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Abstract— Deep Learning (DL) has redefined Automatic 

Modulation Classification (AMC) by replacing traditional 

hand-engineered features with end-to-end neural networks 

that process raw signal data, thus demonstrating high accuracy 

at moderate-to-high Signal-to-Noise Ratios (SNRs). While 

contemporary convolutional and hybrid recurrent network 

architectures achieve excellent performance, they often incur 

significant computational costs that hinder deployment on 

resource-constrained Internet of Things (IoT) edge devices. To 

address this challenge, this work proposes and presents a low-

cost, open-source radio platform that performs signal 

acquisition and utilizes vector extensions for accelerated 

inference. The platform integrates a commodity Realtek 

Software-Defined Radio (RTL-SDR) with Reduced Instruction 

Set Computer – Five (RISC-V) processors. The workflow 

methodology for the proposed approach is a reproducible, end-

to-end pipeline for deploying signal classification models on 

resource-constrained devices in IoT networks. The pipeline's 

primary strength is its deterministic dataset assembly. The 

workflows process establishes a coherent baseline for 

embedded classification under strict memory and processing 

power constraints typical in IoT devices.  

Keywords-Automatic modulation classification; Signal to 

noise ratio; RISC-V; interference. 

I.  INTRODUCTION 

Deep learning has reshaped AMC by replacing hand-
engineered features with end-to-end models that operate 
directly on raw In-phase and Quadrature (I/Q) sequences, 
that achieve strong performance at moderate-to-high SNRs. 
Convolutional Neural Networks (CNNs) and hybrid 
Convolutional Neural Network–Recurrent Neural Network 
(CNN–RNN) models trained on datasets such as RadioML 
have shown much higher accuracy, often above 90–98% at 
stronger SNRs. However, these models come with 
significant computational costs during inference, making 
efficient IoT edge device deployment a big challenge. 
Though CNN variations and spectrogram-based techniques 
are continually introduced, showing the clear shift toward 
deep learning. Yet, persistent issues remain, including 
performance drops at low SNR, difficulty generalizing 
beyond synthetic datasets, and the need to sustain real-time 
processing under hardware limits [1],[2]. 

Open RISC-V platforms with the RISC-V Vector (RVV) 
1.0 vector extension help accelerate vector-heavy signal-

processing and inference workloads central to intelligent 
radio. The acceleration is done via RVV’s Vector-Length 
Agnostic (VLA) programming model, flexible register 
grouping, and support for mixed-precision arithmetic. These 
processes enable scalable Single Instruction, Multiple Data 
(SIMD) style parallelism tuned from embedded to High-
Performance Computing (HPC) class implementations. 
RISC-V vector cores illustrate how RVV-backed designs 
pair a scalar pipeline with a decoupled vector unit and high-
throughput memory subsystems. The pairing facilitates 
efficient IoT edge device inference with publicly 
documented configurations touting 512-bit vector registers, 
BFloat16 (BF16)/16-bit Floating Point (FP16)/8-bit Integer 
(INT8) support, and Machine Learning (ML) oriented 
instruction extensions for neural kernels and matrix 
operations [3],[4],[5],[6],[7],[8]. 

The RTL-SDR, which is a USB Software-Defined Radio 
(SDR) derived from Digital Video Broadcasting – Terrestrial 
(DVB-T) tuner chipsets, provides wide coverage and stable 
sample rates up to roughly 2.56 Mega Samples per second 
(MS/s) for reliable demodulation. The wide coverage 
provided is commonly between 24 MHz and 1766 MHz with 
popular tuners. These attributes make the RTL-SDR a 
practical, inexpensive front end for collecting real I/Q 
datasets to complement synthetic corpora during 
development and testing. As a commodity device with 8-bit 
Analog-to-Digital Converter (ADC) samples and ubiquitous 
host support, it enables rapid, repeatable data capture across 
bands of interest for model pre-training, augmentation, and 
validation. These enable it to keep total system cost low 
enough and allow it to scale benchtop experiments to 
distributed field measurements [2],[9]. 

Therefore, this work proposes and presents a new 
approach for real time automatic modulation classification 
using open-source platforms. The method utilizes 
inexpensive RTL-SDR USB dongles for capturing signals 
and RISC-V vector chips for fast speed running of Artificial 
Intelligence (AI) models on miniature, power-constraint 
devices. The contribution and significance of this approach is 
fourfold. First, it equips IoT nodes and gateways with on-
device spectrum intelligence. Such capability allows 
distributed IoT devices to monitor, classify, and react to the 
radio frequency environment in real time without relying on 
centralized cloud processing. Second, it shortens the path 
from simulated data to real over-the-air recordings, by 
improving real-time speed and reliability for AMC. 
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Particularly, this reduction in time supports IoT use cases 
such as local interference detection on smart-city lampposts, 
factory floor coexistence monitoring, and edge device 
anomaly alert transmission without the need for constant 
cloud backhaul. Third, implementing AMC at the ultra-edge 
also facilitates the adaptation of radio in situ for IoT device 
deployments.  For example, selecting robust modulation 
techniques under congestion, flagging unauthorized emitters 
near industrial assets, or triaging spectrum events in 
environmental sensor networks are possible. All these 
capabilities reduce latency, bandwidth, and power while 
maintaining service quality. Lastly, the approach makes 
wide-area spectrum monitoring become feasible due to the 
adoption of distributed receivers on battery-powered or 
solar-powered IoT gateways. These gateways classify signals 
locally and share only compact summaries, in order to 
improve scalability and privacy while preserving situational 
awareness. IoT applications that benefit from this capability 
include utility metering, telehealth, telemetry backhaul, and 
campus-scale asset tracking.  

Overall, the proposed approach makes spectrum 
intelligence more accessible by pairing modern deep learning 
with vectorized execution on widely available RISC-V 
hardware. Both concepts have been explored separately, but 
until now, have not been paired together as explored in this 
work. The methodology leverages the growing adoption of 
RISC-V in IoT edge devices due to cost, openness, and 
efficiency. Specifically, the aforementioned capabilities 
support IoT deployments in smart cities, industrial 
environments, and environmental monitoring sensor 
networks. They facilitate localized decision-making, latency 
reduction, bandwidth conservation and network reliability.  

The remainder of this paper is organized as follows: 
Section II surveys and motivates the selection of hardware 
platforms. A comparison of RISC-V compute modules and 
SDR front-ends is given to highlight trade-offs in cost, 
performance, and suitability for edge deployment. Section III 
presents the end-to-end workflow of the proposed approach, 
which includes data collection, signal preprocessing, 
spectrogram-based CNN training, and compilation to kmodel 
for execution on constrained K210 microcontrollers. Section 
IV outlines directions for future work, including 
implementation in advanced and alternative architectures, 
utilizing expanded over-the-air datasets, and signal 
intelligence testing in broader applications. Section V 
concludes the paper by highlighting the work’s contributions 
to accessible edge spectrum intelligence for typical miniature 
IoT devices. 

II. HARDWARE SURVEY AND SELECTION 

 There are potentially different types of hardware that can 
be used as the platform for this work. Thus, it is important to 
evaluate candidate platforms along both performance and 
integration dimensions. For an IoT-oriented pipeline, cost, 
power consumption, and form factor are just as critical as 
raw computational throughput. Accordingly, two categories 
of hardware are reviewed which are RISC-V and software-
defined radio (SDR). RISC-V compute platforms are capable 

of running machine learning inference at the edge, while 
SDRs are front-ends for signal capture. 

A. RISC‑V compute platforms 

These are low-cost platforms that facilitate efficient on-
device inference for edge Digital Signal Processing (DSP) 
classification. Their key differentiators include the CPU 
microarchitecture, availability of vector or Neural Processing 
Unit (NPU) acceleration, memory capacity, and indicative 
pricing for Bill Of Materials (BOM) planning. These 
platforms are particularly well-suited for IoT nodes because 
they balance affordability with power efficiency, making it 
feasible to deploy spectrum-aware intelligence across a large 
number of distributed IoT devices. By handling feature 
extraction and inference locally, such platforms reduce the 
need for continuous backhaul to the cloud, improving both 
scalability and responsiveness. The results of this survey are 
summarized in Table I. 

B.  SDR front‑ends (RX/TX) 

On the RF side, SDR front-ends were surveyed to 
identify capture devices that complement lightweight RISC-
V compute platforms. Available SDRs span ultra-low-cost 
USB dongles through to higher-end lab-grade radios. 
Selection criteria included frequency coverage, converter 
depth and sampling rate, frequency stability, front-end 
filtering, duplex capability (receive-only or full 
transmit/receive), and cost trade-offs for system integration. 
For IoT deployments, receive-only devices often suffice, 
since the primary task is passive spectrum monitoring and 
classification rather than active transmission. Low-cost 
SDRs with stable frequency control and sufficient bandwidth 
can therefore enable practical large-scale sensing 
deployments while keeping per-node costs minimal. Table II 
compares candidate SDR devices. 

C. Selection rationale 

For cost‑effective, edge‑deployed classification, the 
MaixCAM provides enough integer SIMD and a small NPU. 
These features accelerate lightweight DSP and inference 
under tight power and memory budgets, while maintaining a 
compact BOM and integrated camera‑oriented I/O for data 
capture. The RTL‑SDR Blog V4 pairs well by offering stable 
frequency control, improved high frequency performance, 
and integrated filtering at a fraction of the cost of wideband 
Transmit/Receive (TX/RX) radios whose transmit capability 
is unnecessary for receive‑only classification pipelines. 
Together, these devices can be used to create a compact, IoT-
ready sensing node capable of autonomous spectrum 
monitoring, which is critical for distributed edge applications 
where network connectivity may be intermittent or 
bandwidth-limited. IoT application examples include Health 
Internet of Things where devices are miniature and resource 
constrained.
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TABLE I - COMPARISON OF RISC-V COMPUTE PLATFORMS 
Device SoC / cores Vector / NPU RAM Storage I/O highlights Notes 
Sipeed 

MaixCAM 
Sophgo SG2002, dual 

T‑Head C906 (1.0 
GHz + 0.7 GHz) 

Legacy RVV 0.7.x; 1 
TOPS NPU 

256 MB 
DDR3 

microSD MIPI CSI, DVP 
cam, USB‑C 

Compact module for edge 
vision/DSP; selected 

compute node 
StarFive 

VisionFive 2 
StarFive JH7110, 

quad SiFive U74 (up 
to 1.5 GHz) 

No RVV; RV64GC 2–8 GB 
LPDDR4 

microSD GbE, HDMI, 
M.2 (PCIe 2.0) 

Mature RISC‑V SBC with 
broad Linux support 

Milk‑V Duo S Sophgo SG2000, dual 
C906 + 1× 

Cortex‑A53 

Legacy RVV 0.7.x; 
vendor NPU 

512 MB SIP 
DRAM 

microSD MIPI CSI/DSI, 
USB 

Tiny hybrid RISC‑V + ARM for 
I/O flexibility 

Sipeed 
LicheePi 4A 

T‑Head TH1520, quad 
C910 

Vendor vector ext; 
NPU present 

4–16 GB 
LPDDR4 

microSD/e
MMC 

PCIe 3.0, 
HDMI, MIPI 

Higher‑end RISC‑V SBC for 
heavier workloads 

Milk‑V Mars T‑Head TH1520, quad 
C910 

Vendor vector ext; 
NPU present 

4–16 GB microSD/e
MMC 

PCIe, HDMI, 
MIPI 

Dev board variant around 
TH1520 

Pine64 
Star64 

StarFive JH7110, 
quad U74 

No RVV; RV64GC 4–8 GB 
LPDDR4 

microSD GbE, PCIe, 
HDMI 

JH7110 platform in Pine64 
ecosystem 

Banana Pi 
BPI‑F3 

SpacemiT K1 
(multi‑core RISC‑V) 

Vendor vector/NPU 
(SoC‑dependent) 

up to 8 GB microSD/e
MMC 

GbE, PCIe, 
HDMI 

Newer RISC‑V SBC line; specs 
evolving 

MangoPi 
MQ‑Pro 

(D1) 

Allwinner D1, single 
XuanTie C906 (~1 

GHz) 

Legacy vector ext 512 MB 
DDR3 

microSD GPIO, USB OTG Ultra‑low‑cost entry RISC‑V 
Linux 

HiFive 
Unmatched 

SiFive FU740 (quad 
U74 + S7) 

No RVV; RV64GC 8 GB DDR4 M.2 NVMe PCIe x8 (x4 
elec), GbE 

High‑end dev board; limited 
availability 

BeagleV 
Ahead 

T‑Head TH1520 Vendor vector ext; 
NPU present 

4–8 GB microSD/e
MMC 

PCIe, HDMI, 
MIPI 

Community SBC with 
TH1520 

StarFive 
VisionFive 

(v1) 

StarFive JH7100 
(dual U74) 

No RVV up to 8 GB microSD GbE, HDMI First‑gen predecessor to VF2 

Milk‑V Meles CVITEK CV1800B 
(RISC‑V C906) 

Vendor vector; 
ISP/NPU (SoC) 

512 MB microSD Dual MIPI CSI, 
Ethernet 

Camera‑centric edge module 

 

TABLE II - COMPARISON OF SOFTWARE DEFINED RADIO FRONT-ENDS 
Device Frequency coverage ADC / sample rate TCXO Preselection / 

filters 
Notes 

RTL‑SDR 
Blog V4 

~0.5–30 MHz (direct) 
+ ~24/28–1766 MHz 

8‑bit (RTL2832U), 
up to ~2.4–3.2 Msps 

1 ppm Improved HF path, 
FM notch 

Bias‑T; RX only; 
Selected RF frontend; stable, low cost 

RTL‑SDR 
Blog V3 

~0.5–30 MHz (direct) 
+ 24–1766 MHz 

8‑bit, up to ~2.4 
Msps 

1 ppm Basic, optional FM 
notch 

Bias‑T; RX only; 
Proven baseline dongle 

HackRF One ~1 MHz–6 GHz 8‑bit, up to 20 Msps ~20 ppm Minimal onboard 
filtering 

No Bias‑T; Half‑duplex TX/RX 
Wideband, experimental TX 

Airspy Mini ~24–1800 MHz 12‑bit, up to 6–10 
Msps 

0.5 ppm Moderate front‑end 
filtering 

No Bias‑T; RX only;  
High dynamic range for VHF/UHF 

Airspy R2 ~24–1800 MHz 12‑bit, up to 10 
Msps 

0.5 ppm Improved 
linearity/filtering 

No Bias‑T; RX only;  
Performance‑oriented dongle 

Airspy HF+ 
Discovery 

~0.5 kHz–31 MHz + 
60–260 MHz 

16‑bit MF stages, 
high effective ENOB 

0.5 ppm Strong HF 
preselection 

No Bias‑T; RX only; 
Elite HF sensitivity and selectivity 

SDRplay 
RSP1A 

~1 kHz–2 GHz 12–14‑bit, up to 10 
Msps 

0.5 ppm Multi‑band 
preselection 

No Bias‑T; RX only;  
Versatile coverage with filtering 

SDRplay 
RSPdx 

~1 kHz–2 GHz 12–14‑bit, up to 10 
Msps 

0.5 ppm Enhanced HF 
front‑end 

No Bias‑T; RX only; 
Improved LF/MF/HF robustness 

SDRplay 
RSPduo 

~1 kHz–2 GHz (dual 
tuners) 

12–14‑bit, up to 10 
Msps 

0.5 ppm Preselection per 
tuner 

No Bias‑T; RX only (dual coherent) 
Diversity/DF use cases 

LimeSDR 
Mini 2.0 

~10 MHz–3.5 GHz 12‑bit, up to ~30.72 
Msps 

1 ppm Basic, external 
filtering advised 

No Bias‑T; Full‑duplex 
Compact TX/RX platform 

ADALM‑Plut
o (PlutoSDR) 

~325 MHz–3.8 GHz 
(70 MHz–6 GHz mod) 

12‑bit, up to ~61.44 
Msps RX 

1 ppm Minimal onboard 
filtering 

No Bias‑T; Full‑duplex 
Flexible teaching/experimental SDR 

USRP 
B200mini‑i 

~70 MHz–6 GHz 12‑bit, up to ~56 
Msps 

2.5 ppm 
OCXO (‑i) 

External filtering 
recommended 

No Bias‑T; Full‑duplex; 
Lab‑grade, UHD ecosystem 

KrakenSDR 
(coherent) 

~24–1766 MHz (5 
coherent tuners) 

8‑bit, per‑tuner 
~2.4 Msps 

0.5–1 ppm FM notch options Bias‑T; RX only; 
DoA/beamforming with 5‑way 

phase‑coherence 
KerberosSDR 

(coherent) 
~24–1766 MHz (4 

tuners) 
8‑bit, per‑tuner 

~2.4 Msps 
0.5–1 ppm Optional filtering No Bias‑T; RX only; 

Earlier 4‑tuner coherent array 
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III. WORKFLOW- METHODOLOGY 

In this section, the proof-of-concept implementation of 
the proposed approach is presented. The flowchart in Figure 
1 illustrates the workflow methodology. The end-to-end 
pipeline runs on a desktop host and outputs a compact 
kmodel artifact for the K210’s Kendryte Processing Unit 
(KPU). It starts with raw I/Q captures and finishes with a 
compiled model that adheres to the memory and operator 
constraints documented for Maix/MaixPy deployments on 
the K210. Although development occurs on a desktop host, 
the resulting models are fully compatible with IoT edge 

devices. Consequently, the models facilitate the 
implementation of autonomous spectrum classification in 
IoT devices deployed in remote or power-constrained 
environments. The workflow uses SDR# as shown in Figure 
2 with an RTL-SDR to collect labeled I/Q recordings, 
Scientific Python (SciPy) to generate time-frequency 
spectrograms from complex baseband arrays, 
TensorFlow/Keras to train a CNN on those images, and 
TensorFlow Lite plus nncase/KPU tooling to export and 
compile an embedded-ready kmodel  which is standard 
practice supported by [1],[2],[3],[4],[5]. 

 
Figure 1. Workflow Approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Data collection on PC 

During this process, raw complex baseband streams are 
recorded interactively in SDR# via the Recording tab, which 
supports baseband I/Q capture to Waveform Audio File 
Format (WAV). The WAV file is used for later offline 
processing and precise replay in SDR# to enable 
deterministic dataset curation for downstream steps. To 
assemble a minimal labeled corpus aligned with target 
classes, one can capture a strong local FM broadcast 
segment, record a National Oceanic and Atmospheric 

Administration (NOAA) Weather Radio transmission within 
the 162.400–162.550 MHz Very High Frequency (VHF) 
allocation. Then gather a clip from an unoccupied channel to 
form a noise baseline, with files organized into class-named 
directories and metadata preserved in filenames to aid 
traceability. Alternate SDR ecosystems and guidance on I/Q 
data handling reinforce the objective of producing 
contiguous, timestamped baseband data suitable for 
reproducible post-processing and later validation, 
independent of the specific GUI tool used [1],[6],[7]. 

Figure 2. SDR Sharp (SDR#) Interface. 
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B. Signal preprocessing and spectrograms  

At this stage, complex I/Q arrays are transformed into 
two-dimensional time–frequency images using a Short-Time 
Fourier Transform (STFT) spectrogram. The SciPy’s 
documentation specifies outputs as frequency bins, time-
frames, and a non-negative spectral representation suitable 
for learning and visualization. A practical implementation 
loads each I/Q recording, computes spectrograms with fixed 
window and overlap for consistent resolution. Log scaling 
and normalization are performed, and standardized images 
are written to per-class folders. These align with established 
spectrogram practice and tutorials [4],[8]. 

C. CNN training on spectrograms 

During this task, with a directory of labeled spectrogram 
images, a compact CNN is defined and trained using Keras. 
The task follows TensorFlow’s canonical model creation and 
training patterns that interoperate cleanly with subsequent 
TensorFlow Lite conversion. In addition, the training routine 
uses consistent image dimensions and a simple stack of 
convolutional and pooling layers ending in a softmax head. 
Then, it saves a validated host‑side model artifact before any 
edge‑oriented conversion, which cleanly separates algorithm 
development from deployment concerns as suggested [5]. 

D. Model conversion to TensorFlow Lite  

After host‑side validation, the Keras model is converted 
into a .tflite FlatBuffer using the TensorFlow Lite Converter 
API, which converts Keras models to byte buffer for 
exporting and saving the result. To meet embedded 
constraints, post‑training quantization can be enabled during 
conversion to reduce model size and improve inference 
efficiency. These steps establish both float and quantized 
TFLite variants for rapid A/B checks prior to device‑specific 
compilation as proven in [5],[9]. 

E. Compilation to kmodel for K210  

At this level, the Kendryte K210’s KPU executes models 
in the vendor-specific kmodel format generated by nncase. 
The Sipeed’s Maix/MaixPy documentation outlines KPU 
loading modes, typical memory ceilings by firmware variant, 
and the expectations for kmodel artifacts compiled from 
TFLite. In practice, the TFLite model is compiled with 
nncase to produce a kmodel and then verified against the 
host TFLite baseline on representative inputs. The process 
ensures operator support and adherence to KPU memory 
limits described in Sipeed guidance for C software 
development kit (C SDK) or MaixPy runtimes. Community 
implementation notes also emphasize using a compatible 
nncase release for K210 workflows and cross-checking 
inference numerics between TFLite and kmodel before 
flashing or SD-card deployment [2],[3],[10]. 

F. Setting up the edge device to run the converted model 

The sub-steps for this task are 1) on the edge device, a 
suitable MaixPy firmware or a C SDK–based firmware is 
installed, 2) on either the SD card or in on-board flash, the 
kmodel is provisioned, as supported by MaixPy’s KPU 
loader and the Kendryte flashing utility, 3) loading models 

are placed on an SD card with the MaixPy KPU API using a 
filesystem path; models flashed to a designated offset can be 
loaded from flash, with Sipeed documentation to describe 
memory limits and firmware variants, 4) modules are 
deployed, which typically involves flashing firmware with 
kflash.py or its GUI, copying the kmodel to SD or 
embedding it in flash, and writing a minimal runtime that 
initializes the sensor or input pipeline, 5) frames are pre-
processed to the model’s input shape and data layout; this 
invokes the KPU inference, and emits results over serial, 
display, or General-Purpose Input/Output (GPIO) as 
applicable to scenarios discussed in [2],[3],[11]. 

G. Reproducibility considerations 

Replaying recordings to validate labeling and 
preprocessing is facilitated by SDR#’s ability to open 
baseband I/Q WAV files in order to enable confirmation of 
tuned stations, SNR, and channel occupancy prior to batch 
spectrogram generation and training. Moreover, informative 
file naming, directory schemes, and general I/Q data 
management best practices support traceability across data 
collection, preprocessing, and inference stages without 
changing the core methods described here. Retaining both 
original I/Q archives and derived spectrograms ensures 
experiments can be reconstructed or extended. The 
maintenance of float and quantized TFLite baselines 
provides stable references for evaluating compiler effects 
prior to kmodel flashing and device trials. By producing 
compact, portable models, this workflow allows IoT devices 
to perform on-site classification, anomaly detection, and 
local interference management while maintaining minimal 
power and memory usage.  

IV. CONCLUSION AND FUTURE WORK   

This work has aimed to present an end-to-end, 
reproducible pipeline for converting raw SDR# baseband 
recordings into an optimized model for inference on 
resource-constrained Kendryte K210 microcontrollers. The 
methodology integrates four key stages and a total of six 
tasks including the key stages. These key stages are 
standardized spectrogram preprocessing, compact CNN 
training, post-training quantization via TensorFlow Lite, and 
final compilation using nncase. The resulting workflow 
establishes a tractable and verifiable pathway from RF signal 
acquisition to on-device classification, explicitly addressing 
the memory and operator limitations inherent to edge 
hardware. This approach makes spectrum intelligence 
accessible to a wide range of IoT deployments, enhances 
local decision-making, reduces latency, and conserves 
bandwidth. However, areas for future work include 
implementing formal dataset quality assurance beyond 
manual replay, empirically justifying spectrogram 
parameters, enforcing numerical parity between the TFLite 
and kmodel outputs, and conducting instrumented on-device 
profiling to measure real-world performance.  

The next steps of this proof of concept will focus on the 

following activities: 
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• Porting to a Ratified RVV 1.0 Platform: The highest 
priority is to migrate the entire workflow to a newer 
RISC-V platform that implements the fully ratified 
version 1.0 of the RVV Extension. Migration will enable 
a quantitative analysis of the performance gains 
achievable using the more powerful and flexible VLA 
programming model rather than the legacy vector 
implementation used in this work. This step is crucial 
for demonstrating the full potential of standardized 
RISC-V vector processing for ML workloads. Porting to 
RISC-V platforms could further enhance IoT nodes by 
enabling larger or more sophisticated models to execute 
on small, distributed devices at the network edge. 

• Comparative Benchmarking: A performance 
benchmark will be conducted to compare RISC-V-based 
platform with a low-cost edge AI accelerator, such as 
the Raspberry Pi with a Google Coral Tensor Processing 
Unit (TPU) or the NVIDIA Jetson Nano. This will 
provide insightful trade-offs between performance, 
power consumption, cost, and openness across different 
edge computing paradigms. 

• Advanced Model Architectures: Models like 
MobileNets, SqueezeNets, quantization-aware networks 
could potentially improve classification accuracy on 
more complex modulation schemes while maintaining 
or even reducing inference latency. Therefore, more 
sophisticated and computationally efficient neural 
network architectures will be explored.  

• Expanded Over-the-Air (OTA) Dataset and 
Classification Tasks: Training on a larger, more diverse 
dataset, which includes various modulation techniques 
like QPSK, GMSK, 16-QAM, and 64-QAM, will 
enhance the platform's ability to operate reliably in 
several RF conditions. This will improve the 
performance of IoT applications such as smart city 
infrastructure, telehealth, telemetry, and environmental 
monitoring. 

• Exploration of New Applications: The validated 
platform serves as a foundation for exploring other 
signal intelligence tasks beyond AMC. The platform can 
also support IoT-specific applications such as 
autonomous anomaly detection, RF fingerprinting for 
device authentication, interference localization in 
distributed sensor networks, and automated spectrum-
aware control of edge devices, or automated signal 
protocol identification. 
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