
Open Source Real-Time Automatic Modulation Classification with Deep Learning for

Internet of Things Devices

Abstract— Deep Learning (DL) has redefined Automatic

Modulation Classification (AMC) by replacing traditional

hand-engineered features with end-to-end neural networks

that process raw signal data, thus demonstrating high accuracy

at moderate-to-high Signal-to-Noise Ratios (SNRs). While

contemporary convolutional and hybrid recurrent network

architectures achieve excellent performance, they often incur

significant computational costs that hinder deployment on

resource-constrained Internet of Things (IoT) edge devices. To

address this challenge, this work proposes and presents a low-

cost, open-source radio platform that performs signal

acquisition and utilizes vector extensions for accelerated

inference. The platform integrates a commodity Realtek

Software-Defined Radio (RTL-SDR) with Reduced Instruction

Set Computer – Five (RISC-V) processors. The workflow

methodology for the proposed approach is a reproducible, end-

to-end pipeline for deploying signal classification models on

resource-constrained devices in IoT networks. The pipeline's

primary strength is its deterministic dataset assembly. The

workflows process establishes a coherent baseline for

embedded classification under strict memory and processing

power constraints typical in IoT devices.

Keywords-Automatic modulation classification; Signal to

noise ratio; RISC-V; interference.

I. INTRODUCTION

Deep learning has reshaped AMC by replacing hand-
engineered features with end-to-end models that operate
directly on raw In-phase and Quadrature (I/Q) sequences,
that achieve strong performance at moderate-to-high SNRs.
Convolutional Neural Networks (CNNs) and hybrid
Convolutional Neural Network–Recurrent Neural Network
(CNN–RNN) models trained on datasets such as RadioML
have shown much higher accuracy, often above 90–98% at
stronger SNRs. However, these models come with
significant computational costs during inference, making
efficient IoT edge device deployment a big challenge.
Though CNN variations and spectrogram-based techniques
are continually introduced, showing the clear shift toward
deep learning. Yet, persistent issues remain, including
performance drops at low SNR, difficulty generalizing
beyond synthetic datasets, and the need to sustain real-time
processing under hardware limits [1],[2].

Open RISC-V platforms with the RISC-V Vector (RVV)
1.0 vector extension help accelerate vector-heavy signal-

processing and inference workloads central to intelligent
radio. The acceleration is done via RVV’s Vector-Length
Agnostic (VLA) programming model, flexible register
grouping, and support for mixed-precision arithmetic. These
processes enable scalable Single Instruction, Multiple Data
(SIMD) style parallelism tuned from embedded to High-
Performance Computing (HPC) class implementations.
RISC-V vector cores illustrate how RVV-backed designs
pair a scalar pipeline with a decoupled vector unit and high-
throughput memory subsystems. The pairing facilitates
efficient IoT edge device inference with publicly
documented configurations touting 512-bit vector registers,
BFloat16 (BF16)/16-bit Floating Point (FP16)/8-bit Integer
(INT8) support, and Machine Learning (ML) oriented
instruction extensions for neural kernels and matrix
operations [3],[4],[5],[6],[7],[8].

The RTL-SDR, which is a USB Software-Defined Radio
(SDR) derived from Digital Video Broadcasting – Terrestrial
(DVB-T) tuner chipsets, provides wide coverage and stable
sample rates up to roughly 2.56 Mega Samples per second
(MS/s) for reliable demodulation. The wide coverage
provided is commonly between 24 MHz and 1766 MHz with
popular tuners. These attributes make the RTL-SDR a
practical, inexpensive front end for collecting real I/Q
datasets to complement synthetic corpora during
development and testing. As a commodity device with 8-bit
Analog-to-Digital Converter (ADC) samples and ubiquitous
host support, it enables rapid, repeatable data capture across
bands of interest for model pre-training, augmentation, and
validation. These enable it to keep total system cost low
enough and allow it to scale benchtop experiments to
distributed field measurements [2],[9].

Therefore, this work proposes and presents a new
approach for real time automatic modulation classification
using open-source platforms. The method utilizes
inexpensive RTL-SDR USB dongles for capturing signals
and RISC-V vector chips for fast speed running of Artificial
Intelligence (AI) models on miniature, power-constraint
devices. The contribution and significance of this approach is
fourfold. First, it equips IoT nodes and gateways with on-
device spectrum intelligence. Such capability allows
distributed IoT devices to monitor, classify, and react to the
radio frequency environment in real time without relying on
centralized cloud processing. Second, it shortens the path
from simulated data to real over-the-air recordings, by
improving real-time speed and reliability for AMC.

Simon Boka

Tickle College of Engineering

University of Tennessee

Knoxville, U.S.A

email: sboka@vols.utk.edu

Oladayo Bello

College of Engineering | New Mexico State

University

Cape Town, South Africa | Las Cruces, U.S.A

email: oladayo@ieee.org

Innocent Davidson
Cape Peninsula University of Technology

Cape Town, South Africa

email: davidsoni@cput.ac.za

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Particularly, this reduction in time supports IoT use cases
such as local interference detection on smart-city lampposts,
factory floor coexistence monitoring, and edge device
anomaly alert transmission without the need for constant
cloud backhaul. Third, implementing AMC at the ultra-edge
also facilitates the adaptation of radio in situ for IoT device
deployments. For example, selecting robust modulation
techniques under congestion, flagging unauthorized emitters
near industrial assets, or triaging spectrum events in
environmental sensor networks are possible. All these
capabilities reduce latency, bandwidth, and power while
maintaining service quality. Lastly, the approach makes
wide-area spectrum monitoring become feasible due to the
adoption of distributed receivers on battery-powered or
solar-powered IoT gateways. These gateways classify signals
locally and share only compact summaries, in order to
improve scalability and privacy while preserving situational
awareness. IoT applications that benefit from this capability
include utility metering, telehealth, telemetry backhaul, and
campus-scale asset tracking.

Overall, the proposed approach makes spectrum
intelligence more accessible by pairing modern deep learning
with vectorized execution on widely available RISC-V
hardware. Both concepts have been explored separately, but
until now, have not been paired together as explored in this
work. The methodology leverages the growing adoption of
RISC-V in IoT edge devices due to cost, openness, and
efficiency. Specifically, the aforementioned capabilities
support IoT deployments in smart cities, industrial
environments, and environmental monitoring sensor
networks. They facilitate localized decision-making, latency
reduction, bandwidth conservation and network reliability.

The remainder of this paper is organized as follows:
Section II surveys and motivates the selection of hardware
platforms. A comparison of RISC-V compute modules and
SDR front-ends is given to highlight trade-offs in cost,
performance, and suitability for edge deployment. Section III
presents the end-to-end workflow of the proposed approach,
which includes data collection, signal preprocessing,
spectrogram-based CNN training, and compilation to kmodel
for execution on constrained K210 microcontrollers. Section
IV outlines directions for future work, including
implementation in advanced and alternative architectures,
utilizing expanded over-the-air datasets, and signal
intelligence testing in broader applications. Section V
concludes the paper by highlighting the work’s contributions
to accessible edge spectrum intelligence for typical miniature
IoT devices.

II. HARDWARE SURVEY AND SELECTION

 There are potentially different types of hardware that can
be used as the platform for this work. Thus, it is important to
evaluate candidate platforms along both performance and
integration dimensions. For an IoT-oriented pipeline, cost,
power consumption, and form factor are just as critical as
raw computational throughput. Accordingly, two categories
of hardware are reviewed which are RISC-V and software-
defined radio (SDR). RISC-V compute platforms are capable

of running machine learning inference at the edge, while
SDRs are front-ends for signal capture.

A. RISC‑V compute platforms

These are low-cost platforms that facilitate efficient on-
device inference for edge Digital Signal Processing (DSP)
classification. Their key differentiators include the CPU
microarchitecture, availability of vector or Neural Processing
Unit (NPU) acceleration, memory capacity, and indicative
pricing for Bill Of Materials (BOM) planning. These
platforms are particularly well-suited for IoT nodes because
they balance affordability with power efficiency, making it
feasible to deploy spectrum-aware intelligence across a large
number of distributed IoT devices. By handling feature
extraction and inference locally, such platforms reduce the
need for continuous backhaul to the cloud, improving both
scalability and responsiveness. The results of this survey are
summarized in Table I.

B. SDR front‑ends (RX/TX)

On the RF side, SDR front-ends were surveyed to
identify capture devices that complement lightweight RISC-
V compute platforms. Available SDRs span ultra-low-cost
USB dongles through to higher-end lab-grade radios.
Selection criteria included frequency coverage, converter
depth and sampling rate, frequency stability, front-end
filtering, duplex capability (receive-only or full
transmit/receive), and cost trade-offs for system integration.
For IoT deployments, receive-only devices often suffice,
since the primary task is passive spectrum monitoring and
classification rather than active transmission. Low-cost
SDRs with stable frequency control and sufficient bandwidth
can therefore enable practical large-scale sensing
deployments while keeping per-node costs minimal. Table II
compares candidate SDR devices.

C. Selection rationale

For cost‑effective, edge‑deployed classification, the
MaixCAM provides enough integer SIMD and a small NPU.
These features accelerate lightweight DSP and inference
under tight power and memory budgets, while maintaining a
compact BOM and integrated camera‑oriented I/O for data
capture. The RTL‑SDR Blog V4 pairs well by offering stable
frequency control, improved high frequency performance,
and integrated filtering at a fraction of the cost of wideband
Transmit/Receive (TX/RX) radios whose transmit capability
is unnecessary for receive‑only classification pipelines.
Together, these devices can be used to create a compact, IoT-
ready sensing node capable of autonomous spectrum
monitoring, which is critical for distributed edge applications
where network connectivity may be intermittent or
bandwidth-limited. IoT application examples include Health
Internet of Things where devices are miniature and resource
constrained.

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE I - COMPARISON OF RISC-V COMPUTE PLATFORMS
Device SoC / cores Vector / NPU RAM Storage I/O highlights Notes
Sipeed

MaixCAM
Sophgo SG2002, dual

T‑Head C906 (1.0
GHz + 0.7 GHz)

Legacy RVV 0.7.x; 1
TOPS NPU

256 MB
DDR3

microSD MIPI CSI, DVP
cam, USB‑C

Compact module for edge
vision/DSP; selected

compute node
StarFive

VisionFive 2
StarFive JH7110,

quad SiFive U74 (up
to 1.5 GHz)

No RVV; RV64GC 2–8 GB
LPDDR4

microSD GbE, HDMI,
M.2 (PCIe 2.0)

Mature RISC‑V SBC with
broad Linux support

Milk‑V Duo S Sophgo SG2000, dual
C906 + 1×

Cortex‑A53

Legacy RVV 0.7.x;
vendor NPU

512 MB SIP
DRAM

microSD MIPI CSI/DSI,
USB

Tiny hybrid RISC‑V + ARM for
I/O flexibility

Sipeed
LicheePi 4A

T‑Head TH1520, quad
C910

Vendor vector ext;
NPU present

4–16 GB
LPDDR4

microSD/e
MMC

PCIe 3.0,
HDMI, MIPI

Higher‑end RISC‑V SBC for
heavier workloads

Milk‑V Mars T‑Head TH1520, quad
C910

Vendor vector ext;
NPU present

4–16 GB microSD/e
MMC

PCIe, HDMI,
MIPI

Dev board variant around
TH1520

Pine64
Star64

StarFive JH7110,
quad U74

No RVV; RV64GC 4–8 GB
LPDDR4

microSD GbE, PCIe,
HDMI

JH7110 platform in Pine64
ecosystem

Banana Pi
BPI‑F3

SpacemiT K1
(multi‑core RISC‑V)

Vendor vector/NPU
(SoC‑dependent)

up to 8 GB microSD/e
MMC

GbE, PCIe,
HDMI

Newer RISC‑V SBC line; specs
evolving

MangoPi
MQ‑Pro

(D1)

Allwinner D1, single
XuanTie C906 (~1

GHz)

Legacy vector ext 512 MB
DDR3

microSD GPIO, USB OTG Ultra‑low‑cost entry RISC‑V
Linux

HiFive
Unmatched

SiFive FU740 (quad
U74 + S7)

No RVV; RV64GC 8 GB DDR4 M.2 NVMe PCIe x8 (x4
elec), GbE

High‑end dev board; limited
availability

BeagleV
Ahead

T‑Head TH1520 Vendor vector ext;
NPU present

4–8 GB microSD/e
MMC

PCIe, HDMI,
MIPI

Community SBC with
TH1520

StarFive
VisionFive

(v1)

StarFive JH7100
(dual U74)

No RVV up to 8 GB microSD GbE, HDMI First‑gen predecessor to VF2

Milk‑V Meles CVITEK CV1800B
(RISC‑V C906)

Vendor vector;
ISP/NPU (SoC)

512 MB microSD Dual MIPI CSI,
Ethernet

Camera‑centric edge module

TABLE II - COMPARISON OF SOFTWARE DEFINED RADIO FRONT-ENDS
Device Frequency coverage ADC / sample rate TCXO Preselection /

filters
Notes

RTL‑SDR
Blog V4

~0.5–30 MHz (direct)
+ ~24/28–1766 MHz

8‑bit (RTL2832U),
up to ~2.4–3.2 Msps

1 ppm Improved HF path,
FM notch

Bias‑T; RX only;
Selected RF frontend; stable, low cost

RTL‑SDR
Blog V3

~0.5–30 MHz (direct)
+ 24–1766 MHz

8‑bit, up to ~2.4
Msps

1 ppm Basic, optional FM
notch

Bias‑T; RX only;
Proven baseline dongle

HackRF One ~1 MHz–6 GHz 8‑bit, up to 20 Msps ~20 ppm Minimal onboard
filtering

No Bias‑T; Half‑duplex TX/RX
Wideband, experimental TX

Airspy Mini ~24–1800 MHz 12‑bit, up to 6–10
Msps

0.5 ppm Moderate front‑end
filtering

No Bias‑T; RX only;
High dynamic range for VHF/UHF

Airspy R2 ~24–1800 MHz 12‑bit, up to 10
Msps

0.5 ppm Improved
linearity/filtering

No Bias‑T; RX only;
Performance‑oriented dongle

Airspy HF+
Discovery

~0.5 kHz–31 MHz +
60–260 MHz

16‑bit MF stages,
high effective ENOB

0.5 ppm Strong HF
preselection

No Bias‑T; RX only;
Elite HF sensitivity and selectivity

SDRplay
RSP1A

~1 kHz–2 GHz 12–14‑bit, up to 10
Msps

0.5 ppm Multi‑band
preselection

No Bias‑T; RX only;
Versatile coverage with filtering

SDRplay
RSPdx

~1 kHz–2 GHz 12–14‑bit, up to 10
Msps

0.5 ppm Enhanced HF
front‑end

No Bias‑T; RX only;
Improved LF/MF/HF robustness

SDRplay
RSPduo

~1 kHz–2 GHz (dual
tuners)

12–14‑bit, up to 10
Msps

0.5 ppm Preselection per
tuner

No Bias‑T; RX only (dual coherent)
Diversity/DF use cases

LimeSDR
Mini 2.0

~10 MHz–3.5 GHz 12‑bit, up to ~30.72
Msps

1 ppm Basic, external
filtering advised

No Bias‑T; Full‑duplex
Compact TX/RX platform

ADALM‑Plut
o (PlutoSDR)

~325 MHz–3.8 GHz
(70 MHz–6 GHz mod)

12‑bit, up to ~61.44
Msps RX

1 ppm Minimal onboard
filtering

No Bias‑T; Full‑duplex
Flexible teaching/experimental SDR

USRP
B200mini‑i

~70 MHz–6 GHz 12‑bit, up to ~56
Msps

2.5 ppm
OCXO (‑i)

External filtering
recommended

No Bias‑T; Full‑duplex;
Lab‑grade, UHD ecosystem

KrakenSDR
(coherent)

~24–1766 MHz (5
coherent tuners)

8‑bit, per‑tuner
~2.4 Msps

0.5–1 ppm FM notch options Bias‑T; RX only;
DoA/beamforming with 5‑way

phase‑coherence
KerberosSDR

(coherent)
~24–1766 MHz (4

tuners)
8‑bit, per‑tuner

~2.4 Msps
0.5–1 ppm Optional filtering No Bias‑T; RX only;

Earlier 4‑tuner coherent array

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

III. WORKFLOW- METHODOLOGY

In this section, the proof-of-concept implementation of
the proposed approach is presented. The flowchart in Figure
1 illustrates the workflow methodology. The end-to-end
pipeline runs on a desktop host and outputs a compact
kmodel artifact for the K210’s Kendryte Processing Unit
(KPU). It starts with raw I/Q captures and finishes with a
compiled model that adheres to the memory and operator
constraints documented for Maix/MaixPy deployments on
the K210. Although development occurs on a desktop host,
the resulting models are fully compatible with IoT edge

devices. Consequently, the models facilitate the
implementation of autonomous spectrum classification in
IoT devices deployed in remote or power-constrained
environments. The workflow uses SDR# as shown in Figure
2 with an RTL-SDR to collect labeled I/Q recordings,
Scientific Python (SciPy) to generate time-frequency
spectrograms from complex baseband arrays,
TensorFlow/Keras to train a CNN on those images, and
TensorFlow Lite plus nncase/KPU tooling to export and
compile an embedded-ready kmodel which is standard
practice supported by [1],[2],[3],[4],[5].

Figure 1. Workflow Approach.

A. Data collection on PC

During this process, raw complex baseband streams are
recorded interactively in SDR# via the Recording tab, which
supports baseband I/Q capture to Waveform Audio File
Format (WAV). The WAV file is used for later offline
processing and precise replay in SDR# to enable
deterministic dataset curation for downstream steps. To
assemble a minimal labeled corpus aligned with target
classes, one can capture a strong local FM broadcast
segment, record a National Oceanic and Atmospheric

Administration (NOAA) Weather Radio transmission within
the 162.400–162.550 MHz Very High Frequency (VHF)
allocation. Then gather a clip from an unoccupied channel to
form a noise baseline, with files organized into class-named
directories and metadata preserved in filenames to aid
traceability. Alternate SDR ecosystems and guidance on I/Q
data handling reinforce the objective of producing
contiguous, timestamped baseband data suitable for
reproducible post-processing and later validation,
independent of the specific GUI tool used [1],[6],[7].

Figure 2. SDR Sharp (SDR#) Interface.

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

B. Signal preprocessing and spectrograms

At this stage, complex I/Q arrays are transformed into
two-dimensional time–frequency images using a Short-Time
Fourier Transform (STFT) spectrogram. The SciPy’s
documentation specifies outputs as frequency bins, time-
frames, and a non-negative spectral representation suitable
for learning and visualization. A practical implementation
loads each I/Q recording, computes spectrograms with fixed
window and overlap for consistent resolution. Log scaling
and normalization are performed, and standardized images
are written to per-class folders. These align with established
spectrogram practice and tutorials [4],[8].

C. CNN training on spectrograms

During this task, with a directory of labeled spectrogram
images, a compact CNN is defined and trained using Keras.
The task follows TensorFlow’s canonical model creation and
training patterns that interoperate cleanly with subsequent
TensorFlow Lite conversion. In addition, the training routine
uses consistent image dimensions and a simple stack of
convolutional and pooling layers ending in a softmax head.
Then, it saves a validated host‑side model artifact before any
edge‑oriented conversion, which cleanly separates algorithm
development from deployment concerns as suggested [5].

D. Model conversion to TensorFlow Lite

After host‑side validation, the Keras model is converted
into a .tflite FlatBuffer using the TensorFlow Lite Converter
API, which converts Keras models to byte buffer for
exporting and saving the result. To meet embedded
constraints, post‑training quantization can be enabled during
conversion to reduce model size and improve inference
efficiency. These steps establish both float and quantized
TFLite variants for rapid A/B checks prior to device‑specific
compilation as proven in [5],[9].

E. Compilation to kmodel for K210

At this level, the Kendryte K210’s KPU executes models
in the vendor-specific kmodel format generated by nncase.
The Sipeed’s Maix/MaixPy documentation outlines KPU
loading modes, typical memory ceilings by firmware variant,
and the expectations for kmodel artifacts compiled from
TFLite. In practice, the TFLite model is compiled with
nncase to produce a kmodel and then verified against the
host TFLite baseline on representative inputs. The process
ensures operator support and adherence to KPU memory
limits described in Sipeed guidance for C software
development kit (C SDK) or MaixPy runtimes. Community
implementation notes also emphasize using a compatible
nncase release for K210 workflows and cross-checking
inference numerics between TFLite and kmodel before
flashing or SD-card deployment [2],[3],[10].

F. Setting up the edge device to run the converted model

The sub-steps for this task are 1) on the edge device, a
suitable MaixPy firmware or a C SDK–based firmware is
installed, 2) on either the SD card or in on-board flash, the
kmodel is provisioned, as supported by MaixPy’s KPU
loader and the Kendryte flashing utility, 3) loading models

are placed on an SD card with the MaixPy KPU API using a
filesystem path; models flashed to a designated offset can be
loaded from flash, with Sipeed documentation to describe
memory limits and firmware variants, 4) modules are
deployed, which typically involves flashing firmware with
kflash.py or its GUI, copying the kmodel to SD or
embedding it in flash, and writing a minimal runtime that
initializes the sensor or input pipeline, 5) frames are pre-
processed to the model’s input shape and data layout; this
invokes the KPU inference, and emits results over serial,
display, or General-Purpose Input/Output (GPIO) as
applicable to scenarios discussed in [2],[3],[11].

G. Reproducibility considerations

Replaying recordings to validate labeling and
preprocessing is facilitated by SDR#’s ability to open
baseband I/Q WAV files in order to enable confirmation of
tuned stations, SNR, and channel occupancy prior to batch
spectrogram generation and training. Moreover, informative
file naming, directory schemes, and general I/Q data
management best practices support traceability across data
collection, preprocessing, and inference stages without
changing the core methods described here. Retaining both
original I/Q archives and derived spectrograms ensures
experiments can be reconstructed or extended. The
maintenance of float and quantized TFLite baselines
provides stable references for evaluating compiler effects
prior to kmodel flashing and device trials. By producing
compact, portable models, this workflow allows IoT devices
to perform on-site classification, anomaly detection, and
local interference management while maintaining minimal
power and memory usage.

IV. CONCLUSION AND FUTURE WORK

This work has aimed to present an end-to-end,
reproducible pipeline for converting raw SDR# baseband
recordings into an optimized model for inference on
resource-constrained Kendryte K210 microcontrollers. The
methodology integrates four key stages and a total of six
tasks including the key stages. These key stages are
standardized spectrogram preprocessing, compact CNN
training, post-training quantization via TensorFlow Lite, and
final compilation using nncase. The resulting workflow
establishes a tractable and verifiable pathway from RF signal
acquisition to on-device classification, explicitly addressing
the memory and operator limitations inherent to edge
hardware. This approach makes spectrum intelligence
accessible to a wide range of IoT deployments, enhances
local decision-making, reduces latency, and conserves
bandwidth. However, areas for future work include
implementing formal dataset quality assurance beyond
manual replay, empirically justifying spectrogram
parameters, enforcing numerical parity between the TFLite
and kmodel outputs, and conducting instrumented on-device
profiling to measure real-world performance.

The next steps of this proof of concept will focus on the

following activities:

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

• Porting to a Ratified RVV 1.0 Platform: The highest
priority is to migrate the entire workflow to a newer
RISC-V platform that implements the fully ratified
version 1.0 of the RVV Extension. Migration will enable
a quantitative analysis of the performance gains
achievable using the more powerful and flexible VLA
programming model rather than the legacy vector
implementation used in this work. This step is crucial
for demonstrating the full potential of standardized
RISC-V vector processing for ML workloads. Porting to
RISC-V platforms could further enhance IoT nodes by
enabling larger or more sophisticated models to execute
on small, distributed devices at the network edge.

• Comparative Benchmarking: A performance
benchmark will be conducted to compare RISC-V-based
platform with a low-cost edge AI accelerator, such as
the Raspberry Pi with a Google Coral Tensor Processing
Unit (TPU) or the NVIDIA Jetson Nano. This will
provide insightful trade-offs between performance,
power consumption, cost, and openness across different
edge computing paradigms.

• Advanced Model Architectures: Models like
MobileNets, SqueezeNets, quantization-aware networks
could potentially improve classification accuracy on
more complex modulation schemes while maintaining
or even reducing inference latency. Therefore, more
sophisticated and computationally efficient neural
network architectures will be explored.

• Expanded Over-the-Air (OTA) Dataset and
Classification Tasks: Training on a larger, more diverse
dataset, which includes various modulation techniques
like QPSK, GMSK, 16-QAM, and 64-QAM, will
enhance the platform's ability to operate reliably in
several RF conditions. This will improve the
performance of IoT applications such as smart city
infrastructure, telehealth, telemetry, and environmental
monitoring.

• Exploration of New Applications: The validated
platform serves as a foundation for exploring other
signal intelligence tasks beyond AMC. The platform can
also support IoT-specific applications such as
autonomous anomaly detection, RF fingerprinting for
device authentication, interference localization in
distributed sensor networks, and automated spectrum-
aware control of edge devices, or automated signal
protocol identification.

ACKNOWLEDGMENT

The authors would like to thank the French South African
Institute of Technology (F’SATI), Cape Peninsula University
of Technology, Cape Town, South Africa for funding this
research.

REFERENCES

[1] O. F. Abd-Elaziz, M. Abdalla, and R. A. Elsayed, "Deep
learning-based automatic modulation classification using
robust CNN architecture for cognitive radio networks,"
Sensors, vol. 23, art. no. 9467, Nov. 2023, doi:
10.3390/s23239467.

[2] Ashishware, "Creating a CNN to classify cats and dogs for
Kendryte K210 boards," Ashishware.com, Aug. 28, 2024.
[Online]. Available:
https://ashishware.com/2024/08/29/k210CatDog/.

[3] Android Open Source Project, "TensorFlow Lite converter,"
GoogleSource, n.d. [Online]. Available:
https://android.googlesource.com/platform/external/tensorflo
w/+/HEAD/tensorflow/lite/g3doc/convert/index.md.
(Accessed: Sep. 3, 2025).

[4] RTL-SDR.com, SDRSharp User’s Guide, May 7, 2018.
[Online]. Available: https://www.rtl-sdr.com/sdrsharp-users-
guide/.

[5] A. Frame, "SiFive intelligence X280: Optimized efficiency
and control for the modern workload" [Product Brief],
presented at the Reduced Instruction Set Computer-Five In
Space Conference, ESA, Dec. 2022. [Online]. Available:
http://microelectronics.esa.int/riscv/rvws2022/presentations/
04-
SiFive_Intelligence_X280_for_Space_Exploration_v2.0_De
c_22.pdf.

[6] Google AI Edge, "Convert TensorFlow models," Aug. 29,
2024. [Online]. Available:
https://ai.google.dev/edge/litert/models/convert_tf.

[7] Kendryte, kflash.py: A Python-based Kendryte K210 UART
ISP utility, 2018. [Online]. Available:
https://github.com/kendryte/kflash.py.

[8] Osmocom, "rtl-sdr wiki," n.d. [Online]. Available:
https://osmocom.org/projects/rtl-sdr/wiki. (Accessed: Sep. 3,
2025).

[9] H. Ouamna, A. Kharbouche, Z. Madini, and Y. Zouine,
"Deep learning-assisted automatic modulation classification
using spectrograms," Eng. Technol. Appl. Sci. Res., vol. 15,
no. 1, pp. 19925–19932, Feb. 2025, doi:
10.48084/etasr.9334.

[10] Π Node, "RTL-SDR," n.d. [Online]. Available: https://p-
node.org/documentation/ressources/rtl-sdr. (Accessed: Sep.
3, 2025).

[11] RISC-V International, RISC-V “V” vector extension,
Version 1.0, 2021. [Online]. Available:
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0.

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-288-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2025 : The Nineteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

