
Location and Object-Based Mobile Applications

Development Based on Use Case Templates and Visual Programming

Martin Zimmermann

Department of Economics

Offenburg University

Offenburg, Germany

email: m.zimmermann@hs-offenburg.de

Abstract - The main advantage of mobile context-aware

applications is to provide effective and tailored services by

considering the environmental context, such as location, time,

nearby objects and other data, and adapting their functionality

according to the changing situations in the context information

without explicit user interaction. The idea behind Location-

Based Services (LBS) and Object-Based Services (OBS) is to

offer fully-customizable services for user needs according to

the location or the objects in a mobile user's vicinity. However,

developing mobile context-aware software applications is

considered as one of the most challenging application domains

due to the built-in sensors as part of a mobile device. Visual

Programming Languages (VPL) and hybrid visual

programming languages are considered to be innovative

approaches to address the inherent complexity of developing

programs. The key contribution of our new development

approach for location and object-based mobile applications is a

use case driven development approach based on use case

templates and visual code templates to enable even

programming beginners to create context-aware mobile

applications. An example of the use of the development

approach is presented and open research challenges and

perspectives for further development of our approach are

formulated.

Keywords - Location-Based Services; Object-Based Services;

Mobile Applications; Visual Programming.

I. INTRODUCTION

Sensors enable the creation of context-aware mobile
applications in which applications can discover and take
advantage of contextual information, such as user location,
nearby people and objects. As a consequence, context-aware
mobile applications can sense clues about the situational
environment making mobile devices more intelligent,
adaptive, and personalized.

Context has been defined as any required knowledge to
identify the current situation of a person or object in order to
provide tailormade services. The situational environment of a
mobile user becomes more vital in mobile applications
where the context, e.g., geo position of a user can change
rapidly. For example, depending on its current location, a
tourist would like to see relevant tourist attractions on a map

together with distance information. Mobile applications can
obtain the context information in various ways in order to
provide more adaptable, flexible and user-friendly services.

A combination of context-aware applications and mobile
devices provides a novel opportunity for both end users and
application developers to obtain context and the consequent
response to any changes in the context. Hence, the main
advantage of mobile context-aware applications is to provide
tailored services by considering the environmental context,
such as location, time, weather conditions, nearby objects,
and adapting their functionality according to the changing
situations in the context data without explicit user
interaction.

A general definition of context was given by Dey and
Abowd [1]: “Any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves.”

Categories of context information that are practically
significant include [1]:

• Environmental Context: Includes all the
surrounding environmental conditions of current
location (like air quality, temperature, humidity,
noise level and light condition).

• Activity Context: Defines the user’s current activity
including private and professional activities that can
be sensed like talking, reading, walking, and
running.

• Temporal Context: Consists of temporal factors,
such as current time, date, and season of the year.

• Personal (identity) Context: Specifies user’s
characteristics and preferences like name, age, sex,
contact number, user’s hobbies and interests.

• Spatial Context: Involves any information regarding
the position of an entity (person and object), for
instance orientation, location, acceleration, speed.

• Vital Signs Context: Covers all information related
to health state, such as heart rate, blood pressure,
voice tone, and muscle activity.

The combination of spatial, temporal, activity and
personal contexts makes the primary context to understand

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the current situation of entities. These types of contexts can
respond to basic questions about when, where, what, and
who. The idea behind Location-Based Services (LBS) and
Object-Based Services (OBS) as subcategories of context-
aware mobile applications is to tailor services according to
the location of a user or the objects in a mobile user's
vicinity.

In [2], various Model Driven Development (MDD)
techniques and methodologies are systematically
investigated, i.e., what MDD techniques and methodologies
have been used to support mobile app development and how
these techniques have been employed, to identify key
benefits, limitations, gaps and future research potential. Our
approach based on case templates and visual programming is
tailored to the needs of mobile programming beginners.

Visual Programming Languages (VPL) and hybrid visual
programming languages are considered to be innovative
approaches to address the inherent complexity of developing
programs [3], [4]. In this work, we introduce an in-depth
discussion of a new VPL based method, to enable even
programming beginners to create context-aware mobile
applications.

The rest of the paper is organized as follows: Section 2
introduces LBS and OBS concepts, especially various
technologies to determine the object context of a user. Our
proposed development process in terms of use case templates
and visual code templates is described in Section 3. Visual
programming concepts and the development environment
which we use in our projects are introduced in Section 4.
Sections 3 and 4 also describe how our approach is applied
to an LBS and OBS example in the field of tourism. Finally,
the limitations of the VPL approach as well as directions for
future research are presented in Section 5.

II. LOCATION AND OBJECT BASED SERVICES

LBS can be described as applications that are dependent
on a certain location. Two broad categories of LBS can be
defined as triggered and user-requested [5]. In a user-
requested scenario, the user is retrieving the position once
and uses it on subsequent requests for location-dependent
information. This type of service usually involves either
personal location, i.e., finding where you are or services
location, e.g., where is the nearest hospital. Examples of this
type of LBS are also navigation (usually involving a map)
and direction (routing information). A triggered LBS by
contrast relies on a condition set up in advance that, once
fulfilled, retrieves the position of a given device. An example
is in emergency services, where the call to the emergency
center triggers an automatic location request from the mobile
network.

The idea behind OBS is to tailor a service according to
the objects in a mobile user's vicinity. For example, a visitor
standing in front of a painting in an art gallery should be
provided with additional information about the painting,
such as the artist, or even the opportunity to order a print
(one button pay). Popular technologies for determining the
object context are Quick Response (QR) codes, Near-Field
Communication (NFC) tags and beacons.

LBS are typically based on GPS. The position of a person
or an object is determined in terms of latitude and longitude.
To determine the object context, i.e., the object(s) at which
the user is located, various technologies can be used (Table
I). An object, e.g., painting in a museum can be provided
with one or more of the following elements: Bluetooth Low
Energy (BLE) Beacon, NFC tag, and QR code.

Beacons are small wireless, usually battery-powered
devices that transmit data at regular intervals using BLE [6],
[7]. This mini-radio transmission devices can be ‘discovered’
and seen by all BLE scanners, e.g., a smartphone within a
certain radius. However, beacons do not work by
themselves: they require a mobile app. So, in case of an arts
gallery or museum, the visitor must have downloaded the
mobile application beforehand for the beacon to work.

NFC is a short-range wireless connectivity technology
that uses magnetic field induction to enable communication
between devices when they're touched together or brought
within a few centimeters of each other [8]. NFC builds on
the work of the Radio-Frequency Identification (RFID) set
of standards and specifications, such as ISO/IEC 14443 and
ISO/IEC 15963. By passing a mobile device near an NFC
chip, one can read the data it contains and interact with the
content. Advantages and disadvantages from a user's point
of view of the different technologies for implementing OBS
are shown in Table I.

TABLE I. TECHNOLGIES FOR OBJECT BASED SERVICES.

Technology Pros Cons

Beacon

+ no user

 interactions

 required

- requires power supply

- more expensive

 (compared with NFC,

 QR codes)

NFC tag

+ can store the

 most data

+ cheap

- user must tap on the item

QR Code

+ well-known

 technology

- requires most user

 interactions (open camera

 app, scan image)

QR codes are a type of matrix bar code that was invented

by Denso Wave in 1994 to be used as labels on automotive
parts [9]. It allows to store large amount of data (compared to
1D barcodes) and a high-speed decoding process using any
handheld device like phones. The popularity of QR code
grows rapidly with the growth of mobile users and thus the
QR code concept is rapidly arriving at high levels of
acceptance worldwide.

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

III. DEVELOPMENT PROCESS

We propose five steps to perform requirements
engineering for location and object-based mobile
applications (Figure 1):

• Selection and instantiation of use case templates
(input, output, steps)

• Development of the user interface for each use case,
e.g., triggering a use case with a button

• Selection and instantiation of visual code templates

• Selection of additional non-visible components,
e.g., location sensor, QR code scanner, etc.

• Event based programming (calling methods related
to the user interface and the non-visible
components).

Figure 1. Use Case Templates and Visual Program Code Templates.

Use case templates in Figure 1 are use case specifications
that can operate with generic objects and activities. This
allows us to create a use case description whose functionality
can be adapted to more than one concrete location-based
scenarios without repeating the entire description for each
scenario. Visual code templates are implementations of use
case templates based on visual programming (Section 4).
Each use case template is associated with a visual code
template.

The use case template in Table II describes an LBS
scenario, a search object pattern in terms of input, output and
steps to be executed. For example, the template can be
applied to visualize some tourist attractions and the current
position of a mobile user on a map. Filters are used to
display certain tourist attractions, e.g., museums.

Table III illustrates a use case template for an OBS. In
this case QR codes are used to identify an object. We defined
similar use case templates for OBS using Beacons and NFC
tags.

TABLE II. USE CASE TEMPLATE “SEARCH AND SHOW OBJECT(S) ON

A MAP”.

Use Case

template

 Search and show <object(s)> on a map

Input Name/Id/Category of an <object>

Steps 1: Determine the current geo position

 of the user

2: Show a map with the user's current position as

 the center point

3: Search the <object(s)> according to the

 name/id/category (in a list of <object>)

 if found →

 Create marker(s) for the <object(s)>

Output Map with markers:

→ marker for the current position of the user

→ marker(s) representing the <object(s)>

The generic part in the use case template in Table III is

represented by the activities “Visualize <object property i>”.
The concrete visualization is dependent on the scenario to be
implemented. E.g., for exhibits, like paintings in a gallery
equipped with QR codes, object visualization could mean to
represent a link to a video (painter explaining interesting
background information) or a link to allow a tourist to buy a
print.

TABLE III. USE CASE TEMPLATE “SEARCH AND SHOW OBJECT(S)”.

Use Case

Template

 Visualize <object> properties

Input QR Code

Steps 1: Scan QR code

2: Search the QR Code in a list of codes

 if found →

 Visualize <object property 1>

 Visualize <object property 2>

 . . .

Output Visualized object properties

In the following sections, we describe how our approach

is applied to an LBS and OBS example in the field of
tourism.

IV. VISUAL PROGRAMMING

Visual programming environments are increasingly used
in demanding problem domains, e.g., Internet of Things
(IoT) applications [10] or robot applications [11]. For
example, Pepper’s popular programming interface is based
on visual elements for built-in sensors and actuators [12].

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Basic functions of the Pepper platform are provided per
sensor and actuator, e.g., open/close hand functions for the
actuator hand or detect touch on hand tactile sensor. Flow
elements are connected with each other to form business
workflows similarly to the visual building blocks of Business
Process Model and Notation (BPMN) [13]. BPMN is a
graphical representation for specifying business processes in
a business process model based on a flowcharting technique
very similar to activity diagrams from Unified Modeling
Language (UML). BPMN's basic element categories are flow
objects (events, activities, gateways), connecting objects
(sequence flow, message flow, association), and artifacts
(data object, group, annotation).

A. Development Environment

We use MIT App Inventor [14] and Thunkable [15],
which are both cloud-based visual programming
development environments for mobile applications (Android
and iOS). The basic concepts are components, events and
functions. App Inventor and Thunkable provide the
application developer with many different components to use
while building a mobile app. Components are chosen on the
“Design Screen” and dragged onto the phone (Figure 2).

The properties of these components, such as color, font,
speed, etc. can then be changed by the developer. Available
component categories are user interface elements, media,
storage, location-based services etc. Components can be
clicked on and dragged onto the development screen area.

There are two main types of components: visible and
non-visible. Visible components, such as buttons, text boxes,
labels, etc. are part of the user interface whereas non-visible
components, such as the location sensor, QR Code scanner,
sound, orientation sensor are not seen and thus not a part of
the user interface screen, but they provide access to built-in
functions of the mobile device (Figure 2).

Components are based on an object-oriented paradigm,
i.e., decomposition of a system (an app) into a number of
entities called objects and then ties properties and function to
these objects. An object’s properties can be accessed only by
the functions associated with that object but functions of one
object can access the function of other objects in the same
cases using access specifiers.

Event handler blocks specify how a program should
respond to certain events. After, before, or when the event
happens can all call different event handlers. There are two
types of events: user-initiated and automatic.

Clicking a button, touching a map, and tilting the phone
are user-initiated events. Sprites colliding with each other or
with canvas edges are automatic events. Timer events are
another type of automatic event. Sensor events function also
as user-initiated events. For example, the orientation sensor,
the accelerometer, and the location sensor all have events
that get called when the user moves the phone in a certain
way or to a certain place.

Figure 2. Development Environment.

Figure 3 shows the visual elements of the event-based
programming part for a simple LBS.

Figure 3. Visual Elements of a Simple LBS.

Objects, method calls, arguments and results of method
calls are represented by visual elements with different shapes
and colors. In the example in Figure 3, first the current
position of a user is determined by calling the method

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

GetCurrentLocation(). The resulting values (latitude and
longitude) are used in the next step for the specification of
the map center (two set operations). By calling the method
addMarker, a marker is created in a third step. The
arguments for the last method call are again visual elements
(previously calculated values for the current latitude and
longitude of the user).

B. Visual Code Templates

Each use case template is associated with a visual code
template. Figure 4 illustrates the visual code template for the
use case template “visualize <object> properties” in Table
III. First, the event handler calls the scan method. The
resulting id is used to search for the corresponding object in
an object list. The instantiation of the template involves

• creation of an object list

• visualization of the object properties.

Figure 4. Example Visual Code Template.

The creation of an object list could be based on a local

list (as part of a mobile app) or a cloud-based object list. The
creation / access to an object list in encapsulated in the
function createObjectList(). Finally, the object properties
have to be visualized, which is not part of the template,
because the concrete visualization are dependent on the
scenario to be implemented. E.g., for exhibits, like paintings
in a gallery equipped with QR codes, object visualization
could mean to create a link to a video (painter explaining
interesting background information) or a link to allow a
tourist to buy a print.

V. CONCLUSION

 The main advantage of mobile context-aware
applications is to provide an effective, usable, rapid service
by considering the environmental context, such as location,
time, nearby objects, and adapting their functionality

according to the changing situations in context data. LBS
and OBS represent two main categories of context-aware
applications. Use case templates and visual code templates
are particularly well suited for programming beginners.

Meanwhile, visual programming environments are
increasingly used in demanding problem domains, e.g., IoT
applications [10]. The development of use cases templates
(in the sense of requirements engineering) as the starting
point of an app project has proven to be very advantageous.
Representing programming language concepts by using
visual elements with different shapes and colors fits well
with the object-oriented approach.

A main drawback of the used programming
environments is the identification and handing of runtime
errors due to the lack of integrated debugging functions.
However, our use case centered approach leads normally to
manageable runtime error because each use case is
developed and tested as a separate unit.

Future work will focus on the development of patterns,
which are a well-known concept in the traditional software
engineering. An architectural pattern is a general, reusable
solution to a commonly occurring problem in software
architecture. Patterns become reusable solutions for a
common set of problems in software development,
addressing issues like high availability, performance, and
risk minimization. Additionally, we are going to implement
additional components (called extensions), e.g., an NFC
component offering more powerful and flexible functions
and events. Extension components can be used in building
projects, just like other built-in components. The difference
is that extension components can be distributed on the Web
and loaded into the development environment dynamically.

REFERENCES

[1] A. K. Dey and G. D. Abowd, "Towards a Better
Understanding of Context and Contextawareness," CHI 2000
Workshop on The What, Who, Where, When, Why and How
of Context-awareness, pp. 1–6, 2000.

[2] Md. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, and Q.
Lu, “Developing Mobile Applications Via Model Driven
Development: A Systematic Literature Review”, Information
and Software Technology, vol. 140, December 2021.

[3] M. Idrees and F. Aslam, "A Comprehensive Survey and
Analysis of Diverse Visual Programming Languages,"
VFAST Transactions on Software Engineering, vol.10, no. 2,
pp. 47–60, 2022.

[4] R. Daskalov, G. Pashev, and S. Gaftandzhieva, "Hybrid
Visual Programming Language Environment for
Programming Training," TEM Journal, vol. 10, issue 2, pp.
981–986, 2021.

[5] F. F. Chamasemani and L. S. Affendey, "Impact of mobile
context-aware applications on human computer interaction,"
Journal of Theoretical and Applied Information Technology,
vol. 62, no.1, pp. 281–287, 2014.

[6] T D’Roza and G Bilchev, "An overview of location-based
services," BT Technology Journal, vol. 21, no. 1, pp. 20–27,
2003.

[7] R. Faragher and R. Harle, "Location Fingerprinting With
Bluetooth Low Energy Beacons," in IEEE Journal on Selected
Areas in Communications, vol. 33, no. 11, pp. 2418–2428,
2015.

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[8] V. Coskun, B. Ozdenizci, and K. Ok, “A Survey on Near
Field Communication (NFC) Technology”, Wireless Pers
Commun 71, pp. 2259–2294, 2013.

[9] S. Tiwari, "An Introduction to QR Code Technology," 2016
International Conference on Information Technology (ICIT),
Bhubaneswar, India, pp. 39–44, 2016.

[10] M. Silva, J. P. Dias, A. Restivo, and H. S. Ferreira, “A
Review on Visual Programming for Distributed Computation
in IoT”, Springer Nature Switzerland AG 2021, M. Paszynski
et al. (Eds.): ICCS 2021, LNCS 12745, pp. 443–457, 2021.

[11] M. Zimmermann, “Teaching Visual Programming: Humanoid
Robot Programming as a Case Study”, 15th International
Conference On Education and New Learning Technologies,
pp. 6143-6149, 2023.

[12] A. M. Marei et al., “A SLAM-Based Localization and
Navigation System for Social Robots: The Pepper Robot
Case”, in Machines, vol. 11, issue 2, 2023.

[13] http://www.omg.org, Accessed July 2023.

[14] MIT App Inventor. https://appinventor.mit.edu, Accessed July
2023.

[15] Thunkable. https://www.thunkable.com, Accessed July 2023.

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-106-0

UBICOMM 2023 : The Seventeenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

