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Abstract—In today’s digitally connected world, Indoor Posi-
tioning Systems (IPS) are of paramount importance, especially for
applications within enclosed spaces such as buildings. Leveraging
the widespread deployment of WiFi technology, this paper
presents an IPS that hinges on WiFi signal data specifically,
Received Signal Strength Indicator (RSSI) and Channel State
Information (CSI), and the powerful generative model, Tabular
Generative Adversarial Network (TabGAN). The work entails a
meticulous data collection process conducted within a controlled
laboratory environment at the University of Passau, in Germany.
Subsequently, data augmentation through GAN is employed to
enrich the dataset. The augmented data is then evaluated using
LightGBM and Convolutional Neural Network (CNN) models,
with the Root Mean Square Error (RMSE) as the primary
metric and Positioning Error for comprehensive evaluation of the
IPS’s accuracy and positioning capabilities. The IPS achieved a
remarkable result of 0.99 meters for LightGBM and 0.8 meters
for CNN, showcasing its high accuracy on unseen data and
validating the efficacy of GAN-based data augmentation for
enhancing indoor positioning capabilities.

Keywords—IPS, CSI, RSSI, private dataset, Raspberry Pi,
GAN, CNN.

I. INTRODUCTION

Localization, the process of determining the locations of
entities, devices, and other objects, has become an active
research field in recent years. Much of the research focuses
on using established technology to determine positions. De-
pending on the context in which positioning occurs, it can
be categorized into two types: outdoor positioning and indoor
positioning [1], [2]. While outdoor positioning using Global
Navigation Satellite Systems (GNSS) technology, such as the
Global Positioning System (GPS), is widely adopted due to the
convenience of requiring only one receiver to obtain a position,
it fails inside buildings due to signal obstruction by walls
and other obstacles. As a result, Indoor Positioning Systems
(IPS) have emerged as increasingly essential, particularly for
locating people or objects where GPS and other satellite
technologies lack precision or fail entirely, such as in hospitals,
airports, and underground locations.

Compared to outdoor positioning which usually relies
on GPS, indoor positioning doesn’t have a one-size-fits-all
method. This is mainly due to the unique and varied nature of
indoor environments. Instead, any available wireless technique
can be utilized to help determine a device’s location indoors.
Different technologies exist for indoor positioning, and many

of them use existing wireless networks, which helps to avoid
the need for extra equipment [1].

Various solutions have been proposed for indoor position-
ing systems. These include technologies that use Bluetooth,
WiFi, and Ultra-WideBand (UWB) [3]. One of the most used
technologies is WiFi, as it’s already found nearly everywhere
and can be set up quite easily.

Among different localization technologies, WiFi has gained
substantial traction for indoor positioning due to the ubiquitous
presence of WiFi-enabled devices and easy access to WiFi
Access Points (APs). WiFi-based indoor positioning employs
unique mathematical methods or positioning techniques to
estimate the location of a device [3]. These techniques include
proximity, trilateration, and WiFi fingerprinting [3], [4]. WiFi
fingerprinting, in particular, has proven to be an effective and
cost-efficient approach for indoor localization [1].

WiFi fingerprinting involves two phases: the offline phase
and the online phase. During the offline phase, fingerprints
representing Received Signal Strength Indicator (RSSI) or
Channel State Information (CSI) measurements are collected
at predefined Reference Points (RPs). These fingerprints are
stored in a database, called a Radio Map, and are used to
train a learning algorithm that maps each fingerprint to its
location. In the online phase, the learned model predicts the
position of a device based on its RSSI (or CSI) data. However,
WiFi fingerprinting faces challenges due to signal fluctuations
caused by the multi-path effect and physical obstacles.

Most of Previous research papers have utilized a private
dataset [5], [6] and they have achieved a positioning error
greater than 1.25 meters. As of the time of writing, there
is no publicly available dataset that combines CSI amplitude
and phase information with corresponding RSSI values, along
with crucial data on collection positions. This comprehensive
dataset is essential for training supervised Machine Learning
(ML) models effectively. A challenging problem which arises
in this domain is the small size of the radio map.

Our research aims at the creation of a CSI (i.e., with
amplitude and phase information) and RSSI dataset, the im-
plementation of data augmentation techniques to increase the
amount of data and the application of Deep Learning (DL)
algorithms for position estimation.

The rest of the paper is structured as follows:
Section II presents the comprehensive model pipeline
of our WiFi-based indoor positioning system. Section III
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details the data collection and the processing techniques
for both CSI and RSSI data. Section IV describes the
application of Tabular Generative Adversarial Network
(TabGAN or GAN) for data augmentation and highlights the
implementation of DL algorithms, specifically Convolutional
Neural Network (CNN) and LightGBM, on the augmented
datasets. A thorough comparative analysis of the obtained
results is conducted in Section V to assess the performance
of each algorithm. Section VI concludes the paper.

II. METHODOLOGY

The proposed model pipeline consists of two essential
phases: the offline phase and the online phase, as depicted
in Figure 1.

In the offline phase, the focus is on training and data
augmentation using a deep learning model. The initial step in-
volves collecting real-world data by physically walking around
the indoor environment and recording the RSSI at various
locations. This dataset serves as the foundation for training
the positioning algorithm. To enhance the training dataset, a
Tabular GAN is employed for data augmentation. The Tabular
GAN utilizes a generator network to learn the underlying
distribution of the real data and generate synthetic data points
resembling the collected RSSI and CSI measurements. The
generated synthetic data, combined with the real data, forms
an expanded and more diverse training dataset.

Moving to the online phase, when a user is in motion within
the indoor environment, the system follows a series of steps for
real-time positioning. First, the access points or beacons emit
signals that are detected by the user’s device, which measures
the RSSI/CSI values. These measured values are then utilized
in conjunction with the trained positioning algorithm. The
algorithm compares the received RSSI and CSI values with
the augmented training dataset, allowing for the estimation
of the user’s current position in real-time. By leveraging the
augmented dataset and the positioning algorithm, which are
in our case CNN and LightGBM, accurate and reliable indoor
positioning can be achieved.

The combination of the offline phase, featuring deep
learning-based data augmentation using Tabular GAN, and
the online phase for real-time positioning facilitates dynamic
and accurate indoor localization. This pipeline holds potential
for a wide range of applications, including indoor navigation,
asset tracking, and location-based services, offering improved
accuracy and robustness in indoor positioning systems.

III. DATASET CREATION

In this section, we will discuss the process of collecting data
for the indoor positioning system, including the definition of
the Raspberry Pi setup, the definition of the floor plan, and
pinning the reference points.

A. Definition of the floor plan
In this work, data collection took place in the ITZ building

of the University of Passau, in Germany. This indoor environ-
ment, spanning an area of approximately 47 square meters,
served as the designated area for data collection.

By focusing on a specific location within the university
building, the data collection process aimed to capture the
unique characteristics and signal propagation patterns present
in this particular indoor setting. The selected area provided
a controlled environment for gathering data and conducting
experiments, ensuring consistency and reproducibility in the
collected dataset.

Each RP served as a designated location for data collection
with specific coordinates within the room. The positioning
of these reference points followed a regular pattern, with
a distance of 1 meter between adjacent points and 0.45
meters from the walls. This configuration ensured that the
RPs covered the entire area of the room, capturing the signal
variations and characteristics at different positions.

To gather comprehensive data and capture signal variations
from different directions within each RP, measurements were
collected systematically from four cardinal directions: North,
South, West, and East. This approach allowed for a more
thorough assessment of the signal strength and characteristics
in each RP. At each RP, the data collection process involved
moving around the point and measuring the signal strength
from the four specified directions. By collecting measurements
from multiple directions, the dataset encompassed a wider
range of signal variations, taking into account potential ob-
stacles, signal blockages, or signal reflections from different
angles.

B. Nexmon Firmware

For WiFi chips, Nexmon is a framework for firmware
modification that makes it possible to enable extra features and
capabilities above and beyond what stock firmware generally
supports. To explore new possibilities and create cutting-edge
applications, it gives researchers and developers the freedom
to access and control WiFi chips’ low-level features [7].

In the context of collecting RSSI and CSI data for fin-
gerprinting and indoor localization, Nexmon can be used to
capture and analyze the wireless signals transmitted by WiFi
devices. By modifying the firmware on compatible WiFi chips,
Nexmon allows for the extraction of detailed information
about the wireless channel, including RSSI and CSI values.
Using this information, fingerprints that depict the distinctive
qualities of the wireless signals at various points in an indoor
area can be made. These radio maps can be used as the
foundation for IPS that use fingerprinting to locate a target
device based on the characteristics of the received signal.

C. Data recording

The data recording process for collecting CSI data for
fingerprinting and indoor localization using Nexmon on Rasp-
berry Pi 4 involved several steps. First, the setup and configu-
ration included using Raspberry Pi 4 with Nexmon firmware.
Nexmon was configured to capture CSI data on channel 36
with a 80 MHz bandwidth, specifically targeting the first
core of the WiFi chip and the first spatial stream. Next, the
measurement procedure was conducted at various positions
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Fig. 1: Pipeline of the proposed model

within the target environment. For each position, 100 sam-
ples were collected to ensure accuracy and reliability. The
Raspberry Pi 4 with Nexmon was carefully placed at each
position, maintaining a stable and consistent setup throughout
the data collection process. Measurements were taken in
multiple directions (North, East, West, and South) to capture a
comprehensive view of the wireless signals present. During the
data collection phase, Nexmon on Raspberry Pi 4 listened on
socket 5500 for User Datagram Protocol (UDP) packets, which
contained the captured CSI data. The CSI data was extracted
from these UDP packets, providing the necessary information
for further analysis. The collected CSI data can be analyzed
by opening the PCAP file in Wireshark or parsing it using a
script.

1) Fingerprinting dataset: During the data collection phase,
data capture was conducted within the ITZ building. The
Raspberry Pi, fixed at a fixed height, was placed at various RPs
to collect data in four directions. A total of 100 WiFi frames
were captured for each reference point in each direction,
resulting in 400 WiFi frames in total for all four directions.
Since there were 45 reference points, the entire data collection
process yielded approximately 18000 WiFi data frames.

The data collection process required two days to set up the
RPs around the room and perform the measurements. During
this time, two students collaborated to ensure the accurate
positioning of the Raspberry Pi in each direction for every
RP. The results of these measurements were stored in PCAP
files for further analysis and processing.

In the dataset, we have a total of 28 unique MAC addresses.
However, it is worth noting that five of these MAC addresses
contribute significantly to the data, making up approximately
16,000 rows out of the total 18,000 rows in the dataset.
These top five MAC addresses are responsible for a significant
portion of the data and play a crucial role in the analysis. We
have assigned a unique number to each MAC address, ranging
from 1 to 28. This numbering scheme was implemented to
facilitate the representation of MAC addresses in the bar chart.

D. Data preprocessing

To extract the CSI data from the PCAP files, the following
preprocessing steps were performed using the provided code:

1) Reading the PCAP file: This step involved reading the
PCAP file containing the captured wireless packets. This
step extracted the necessary data from the PCAP file.

2) Infer Bandwidth: The bandwidth of the wireless signal
was inferred from the length of the packets in the PCAP
file. This ensured that the correct bandwidth was used for
further processing.

3) Determine Number of Subcarriers: The number of Or-
thogonal Frequency-Division Multiplexing (OFDM) sub-
carriers was determined based on the inferred bandwidth.
This value is required for correctly interpreting the CSI
data.

4) Estimate Maximum Number of Samples: An estimate for
the maximum possible number of samples in the PCAP
file was calculated. This estimation is useful for allocating
memory for storing the extracted data.

5) Data Extraction: The actual extraction of CSI data was
performed by iterating over the packets in the PCAP file.
For each packet, the relevant information such as RSSI,
MAC ID, sequence number, core and spatial stream, and
CSI data were extracted and stored.

6) Conversion to Numpy Arrays: The extracted CSI data
and other relevant information were then converted to
NumPy arrays for efficient processing and analysis. This
conversion facilitated further manipulation and analysis
of the data.

7) SampleSet Object Creation: Finally, all the extracted data
were encapsulated in a data structure for easy access and
analysis. This data structure provides convenient methods
to retrieve specific information for a given sample index.

IV. DATA AUGMENTATION

In this section, we delve into the key aspect of our research,
which is data augmentation using the Tabular GAN model.
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A. Tabular Generative Adversarial Network (TabGAN) for
Data Augmentation

Tabular GAN is a generative model specifically designed
for augmenting tabular data. It leverages the power of GANs
to generate synthetic data that closely resembles the original
dataset, thereby increasing its size and diversity [8]. The
architecture of the Tabular GAN comprises the following
components: generator and discriminator.

1) Generator: is responsible for generating synthetic data
that captures the distribution and characteristics of the original
dataset. Its architecture consists of the following steps:

i. Generating Numerical Variables:
• Scalar Value Generation: The Generator generates

scalar values, such as those representing clusters, using
techniques like sampling from a Gaussian Mixture
Model (GMM).

• Cluster Vector Generation: Cluster vectors are gener-
ated to represent the probability of each data point
belonging to different clusters. These vectors can be
obtained from GMM outputs or other methods.

• Activation Function: Numerical variables are trans-
formed using an activation function, such as the hy-
perbolic tangent (tanh), to ensure the generated values
fall within a desired range.

ii. Generating Categorical Variables:
• Probability Distribution: Categorical variables, such as

labels or classes, are generated as probability distri-
butions over all possible categories. Techniques like
softmax activation function are used for this purpose.

iii. Long Short-Term Memory (LSTM) networks:
• To generate rows effectively, an LSTM network with

an attention mechanism is employed. This architecture
enables the model to capture temporal dependencies
and generate coherent synthetic samples.

• Inputs to the LSTM include random variables,
weighted context vectors, previous hidden states, and
embedding vectors.

2) Discriminator: plays a vital role in distinguishing be-
tween real and synthetic data. It aims to learn the underlying
patterns and characteristics of the original dataset. The Dis-
criminator architecture consists of the following components:

i. Multi-Layer Perceptron (MLP):
• The Discriminator utilizes an MLP with activation

functions like LeakyReLU and techniques such as
Batch Normalization. This MLP is responsible for
extracting features and discriminating between real and
synthetic data.

• Concatenation: The numerical variables, cluster vec-
tors, and binary variables obtained from the Generator
are concatenated to form the input for the Discrimina-
tor.

ii. Loss Function:
• The Discriminator’s loss function incorporates compo-

nents like the Kullback-Leibler (KL) divergence term

and the sum ordinal log loss. These components allow
the Discriminator to optimize its ability to differentiate
between real and synthetic data effectively.

B. Evaluation of TabGAN

To assess the effectiveness of the augmented data gener-
ated by the Tabular GAN on the prediction of the position
coordinates X and Y , we evaluate the performance using two
different models: CNN and LightGBM.

We start by evaluating the performance of the CNN model
on the following datasets:

1) Ground Truth Data: We assess the performance of CNN
model on the original (ground truth) data. This serves
as a baseline to compare against the performance on
the augmented data. We calculate the Root Mean Square
Error (RMSE) between the true values of the X and Y
coordinates and the corresponding predictions made by
the CNN model.

2) Augmented Data: Next, we evaluate the performance of
CNN model when trained on the augmented data gen-
erated by the Tabular GAN. We use the same evaluation
metric to compare the predictions made on the augmented
data with the ground truth values. This step allows us to
determine how well the Tabular GAN has captured the
underlying distribution of the original data and whether
the augmented data is useful for improving the prediction
accuracy.

3) Combined Data: Finally, we assess the performance of
CNN model when trained on a combination of the ground
truth data and the augmented data. This step aims to
investigate the potential benefits of incorporating the
augmented data into the training process. We compute
the RMSE between the predictions made on the combined
dataset and the true values of the X and Y coordinates.

The evaluation process of LightGBM model is similar to
the steps described above for CNN model.

C. CNN Architecture

In Figure 2, we present the detailed architecture of our CNN
model. The CNN is designed to handle the positioning esti-
mation task efficiently by processing the input data, extracting
relevant features, and making accurate predictions.

The architecture comprises several essential components,
including convolutional layers, pooling layers, and fully con-
nected layers. These layers work collaboratively to learn
hierarchical representations from the input data, enabling the
model to capture intricate spatial patterns and relationships
present in the RSSI and CSI measurements.

The initial convolutional layers act as feature extractors,
convolving over the input data to detect spatial patterns and
edges. The pooling layers then downsample the extracted
features, reducing the computational complexity and aiding
in learning spatial invariance.

Subsequently, the flattened feature maps are passed through
fully connected layers, which serve as the decision-making
units of the model. These layers combine the learned features
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Fig. 2: CNN architecture

and apply non-linear transformations to make accurate posi-
tioning predictions.

Additionally, we have employed regularization techniques,
such as dropout and batch normalization, to prevent overfitting
and enhance model generalization. The CNN model is trained
using an appropriate optimization algorithm, whis is Adam in
our case, and a suitable loss function for regression tasks, such
as RMSE.

The CNN architecture is designed to capture relevant spatial
information and learn meaningful representations from the
input data. By stacking convolutional and pooling layers, the
model can hierarchically extract features and make predictions
based on the learned patterns.

V. RESULTS AND DISCUSSIONS

In this section, we present the evaluation and discussion of
the system based on the Tabular GAN for data augmentation.

A. Data augmentation results

In order to validate the effectiveness of the data augmen-
tation process using GANs, we conducted a comprehensive
comparison of the data distribution. Specifically, we randomly
selected a column from the original dataset and generated
synthetic data using the GAN.

We noticed a striking resemblance between the data dis-
tribution of the original dataset and the data distribution of
the generated synthetic data, demonstrates the GAN’s ability
to accurately capture and reproduce the underlying character-
istics of the original data. This successful alignment further
reinforces the efficacy of the data augmentation technique
in preserving data distribution, making the generated data a
valuable and reliable resource for enhancing our positioning
estimation algorithm.

Through this comparison, we can confidently assert that the
data augmentation process using GANs has effectively main-
tained the integrity of the original data’s distribution. Such
congruence is essential in ensuring that the generated data
contributes meaningfully to the generalization and robustness
of our positioning estimation model.

B. LightGBM for GAN evaluation

LightGBM, renowned for its efficiency and scalability, is
particularly well-suited for tabular data analysis, making it an
ideal choice for our positioning estimation problem [9].

First thing, our data was split as follows : 80% for train
and 20% for test. After training LightGBM on the aug-
mented dataset, which included the GAN-generated samples,
we conducted an extensive evaluation using various regression-
specific metrics, such as RMSE and Mean Positioning Error
(MPE). RMSE allowed us to measure the average deviation
between the predicted positioning coordinates and the ground
truth values, providing a comprehensive assessment of the
model’s accuracy in estimating positions.

In our evaluation, we compared the performance of the
LightGBM model on three different types of data: RSSI only,
CSI only, and RSSI combined with CSI. We have used both
CSI amplitude and phase. The results (see Table I) revealed
intriguing insights into the significance of each data type for
position estimation.

When training the model on the RSSI only data, we obtained
an RMSE of 0.99 for X-coordinate, 2.6 for Y-coordinate
and a MPE of 1.58 meters. Incorporating the GAN-generated
samples through data augmentation improved the performance
to an RMSE of 0.95 for X-coordinate and a MPE of 1.5
meters. Subsequently, when combining both RSSI and CSI
data, the RMSE reduced to 0.914 for X-coordinate, 2.433 for
Y-coordinate and the MPE to 1.5 meters.

C. CNN for GAN evaluation

Based on our feature importance analysis using LightGBM,
we found that the combined RSSI and CSI data resulted in
a slightly improved performance compared to using CSI data
only. This observation highlights the importance of leveraging
both RSSI and CSI features for accurate position estimation.

Given the insights from the feature importance analysis,
we proceeded with the evaluation of the CNN model on
the ground truth data and the augmented data. The CNN
model was trained on the ground truth data to establish a
baseline performance and assess its inherent capabilities in
positioning estimation. Subsequently, we trained the CNN
model on the augmented dataset, which included the GAN-
generated samples, to evaluate the performance improvements
brought about by GAN-based data augmentation.

In the process of training the model solely on the RSSI data,
the resulting RMSE values were 0.76 for the X-coordinate and
2.01 for the Y-coordinate, which led to a MPE of 1.45 meters.
Upon incorporating GAN-generated samples through data aug-
mentation, the model’s performance improved, resulting in an
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TABLE I: LightGBM Model Evaluation

Ground Truth Data Augmented Data Combined Data

RMSE (X/Y) MPE RMSE (X/Y) MPE RMSE (X/Y) MPE

RSSI Only 0.99/2.6 1.58 m 0.95/1.555 1.5 m 0.914/2.433 1.5 m

CSI Only 0.795/1.289 1.242 m 0.6888/1.177 1.082 m 0.6487/1.0417 0.99 m

RSSI + CSI 0.796/1.289 1.242 m 0.6888/1.177 1.08 2m 0.6487/1.042 0.99 m

Legend: RMSE - Root Mean Square Error, MPE - Mean Positioning Error, m - meter

TABLE II: CNN Model Evaluation

Ground Truth Data Augmented Data Combined Data

RMSE (X/Y) MPE RMSE (X/Y) MPE RMSE (X/Y) MPE

RSSI Only 0.76/2.01 1.45 m 0.73/1.325 1.27 m 0.69/1,3 1.224 m

CSI Only 0.555/1.102 1.052 m 0.531/0.992 1.082 m 0.504/0.952 0.99 m

RSSI + CSI 0.554/1.1 1.04 m 0.529/0.971 0.97 m 0.507/0.93 0.8 m

Legend: RMSE - Root Mean Square Error, MPE - Mean Positioning Error, m - meter

RMSE of 0.73 for the X-coordinate and a MPE of 1.27 meters.
Subsequently, when both RSSI and CSI data were combined,
the RMSE reduced to 0.69 for the X-coordinate and 1.3 for the
Y-coordinate, with a MPE of 1.224 meters. As seen in Table
II, it is evident that the combination of both RSSI and CSI
data yielded the most precise localization performance with a
MPE of 0.8 meters.

The remarkable reduction in MPE for the augmented data
further reinforces the superiority of GAN-based data augmen-
tation in enhancing the model’s performance. The significantly
lower MPE demonstrates that the CNN, when trained on the
augmented data, is better able to estimate the target positions
with higher accuracy and precision, making it a compelling
choice for positioning estimation tasks in real-world scenarios.
The improved learning and generalization capabilities achieved
with the augmented data reinforce the efficacy of GAN-based
data augmentation in enhancing the CNN’s performance for
positioning estimation.

VI. CONCLUSIONS

In this paper, we embarked on a comprehensive inves-
tigation of an indoor localization system, leveraging WiFi
data for precise positioning estimation. The data collection
process was meticulously executed within a controlled lab
environment, utilizing Raspberry Pi and Nexmon firmware to
capture WiFi signals. Subsequently, we performed thorough
data preprocessing to ensure data quality and consistency.

A key highlight of this work was the application of data aug-
mentation using GAN to enrich the original dataset. The GAN-
based augmentation technique effectively generated synthetic
data points, enhancing the diversity and volume of the training
data, which proved instrumental in improving the accuracy and
generalization of our positioning algorithms.

Our evaluation process involved the utilization of two
prominent DL algorithms: CNN and LightGBM. The results

highlighted the remarkable improvements achieved when train-
ing on augmented data, demonstrating the efficacy of GAN-
based data augmentation in boosting the precision of the
positioning estimation. Our system showed the improvement
of at least 25 cm in positioning error when using GAN.
Nonetheless, CSI combined with RSSI has shown a better
influence with a positioning error equal to 0.8 meters.

Future work in this domain could focus on expanding the
evaluation to other machine learning algorithms and exploring
different GAN architectures for data augmentation.
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