, when ν̂t > KM (bM,t < 1) the bias keeps
constant, equal to 1.39221, 1.89876, 2.34994, . . . respectively
for M = 1, 2, 3, . . .. Those values are reflected in the row
collision of Table II and are the positive bias we use for the
Bayesian estimation of the number of packets involved in one
collision.

Moreover, it is worth mentioning that the maximum achiev-
able throughput per slot, TM,α(x̂M ), increases with M , as
expected, i.e., starting with ≈ 0.3679 for SPR, i.e., M = 1,
then to ≈ 0.839962 for M = 2, then to ≈ 1.37110 for M = 3,
and so on. In fact, it is a linear increasing form.

Then, we conclude that it is trivial to compute the updated
broadcast or permission probability b̂M,t as has been summa-
rized in Sec. V-C. We remark that the gNB acts according
to a binary feedback, i.e., non-collision versus collision, as
observed in Table II.

B. The Non-Perfect Capture Effect Model

With this model, the gNB has the chance to correctly decode
one packet despite the presence of other packets in the same
time slot. In general, the probability that one packet is decoded
successfully depends on the number of packets involved in the
collision [8]. Here we study the simple case of non-perfect
capture, i.e., according to a noiseless channel based on [3],
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α0,0 = 1; αm,1 =

{
1; m = 1,
qm; m = 2, . . . ,M
0; m > M.

;

αm,c =

{
0; m = 0, 1.
1− qm; m = 2, . . . ,M
1; m > M.

;

(42)

so, α0 = 0, α1 = 1 and αm = qm for m = 2, . . . ,M .
Equivalently, in matrix form,

A =


1 0 . . . 0 0
0 1 . . . 0 0

...
...

. . .
...

...
0 qM . . . 0 1 − qM

α>M,0 = 0 α>M,1 = 0 . . . α>M,M = 0 1


(43)

Clearly, we have the perfect capture case when q = 1. On
the other hand, when q → 0, the model degenerates to the SPR
model in which M = 1, i.e., no capture effect. In general, a
greater capture capability is obtained with large values of q
(to deal with how the value of q could be estimated is out
of the scope of this paper). Then, the events observed by the
gNB are: hole, success-1, and collision, and the corresponding
actions associated to (36) and (37) become as,

If a hole is observed

ω̂t = max(ν̂t −KM , 0); (44)

If a success-1 is observed (m = 1)

ω̂t = ν̂t−
(
ν̂tbM,t−

∑M
k=2(k − 1)

(qν̂tbM,t)
k

k!

ν̂tbM,t +
∑

k = 2M
(qν̂tbM,t)k

k!

)
; (45)

If a collision is observed,

ω̂t = ν̂t + ν̂tbM,t.

.
(1−q)ν̂tbM,t+

∑M

k=2
qk(1−q)

(ν̂tbM,t)
k

k! +qM
(ν̂tbM,t)

M

M!

eνtbM,t−1−ν̂tbM,t−
∑M

k=2

(qν̂tbM,t)
k

k!

.
(46)

From previous expressions, we have ternary feedback in the
non-perfect capture effect. The optimal throughput has been
evaluated for several values of the parameter q, see (20);

TM,α(x̂M ) =
∑M

m=1
x̂k
M

k! αke
−x̂M . (47)

The results are reported in Table III.

VII. CONCLUSIONS

In this paper, we generalize the pseudo-Bayesian broadcast
control algorithm when the communication system works in
the environment of M -MPR in a time slot-based scheme. Up
to M packets that are simultaneously are transmitted in the
same time slot can be received and perfectly decoded. To that
purpose, the use of capture effect, SIC, and MIMO techniques
are essential to increase throughput.
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TABLE III. M -MPR: OPTIMAL THROUGHPUT TM,α(x̂M = KM ) FOR A
CHANNEL WITH NON-PERFECT CAPTURE EFFECT ACCORDING TO (43).
q ↓ M → 1 2 3 4

0.0 TM,α(x̂M ) 0.36787 - - -
x̂M = KM 1.00000 - - -

0.1 TM,α(x̂M ) 0.36787 0.36972 0.36978 0.36978
x̂M = KM 1.00000 1.00500 1.00533 1.00534

0.3 TM,α(x̂M ) 0.36787 0.38480 0.38662 0.38676
x̂M = KM 1.00000 1.04490 1.05460 1.05578

0.5 TM,α(x̂M ) 0.36787 0.41659 0.42659 0.42814
x̂M = KM 1.00000 1.12310 1.17364 1.18606

0.7 TM,α(x̂M ) 0.36787 0.46786 0.50236 0.51222
x̂M = KM 1.00000 1.23183 1.38575 1.45989

0.9 TM,α(x̂M ) 0.36787 0.54132 0.63352 0.68095
x̂M = KM 1.00000 1.35419 1.67287 1.94236

1.0 TM,α(x̂M ) 0.36787 0.58693 0.72603 0.81671
x̂M = KM 1.00000 1.41421 1.81712 2.21336
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