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Abstract— The Health Internet of Things (HIoT) enables 

Device-to-Device (D2D) communication among heterogeneous 

medical devices. However, optimal D2D connectivity is 

challenging due to traffic demand, the inherent environmental 

and device constraints. Prior works have characterized HIoT 

networks with single objective optimization models and either 

simplify or ignore device and environmental constraints, thus 

yielding poor scalability and limited practical value. Thus, this 

paper casts optimal HIoT D2D connectivity as a stochastic 

Multi-Objective, Mixed-Function and Mixed-Constraint (MO-

MF-MC) problem. An analysis of why the HIoT D2D network 

is fundamentally stochastic is presented. In addition, the paper 

presents and formalizes two views to model optimal D2D 

connectivity. These are the Constraint Based (CB) and the 

Pareto Optimal Vector (POV) perspectives. The paper supports 

POV as most suitable. The contributions of this paper are: (1) 

an analysis of the challenges of modeling optimal HIoT D2D 

connectivity (2) the formulation of the stochastic D2D optimal 

connectivity from CB and POV perspectives, (3) justification of 

POV modeling for optimal D2D connectivity in HIoT. This work 

establishes the need for the design of lightweight, scalable, and 

adaptive protocols for sustainable, reliable real-time and 

optimal connectivity in HIoT D2D networks.  

Keywords- Constraint based; Device-to-Device; Health 

Internet of Things; Optimization; Pareto vector. 

I.  INTRODUCTION 

The Health Internet of Things (HIoT) connects medical 

sensors, wearables, clinical instruments and infrastructure for 

real-time patient diagnosis, treatment, and monitoring. A key 

enabler of the HIoT ecosystem is Device-to-Device (D2D) 

networks, which facilitate direct data transfer between 

devices, thereby reducing dependency on centralized 

infrastructure [1][2]. In healthcare scenarios, this is crucial 

because timely and reliable data transmission are essential for 

clinical decisions and emergency response. Thus, low 

latency, loss and jitter along with high data rate are required 

Quality of Service (QoS) [2][3]. However, HIoT D2D 

networks face unique challenges due to constraints imposed 

by their operational environment, the type of devices and 

traffic they support.  Typically, these networks operate in Not-

For-Wire (NFW) environments, which refer to any domain 

where wired connections are either infeasible, impractical, or 

undesirable. In such domains, devices exchange data by 

leveraging the wireless medium, which is shared, inherently 

unstable, and resource constrained. It is also characterized 

with limited bandwidth and data transmissions are prone to 

interference and high path loss.  These conditions degrade and 

affect the network’s performance to guarantee optimal 

connectivity essential for reliable communication within 

healthcare systems. Additionally, HIoT D2D devices are 

unconventional, miniature, and constrained in resources, such 

as computational power, memory, and battery life [4][5]. 

Traffic is diverse, ranging from data generated by patient 

monitoring, mission-critical and real-time operations to 

emergency alerts. These traffic streams require differentiated 

treatment and stringent QoS guarantees. However, the 

constraint imposed by devices, the unpredictability of the 

NFW environment coupled with the unique traffic types, 

introduces unpredictable conditions that cause stochastic 

connectivity and thus makes it difficult to guarantee QoS.  
In HIoT D2D networks, connectivity implies that QoS 

demands by active traffic flows are simultaneously satisfied. 
QoS metrics include latency, jitter, throughput, and packet 
loss.  The basic expression for connectivity is given by 
equation (1) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ ∀𝑖,  𝑓𝑖(𝑥) ≤ 𝑏𝑖                           (1) 

where  

• 𝑖: index over all QoS metrics 

• 𝑓𝑖(𝑥):  objective function of QoS metric i. 

• bᵢ: the bound value for QoS metric i  

Equation (1) states that connectivity is achieved, if and only 

if (iff), all QoS metrics indexed by i satisfy their respective 

bound (threshold). fᵢ(x) represents the QoS performance 

under a given network configuration x, while 𝑏𝑖  denotes the 

required bound that must be satisfied for each metric. For 

example, in a healthcare scenario, latency measured using   

 𝑓𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑥)   must not exceed its critical bound 𝑏𝑙𝑎𝑡𝑒𝑛𝑐𝑦  and 

similarly, packet loss must remain below its acceptable 

threshold. Quantifier ∀i ensures that QoS demand is 

simultaneously satisfied. 

Consequently, sustaining QoS in HIoT D2D network 

requires protocols that utilize Multi-Objective, Mixed-

function, Mixed-constraint (MO-MF-MC) optimization 

Oladayo Bello 

Cape Peninsula University of Technology| 

College of Engineering, New Mexico State University 

Cape Town, South Africa | Las Cruces, U.S.A 

Email: oladayo@ieee.org 

 

Innocent Davidson 
Cape Peninsula University of Technology 

Cape Town, South Africa  

Email: davidsoni@cput.ac.za 

 

20Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



approach. The approach ensures that trade-offs between 

conflicting goals are carefully balanced. However, there is a 

lack of such protocols because most networking protocols 

were not designed to handle the multi-layer dynamics of QoS 

objectives, device constraints and uncertainty that exists in the 

NFW environments [6].   

    These dynamics highlight the importance of treating 

optimal D2D connectivity in HIoT as a stochastic MO-MF-

MC problem. It is also desirable to have protocols that 

facilitate optimal D2D connectivity. To address these gaps, 

this paper focuses on: 

“How optimal connectivity can be achieved despite the 

tradeoff that exists in meeting conflicting and stringent QoS 

demands of mission-critical traffic traversing the constrained 

HIoT D2D network operating under stochastic conditions”  

The contributions of this paper are: 1) analysis of the 

inherent challenges for optimal connectivity and the 

limitations of single-objective optimization models in HIoT 

D2D networks 2) formulation of optimal connectivity with a 

stochastic MO-MF-MC model under the Constraint Based 

(CB) and Pareto Optimal Vector (POV) perspectives. 3) 

justification of POV as the perspective that best captures the 

realistic trade-offs among QoS metrics subject to device and 

environment constraints. Moreover, one of the challenges for 

optimal connectivity identified and introduced in this paper, is 

the unique characteristic of HIoT D2D traffic flow, which has 

been termed “Mixed-criticality, Bound-assured, Mission-

synchronous” (MC-BAMS). The term is explained in Section 

II. Lastly, the paper provides insight into a framework to be 

adopted in the design of next generation communication 

protocols for HIoT D2D networks. The future work that builds 

upon this paper includes a lightweight protocol that 

operationalizes the POV framework. The paper’s content is as 

follows: Section II presents the challenges for optimal D2D 

connectivity in HIoT, Section III discusses optimization in 

HIoT, Section IV presents the optimal connectivity model and 

Section V concludes the paper.  

II. CHALLENGES FOR OPTIMAL CONNECTIVITY  

Within the HIoT D2D networks, three main challenges 
impose the need for tailored protocols to facilitate optimal 
connectivity. These are operational challenges, which affect 
QoS performance objectives and in turn impacts connectivity. 
They stem from environmental and device constraints, and 
heterogeneity of data traffic, which are discussed as follows.  

A. Not-For-Wire (NFW) Environmental conditions 

The operational domain of HIoT D2D networks is often a 

NFW setting where links are wireless. Conditions within 

such settings are inherently unpredictable due to co-located 

medical systems, patient movement and deteriorating signal 

strength. These conditions introduce interference and 

fluctuations that cause connectivity to be stochastic thus, 

making QoS guarantees difficult to sustain [3][7]. While 

deterministic connectivity models may suffice in stable 

networks, the instability of NFW environmental conditions 

favors stochastic modeling especially in healthcare systems 

where millisecond delays can impact outcomes [7][8]. An 

example of the NFW environment is smart Intensive Care 

Units (ICUs) where ventilators, infusion pumps, and 

monitors exchange critical data simultaneously over the 

shared wireless spectrum. The setting reduces cable clutter 

and improves safety but raises signal interference risk [8]. In 

homecare, data generated by wearable ECG patches and 

implantable glucose sensors is wirelessly sent to smartphones 

or clouds systems and thus allow patient mobility. However, 

these medical devices contend with home appliance 

operating in the same frequency bands and patient mobility 

can affect link quality [9]. Mobile emergency care further 

highlights the stochasticity in NFW environments. The 

ambulances stream vital signs en route, so low latency and 

negligible error rates are essential for pre-arrival 

interventions, yet handoffs and fading continually perturb the 

wireless links [7][10]. HIoT D2D networks need robust, 

adaptive mechanisms that handle environmental variability 

while preserving the performance of life-critical traffic. 

Therefore, optimization frameworks should explicitly model 

NFW uncertainty and guarantee QoS bounds [7][8][9]. 

B. Device Constraints  

In D2D networks, devices are often miniature embedded 
systems designed with strict size for comfort and usability 
requirements. Smartwatches, biosensors, and implantable 
medical devices prioritize patient convenience and portability 
but at the cost of battery capacity, memory, and processing 
power [11]. Limited energy prevents prolonged high data rate 
thus making it challenging to guarantee continuous, low-
latency transmission. Memory and computational limitations 
further restrict the use of conventional protocols, which often 
require data buffering, complex computations and large 
memory [4]. For instance, real-time ECG monitoring 
generates massive data streams, but devices often lack the 
capacity to buffer or preprocess data locally [12]. This 
constraint forces reliance on lightweight, efficient 
communication mechanisms tailored for low-resource 
devices. Additionally, battery longevity is a critical factor. 
Many implantable wearable devices must function for months 
or even years without replacement and frequent recharging is 
impractical. Battery power constraint impacts not just 
transmission occurrence rate but also the complexity of 
protocols that can be executed.  

C. Traffic Characteristics 

The data traffic in HIoT D2D networks is highly 

heterogeneous. It includes data generated by routine updates, 

monitoring devices and mission-critical alerts from 

pacemakers. Diversity means that different traffic streams 

require differentiated QoS guarantees. For healthcare traffic, 

timeliness is as crucial as accuracy [13]. Inherently, traffic is 

generated in real-time and delayed data may become 

irrelevant, thus reducing their utility for clinical decisions. For 

example, a physician monitoring a remote patient’s heart 

rhythm requires data to be streamed in near real time. A 
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delayed transmission of the same data will lose diagnostic 

value. However, while routine patient monitoring data can 

tolerate modest delays, mission-critical signals must be 

delivered with minimal latency and low jitter [13]. The diverse 

traffic requirements make prioritizing traffic during resource 

allocation difficult. High-priority emergency traffic must 

preempt less urgent transmissions without entirely starving 

background data streams, such as periodic wellness updates. 

Thus, the nature of traffic flow is such that they are “mixed-

criticality, bound-assured, mission-synchronous” (MC-

BAMS). MC-BAMS implies that “At any time, there exist 

diverse traffic flow with different criticality level and QoS 

bounds that must be simultaneously guaranteed and 

transmitted in a shared, unpredictable, and resource-

constrained environment, where no traffic can be deferred”.  

This traffic flow characteristic is unique to HIoT D2D 

networks. Consequently, designing scheduling and resource 

allocation protocols to facilitate fair differentiated service by 

supporting MC-BAMS traffic flows under device and 

environmental constraints remains a challenge.  

D. Architectural Overview of HIoT D2D Networks 

Figure 1 depicts a simplified architectural overview of 
the challenges for optimized connectivity in HIoT D2D 
networks. Typically, such networks integrate multiple types 
of medical and wearable devices that communicate directly 
without relying exclusively on centralized infrastructure. The 
devices include implantable sensors, wearable glucose 
monitors, smartwatches, infusion pumps, ventilators, and 
imaging systems. Each device is constrained by size, memory, 
computational capacity, and battery power, limiting its ability 
to process and transmit continuous high-volume traffic.  

These limitations necessitate lightweight optimization 
strategies to maintain network reliability. The environment is 
depicted as a Not For Wire (NFW) medium, characterized by 
interference, unpredictability, mobility, and shared spectrum 
resources. Within this environment, different types of traffic 
coexist.  

 
Figure 1. Architectural Challenges for Optimized Connectivity in HIoT 

D2D Networks. 

Each traffic type has unique QoS requirements as outlined:  

• Imaging data (high bandwidth, moderate latency 

tolerance). 

• Alerts (ultra-low latency, mission-critical). 

• Vitals monitoring (periodic updates, moderate QoS). 

 The figure illustrates how device limitations, volatile 

environments, and heterogeneous traffic demands combine to 

create optimization challenges for HIoT D2D networks. 

E. Need for lightweight protocols 

Commonly used standardized networking protocols were 
not designed for the highly unstable and constrained condition 
of the HIoT D2D network. Those protocols function with high 
signaling overhead, computational processes and memory 
resources, which cannot be supported by miniature medical 
devices. Moreover, most do not adapt to the NFW 
environments where connectivity is stochastic. Furthermore, 
these protocols do not implement mechanisms that can cater 
for the unique nature of MC-BAMS traffic flow in HIoT D2D. 
Thus, making them inadequate for mission-critical health 
applications where real-time medical signals require stringent 
QoS guarantees simultaneously. Due to these limitations, 
HIoT D2D networks require lightweight, adaptive protocols 
that will optimize and allocate resources fairly while meeting 
stringent QoS requirements of heterogeneous medical traffic. 
Such tailored protocols should be based on optimization 
models that will ensure that life-critical communications are 
reliably sustained under device, environmental and traffic 
requirement constraints. 

III. OPTIMIZATION IN HEALTH INTERNET OF THINGS (HIOT) 

In this section, a comparison of single and multi-objective 
optimization techniques for HIoT is presented. Existing 
approaches and gaps are also discussed.  

A. Single objective vs. Mult objective Optimization  

Single-objective optimization approaches focus on one 

metric at a time, for example, minimizing latency or 

maximizing data rate. They are simple, computationally less 

intensive and easier to interpret thus appear appealing for 

modeling constrained environments [14]. However, their 

weakness lies in oversimplification and the inability to 

combine multiple metrics’ objectives simultaneously. For 

example, minimizing latency without regarding data rate 

forces very short traffic inter-arrival times and high 

scheduling frequency, which inflates protocol overhead and 

reduce effective data rate. Conversely, if data rate is 

maximized without regard for latency, large data 

aggregation, and buffering raise queueing delays (and jitter), 

thus impacting end-to-end latency.  

In real-world HIoT D2D network applications, where 

performance dimensions are highly interdependent, single-

objective approaches often fail to capture the true complexity 

of the problem. By contrast, multi-objective optimization 

models recognize trade-offs across multiple metrics [14][15]. 

These models enable the design of protocols that can generate 

sets of optimal solutions instead of committing to a single 

“winner.” This is valuable in HIoT D2D networks, where 

objectives of guaranteeing multiple QoS demands such as 

minimizing latency, maximizing data rate and minimizing 

data error and loss are simultaneously critical. 
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While single-objective optimization provides clarity, it 

lacks realism for HIoT D2D applications. Multi-objective 

models, though more complex, provide the flexibility and 

adaptability needed to balance diverse, and often conflicting 

requirements exhibited by the MC-BAMS traffic flow in a 

NFW, device constrained healthcare-focused D2D networks. 

B. Optimization aproaches in IoT and HIoT  

Optimization in the IoT has been widely studied. 

Particularly, wireless sensor networks (WSNs) formed the 

basis of many early optimization frameworks. These networks 

highlighted the challenges of balancing multiple objectives 

such as data rate and latency. In [15] the authors provided 

comprehensive taxonomies of Multi-Objective Optimization 

(MOO) in WSNs. They examined both scalarization 

approaches (e.g., weighted sums) and evolutionary 

algorithms. Such methods laid the groundwork for extending 

optimization approaches into the more complex domain of 

HIoT. 

In the HIoT context, optimization approaches have 

focused on areas such as task scheduling, device allocation, 

and network resource management. Nucci et al presented a bi-

objective scheduling framework. It minimizes operational 

costs, maximizes quality of care simultaneously with non-

dominated sorting genetic algorithm II (NSGA-II) heuristics. 

The framework takes into consideration device constraints 

such as compatibility, limited battery capacity, and setup 

overheads. This dual-focus design underscores the necessity 

of balancing operational efficiency with service quality in life-

critical environments. Similarly [17] focused on multi-

objective model for IoT application placement (MAPO) to 

address application placement by balancing latency, energy 

consumption, and operational costs. Such approach 

demonstrates particular relevance for medical applications, 

where offloading and distributed computing reduces stress on 

resource-constrained devices while still meeting stringent 

latency and reliability requirements.  
      More recently, adaptive strategies leveraging evolutionary 
and reinforcement learning have been introduced. 
Evolutionary Multi-Objective Optimization (EMO) 
techniques have shown promise in handling the scale and 
complexity of large HIoT deployments [18]. Furthermore, 
Multi-Objective Reinforcement Learning (MORL) has 
emerged as a dynamic solution, capable of learning adaptive 
trade-off policies under uncertain environments without 
relying on predefined training data [19]. Such methods are 
increasingly attractive for HIoT networks. 

C. Gaps: lack of real world conditions  

Despite advancements in optimization frameworks, 

existing models often fall short in their applicability in real-

world HIoT scenarios. Many rely on idealized assumptions 

such as stable wireless channels, unconstrained processing 

power, and predictable traffic patterns. These assumptions do 

not reflect the stochastic nature of the NFW environment of 

HIoT D2D networks. Most models assume deterministic QoS 

guarantees by discounting the reality of fluctuating NFW 

settings and the constraints of miniature devices. 

Scalability presents another significant challenge. While 

evolutionary algorithms are robust in generating optimal 

solutions, their computational complexity grows 

exponentially with the number of objectives or devices [18].  

Consequently, this can create a bottleneck in large-scale 

deployments of real-time HIoT D2D applications, where 

instantaneous decision-making is critical. Optimizing all data 

traffic QoS demand across hundreds of devices 

simultaneously can exceed the practical computational 

capacity of even fog-enabled networks. 

Moreover, most of the existing frameworks do not 

integrate dynamic, stochastic constraints into their models. 

Real-world HIoT D2D networks may be subject to fluctuating 

interference and unpredictable error rate, which leads to 

unstable connectivity for traffic flows with diverse criticality 

levels. Yet most optimization studies often treat constraints as 

static, ignoring temporal variations and unpredictability [17]. 

Finally, the lack of lightweight protocols derived from 

optimization insights remains a critical concern. Current 

optimization research tends to stop at theoretical modeling, 

without translating results into deployable protocols that 

resource-constrained devices can implement.  
These gaps undermine the delivery of consistent QoS in 

real medical environments, where momentary lapses in 
connectivity can jeopardize patient safety. Addressing these 
gaps require developing scalable, adaptive, and lightweight 
MO-MF-MC frameworks that integrate stochastic constraints 
and translate directly into operational protocols suitable for 
HIoT D2D networks. 

IV. OPTIMAL CONNECTIVITY MODEL 

A. Stochastic Nature of Connectivity 

         Connectivity is achieved in HIoT D2D networks if and 
only if all QoS requirements are simultaneously satisfied. This 
reflects the mission-critical nature of such networks, where 
failing in one metric implies network failure. However, the 
stochastic nature of connectivity, due to the NFW 
environmental conditions, makes it challenging to satisfy 
simultaneous demands. As a result, QoS metrics cannot be 
taken on fixed values but rather be modeled as random 
variables with probability distributions [20]. For example, the 
probability of maintaining latency below a certain threshold 
may vary significantly depending on interference levels, 
which means deterministic guarantees are impossible. Instead, 

probabilistic QoS guarantees, e.g., P(latency≤τ )≥0.95 

must be incorporated into optimization formulations to 
account for the stochastic nature of connectivity. However, the 
stochasticity also complicates optimization because even 
when devices operate under optimal configurations, 
performance guarantees may not be met due to environmental 
variations. For example, significant loss of data may occur due 
to unpredictable interference bursts, even if optimal QoS 
targets have been initially met. Hence, connectivity 
optimization frameworks must be designed to adapt 
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dynamically to changing states while tolerating uncertainty. 
Stochasticity also arises from device mobility and human 
activity patterns. Wearable sensors and implantable devices 
attached to patients move unpredictably, thus making 
deterministic assumptions impractical. Moreover, the pattern 
of the MC-BAMS traffic flow validates the importance of 
accounting for stochasticity. Traffic flow competes for 
resources that must be shared fairly and optimally. 

B. Network Objectives function (QoS Metrics)  

     The primary goal of HIoT D2D network is to ensure 

connectivity by guaranteeing QoS requirements of traffic 

flows generated for healthcare service delivery. Latency and 

jitter are among the most vital metrics. The transmission of 

ECG data during cardiac arrest must occur timely with strict 

bounds on delay variation. Data rate and data loss are equally 

important, as compromised arrival rate and integrity of 

medical data can lead to unintended consequences.  Data rate 

becomes very critical when devices are streaming medical 

data in images and videos format. The network must balance 

the requirements from all traffic flows simultaneously 

without sacrificing any traffic demand. In summary, 

connectivity is achieved by simultaneously meeting multiple 

QoS objectives in HIoT D2D networks, which extend beyond 

conventional communication goals. Meeting these combined 

stringent performance metrics’ objectives, which are 

imperative for timeliness and accuracy of healthcare services 

demands tailored frameworks. 

C.  Network Constraints (Device and Environmental)  

        While objectives define “what” should be achieved, 

constraints determine “how” or “if” such objectives are 

possible. In other words, in HIoT D2D networks, QoS 

metrics establish performance targets, however, they can 

only be achieved within the bounds of multiple layers of 

constraints. The first set of constraints are device-level 

constraints, which are due to the limitations of medical 

devices’ hardware. These devices are miniature, and resource 

constrained. Limited operating power creates tension 

between sustaining QoS metrics and preserving device 

lifetime. Continuous and frequent high data rate 

transmissions can drain power. Furthermore, computational 

and memory limitations restrict the complexity of algorithms 

and the size of data buffers that can be deployed on these 

devices. Environmental constraints also influence 

performance. HIoT D2D networks function in NFW medical 

environments where unpredictable channel conditions, 

multipath fading and interference impact the stability of 

network connectivity. Therefore, these constraints must be 

appropriately modelled. 

D. Formulation of Optimal Connectivity  

To achieve optimal D2D connectivity, the conflicting goal 
is to minimize and maximize multiple objective functions 
simultaneously. Thus, the connectivity problem can be 
defined as a stochastic MO-MF-MC optimization problem. 
The objectives functions are the QoS performance metrics that 

capture the QoS goals, which are to minimize latency, jitter, 
loss and maximize data rate simultaneously. Constraints 
functions, which are either deterministic or stochastic, model 
the limitations imposed by devices and the NFW 
environmental factors. The stochastic MO-MF-MC problem 
that can be framed from two perspectives. These perspectives, 
which are discussed in this section are the Constraint Based 
(CB) and Pareto Optimal Vector (POV) perspectives. Note 
that in this paper, these perspectives are QoS-based or QoS-
focused. The modeling for each of these perspectives involves 
six steps, which are the formulation of: 1) QoS metrics as 
objective functions, 2) QoS bounds, 3) one liner connectivity, 
4) compact max connectivity, 5) connectivity indicator (for 
one liner and compact max form) and 6) the optimal 
connectivity. The notations used in the formulation, and their 
definitions are outlined in Table I. 

 

TABLE  I. FORMULATION NOTATIONS AND DEFINITIONS 

NOTATION DEFINITION 
i Index of a QoS metric 
k Total number of QoS metrics 
x Decision variable  
b QoS bounds 
f(x) Objective function 
g(x) Inequality constraint 
h(x) Equality constraint 
 𝑔𝑗(𝑥, 𝜔) 

 ℎ𝑡(𝑥, 𝜔) 
Stochastic constraint, (device/environmental)  

𝜔 Randomness/uncertainty 

∂ Weight  

𝛽 set of all x that fulfills the QoS bounds for POV 

perspective  

P Probability of occurrence 

𝛼 Probabilistic threshold/reliability level 

σ  POV directions. σi=+1: metric is minimized and -1: 

metric is maximized 

1 Binary indicator 

 

1) Constraint Based (CB) perspective  
The CB perspectives for optimal connectivity, their 

formulation steps and how they are interrelated are presented 
in this subsection. CB perspective treats connectivity as a 
feasibility question on a strict binary bound or a chance bound.  

The outcome for connectivity is either binary (feasible or 
not) or based on the chance of achieving a given probabilistic 
threshold. The former case is termed constraint-based binary 
(CBB) while the latter is constraint based stochastic (CBS). 
From CBB perspective, connectivity exists if the specified 
QoS targets are satisfied; otherwise, it does not. CBS states 
that connectivity exists when the QoS metric bounds are met 
with a probability. 

Moreover, the binary outcome in CBB can be specified as 
being deterministic (CBB-D) or as stochastic (CBB-S).  In 
CBB-D, QoS objective functions are set to be achieved in a 
deterministic “ideal” environmental condition in which there 
no uncertainty or randomness. The objective function takes 
the form f(x) in equation (2). In addition, with reference to 
equation (1), these functions may be constrained with equality 
or inequality and expressed as fi(x)=bi, fi(x)<bi or fi(x)>bi, if 
no randomness exists. Equations (2) – (7) express the 
formulation steps for CBB-D. 
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The QoS objective functions in CBB-S are set with 
“realistic conditions”, that reflects the existence of 
randomness within the network. The functions take the form 
f(x,𝜔), in equation (8) where 𝜔 indicates the uncertainty 
influencing the QoS objective. If randomness exists, the 

objective functions may also be constrained with equality or 
inequality and can expressed as fi(x,𝜔 )=bi, fi(x,𝜔)<bi or 
fi(x,𝜔)>bi). Equations (8) – (13) express the formulation steps 
for CBB-S. 

 
 

In CBS, connectivity is stochastic, and objective functions 
are chance (stochastically) constrained and takes the form 

P(fi(x, 𝜔) ≤bi) ∈ [𝛼 1]). Objectives must satisfy at least a 

target probability threshold. Connectivity holds when the 
probabilistic QoS requirements modeled by the objective 
functions are all satisfied in other words, each QoS bound, bi 
is met with probability of at least a target 𝛼. (i.e. within 
threshold [𝛼 1] and under bounded device and environmental 
constraints 

A QoS metric is satisfied if there is a probability of ≥ 𝛼 

of its value being within the required bound. CBS builds upon 
the CBB-S notion by requiring that connectivity is established 
at a probability of at least some target level (e.g., 95%). 
Connectivity is defined in terms of the reliability of the 
network given uncertain conditions. This means that the 
network is “connected” when the QoS bounds are achieved 
with at least the likelihood threshold that is specified, thus 
reflecting randomness and variation in channel and traffic 

conditions. This captures real-world variability in the NFW 
environment while still being constraint-based. The 
requirements are stated in probabilistic terms. So, CBS is a 
decision-level formalization that uses the CBB-S and then 
controls it via a probabilistic threshold, in order to gauge the 
networks’ reliability in the presence of uncertainty   A 
reliability threshold is a common way to certify connectivity 
under uncertainty in wireless QoS contexts [21][22]. 

Generally, from CB perspective, optimal connectivity 
exists if all QoS objective function are simultaneously met 
within acceptable bound, if one bound cannot be guaranteed, 
then connectivity does not exist. The connectivity feasibility 
indicator is either {0,1} or it is feasible with a probability 𝛼 

∈  [𝛼 1]. All quantities f(x, 𝜔) and constraints g(x,𝜔) or 

h(x,𝜔) have fixed performance expectations, which may be 

deterministic or stochastic. Equations (14)– (19) give the 

formulation steps for CBS. 

 
 

 

STEP 1: QoS metrics  𝑓𝑖(𝑥),    𝑖 = 1 … . . 𝑘                                                                                                                                            (2) 

STEP 2: QoS bounds  𝑓𝑖(𝑥) ≤ 𝑏𝑖    𝑖 = 1 … . 𝑘   and    𝑓𝑖(𝑥) ≥ 𝑏𝑖     𝑖 = 1 … . 𝑘                                                                                       (3) 

STEP 3: One liner Connectivity  𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ ∀𝑖,  𝑓𝑖(𝑥) ≤ 𝑏𝑖                                                                                                                        (4) 

STEP 4: Compact max form 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ max
𝑖=1…𝑘

 (𝑓𝑖(𝑥) − 𝑏𝑖), ≤ 0                                                                                                        (5) 

STEP 5: Connectivity Indicator One liner: 𝛷𝑑𝑒𝑡(𝑥) = 𝟏{∀𝑖:  𝑓𝑖(𝑥) ≤ 𝑏𝑖} ∈ {0, 1}                                                                                              (6a) 

Compact max form: 𝛷𝑑𝑒𝑡(𝑥) = 𝟏 {∀𝑖: 𝑚𝑎𝑥
𝑖=1…𝑘

 (𝑓𝑖(𝑥) − 𝑏𝑖), ≤ 0} ∈ {0, 1}                                                       (6b) 

STEP 6: Optimal Connectivity 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝛷𝑑𝑒𝑡(𝑥) = 1                                                                                                            (7) 

STEP 1: QoS metrics  𝑓𝑖
(𝑥, 𝜔),    𝑖 = 1 … . . 𝑘                                                                                                                                 (8) 

STEP 2: QoS bounds  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖    𝑖 = 1 … . 𝑘                                                                                                                                    (9a) 

𝑓𝑖
(𝑥, 𝜔) ≥ 𝑏𝑖    𝑖 = 1 … . 𝑘                                                                                                                         (9b) 

STEP 3: One liner Connectivity  𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ ∀𝑖,  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖                                                                                                   (10) 

STEP 4: Compact max form 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝑚𝑎𝑥
𝑖=1…𝑘

 (𝑓𝑖(𝑥, 𝜔) −  𝑏𝑖), ≤ 0                                                                               (11) 

STEP 5: Connectivity Indicator One liner: 𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 𝟏{∀𝑖:  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖} ∈ {0, 1}    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜔  

Compact max form: 𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 𝟏 {∀𝑖: 𝑚𝑎𝑥
𝑖=1…𝑘

 (𝑓𝑖(𝑥, 𝜔) −  𝑏𝑖), ≤ 0} ∈ {0, 1} 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜔                      (12) 
STEP 6: Optimal Connectivity  𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 1                                                                                               (13) 

STEP 1: QoS metrics  𝑓𝑖
(𝑥, 𝜔),    𝑖 = 1 … . . 𝑘                                                                                                                               (14) 

STEP 2: QoS bounds  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖    𝑖 = 1 … . 𝑘 

𝑓𝑖
(𝑥, 𝜔) ≥ 𝑏𝑖    𝑖 = 1 … . 𝑘                                                                                                                         (15) 

STEP 3: One liner Connectivity  𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝑃(∀𝑖,  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖)                                                                                          (16) 

STEP 4: Compact max form 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝑃( max
𝑖=1…𝑘

 (𝑓𝑖(𝑥, 𝜔) −  𝑏𝑖), ≤ 0                                                                         (17) 

STEP 5: Connectivity Indicator 𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 𝟏{∀𝑖:  𝑓𝑖(𝑥, 𝜔) ≤ 𝑏𝑖} ∈ {0, 1}   

𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 𝟏 {∀𝑖: 𝑚𝑎𝑥
𝑖=1…𝑘

 (𝑓𝑖(𝑥, 𝜔) − 𝑏𝑖), ≤ 0} ∈ {0, 1} 

For both online and compact max, probability of being connected 

𝛷𝐶𝐵𝑆(𝑥, 𝜔) = 𝟏 (𝑃(𝛷𝑠𝑡𝑜𝑐ℎ(𝑥, 𝜔) = 1)) ∈ [0,1]                                                                                (18) 
STEP 6: Optimal Connectivity Chance constraint declaration of optimal connectivity at level alpha 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ 𝛷𝐶𝐵𝑆(𝑥, 𝜔)  ≥ 𝛼                                                                                                  (19) 
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2) Pareto Optimal Vector (POV) perspective  
The constraint-based perspective strictly defines a binary 

feasible region which shows that all QoS metric bounds are 
being met. This does not require Pareto optimization because 
connectivity is bound by hard constraints. However, in 
optimization practice, especially under stochastic and 
resource-constrained environments, it is rarely possible to 
meet all objectives’ strict thresholds simultaneously. Thus, 
Pareto optimality becomes important. Instead of absolute 
satisfaction, connectivity can be interpreted as being Pareto 
efficient, which means that no objective (e.g., latency) can be 
improved without worsening another (e.g., data rate). Thus, 
the connectivity indicator can be expressed as belonging to the 
Pareto frontier of feasible solutions. Pareto-based modeling is 
highly suitable for HIoT D2D where traffic flows are of MC-
BAMS types, the environment is NFW with stochastic 
conditions and devices introduce constraints. The QoS 

performance objectives take the form σi fi(x, 𝜔) ≤bi where 

σi ∈{+1, −1} encodes direction ( σi = +1 for “minimize,” σi 

= −1 for “maximize,” so all objectives are cast as ≤). The 

QoS bounds bi are hardbound ceilings for QoS performance 
of cost type metrics, where upper limits is bmax and hardbound 
floors for QoS performance of benefit-type metrics with lower 

limits bmin. A Pareto efficient point (PEP) is any feasible 
decision, which no other feasible decision dominates under 
the Pareto dominance condition. A Pareto efficient vector 
(PEV) is the space vector of the objectives induced by a set of 
PEPs that reflects the combination of QoS metrics to be met 
simultaneously. The set of all PEVs form the Pareto front and 
naturally exhibits trade-offs among metrics. In Pareto 
perspective, connectivity means there exists at least one 
feasible PEV; which is expressed with the usual one-liner 
feasibility condition. Alternatively, the compact max form 
generates PEPs and thus PEVs using weighted sum 
scalarization. Pareto Optimal Vectors (POVs) denote the 
subset of PEVs that satisfy the floors/ceilings bound for the 
objective functions.  Thus, the connectivity indicator specifies 
the binary existence of at least one POV. Optimal connectivity 
exists if there is at least one POV that can provide an 
acceptable optimal operational trade-off for the network QoS 
performance required by an application. The parameters of 
that POV are then used to configure D2D links. A PEV is the 
objective-space performance vector on the Pareto front while 
a POV is a PEV that satisfies the specified floors/ceilings. 
Equations (20) – (25) gives the optimal connectivity 
formulation steps for the POV perspectives. 

 

 

 

E. Justification for POV 

In real practice, multi-objective trade-offs are 
unavoidable. Though strict feasibility defines and models the  
ideal connectivity, Pareto vectors define and model the 
realistic operating points where optimal trade-offs are 
achieved. If strict thresholds are non-negotiable, then 
connectivity is treated with a hard feasibility. If trade-offs are 
possible, then connectivity is represented as a Pareto vector 
solution space. However, when conflicting objectives exist, 
such as minimizing latency, maximizing throughput, the 
network does not have a single feasible optimum, instead there 
is a set of solutions that form the Pareto optimal vectors, which 
are the feasible regions of connectivity. A set of Pareto 
optimal vectors indicate connectivity. In addition, the ability 
to visualize trade-offs through Pareto fronts makes stochastic 
MO-MF-MC optimization effective in HIoT D2D networks. 
For instance, a Pareto front might reveal that slightly higher  

 
 

 

 
latency can significantly extend device battery life, which is 
an acceptable trade-off for routine monitoring, but 
unacceptable in emergency care. Such nuanced decision 
support is vital for adaptive, real-time systems, where 
conditions shift unpredictably and human lives may depend 
on microsecond-level performance [21]. 

V. CONCLUSION AND FUTURE WORK 

This paper studied connectivity in HIoT D2D networks 
operating in NFW environments and under strict resource 
limits, which makes connectivity fundamentally stochastic. 
Therefore, optimal connectivity in HIoT D2D networks has 
been modelled as a stochastic MO-MF-MC optimization 
problem, where the network must meet diverse traffic 
demands while operating within strict device and 
environmental limitations. The paper identified the unique 
characteristics of traffic flow in HIoT D2D as MC-BAMS. 

 

STEP 1: QoS metrics 𝐟(𝑥, 𝜔) = (𝜎𝑖  𝑓𝑖(𝑥, 𝜔), 𝑖 = 1 … . . 𝑘)                                                                                                (20) 

STEP 2: QoS bounds 𝐟(𝑥, 𝜔) ≤ 𝐛𝑚𝑖𝑛 
 , 𝐟(𝑥, 𝜔) ≥ 𝐛𝑚𝑎𝑥

                                                                                                      (21) 

STEP 3: One liner Connectivity  Given the Pareto dominance condition.:  

 ∀𝑖 𝑓𝑖(𝑥′, 𝜔) ≤   𝑓𝑖(𝑥, 𝜔)  and  ∃𝑗 ∶   𝑓𝑗(𝑥′, 𝜔) <  𝑓𝑗(𝑥, 𝜔).  

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ {(𝑥, 𝜔)  ∈  𝑃𝐸𝑉 ∶= { ∄𝑥′ ∶  ∀𝑖 𝑓𝑖(𝑥′, 𝜔) ≤   𝑓𝑖(𝑥, 𝜔)  and  ∃𝑗 ∶   𝑓𝑗(𝑥′, 𝜔) <

 𝑓𝑗(𝑥, 𝜔)} }                                                                                                                                                     (22) 

STEP 4; Compact max form 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ {(𝑥, 𝜔)  ∈  𝑃𝐸𝑉 ≔ { ∃𝑥: min
𝑧

∑ 𝛿𝑖
𝑘
𝑖=1  (𝑓𝑖(𝑥, 𝜔) , 𝛿𝑖 ≥ ,   ∑ 𝛿𝑖𝑖 =

1}}                                                                                                                                                    (23) 

STEP 5; Connectivity Indicator 𝛷𝑃𝑂𝑉(𝑥, 𝜔) = 𝟏{𝑥 ∈ 𝛽: (𝑥, 𝜔)  ∈  𝑃𝐸𝑉} ∈ {0, 1}                                                          (24) 

STE 6: Optimal Connectivity 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⇔ {𝑥 ∗∈ : 𝛷𝑃𝑂𝑉(𝑥, 𝜔) = {𝑥 ∈ 𝛽: (𝑥, 𝜔) ∈ 𝑃𝐸𝑉} = 1  
𝛽 = {𝑥:  𝐟(𝑥, 𝜔) ≤ 𝐛𝑚𝑖𝑛}----------- bound condition                                                                             (25) 
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Optimal connectivity was formulated from the CB and 
POV perspectives. A justification was made for the POV 
perspective. The constraint-based view defines optimal 
connectivity as either deterministic or chance constrained for 
reliability targets, while a Pareto view reveals the trade-off 
frontier where no QoS metric improves without another 
worsening within limits. POV is supported because it 
explicitly manages trade-offs among competing QoS metrics 
(e.g., latency, jitter, loss, data rate) while respecting device 
and environmental constraints. This perspective provides a 
practical foundation for scalable adaptive HIoT device to 
device systems in dynamic clinical settings. Future work 
includes a lightweight protocol that instantiates the chance 
constrained Pareto framework on constrained devices, online 
learning to tune priorities thresholds and schedules in real 
time, energy aware orchestration that couples power 
budgeting harvesting and thermal safety with QoS guarantees, 
privacy and safety co design aligned with clinical risk, 
hardware in the loop validation in ICU and home care testbeds 
with 5G and 6G URLLC, and open benchmarks to support 
reproducible progress on dependable HIoT connectivity. 
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