
Deep Learning based Indoor Positioning Approach
Using Wi-Fi CSI/RSSI Fingerprints Technique
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Abstract—Indoor Positioning Systems (IPSs) play a vital
role in various applications, ranging from asset tracking to
location-based services. With different approaches being explored
in the last years, Wi-Fi-based IPSs utilizing Channel State
Information (CSI) and Received Signal Strength Indicator (RSSI)
have gained increased attention. This research aims to develop
a Wi-Fi based indoor positioning system using CSI and RSSI
measurements, specifically focusing on datasets collected at the
University of Passau, since datasets used in related work are
private. Additionally, after the acquired data is subjected to
preprocessing and data cleaning techniques, the study explores
the potential of Machine Learning (ML) techniques, including
Support Vector Regression (SVR), Long Short-Term Memory
(LSTM), and Convolutional Neural Networks (CNN), to enhance
positioning accuracy. These models are trained and evaluated
using appropriate performance metrics, including Mean Squared
Error (MSE) and distance error. The experimental results,
focusing on the prediction of vertical and horizontal coordinates
within the laboratory room, demonstrate the effectiveness of the
proposed system. For unseen RSSI data, the best distance error
based on MSE achieved was 29.5 cm using SVR, while for unseen
CSI Amplitude data, the lowest distance error based on MSE was
37.9 cm with a CNN approach. A comparison is conducted within
the different methods. All tested models consistently achieve a
distance error based on MSE of under 50 cm, proving the high
quality of the collected dataset. Future research directions and
areas for improvement are also suggested.

Keywords—IPSs, CSI, RSSI, private dataset, Raspberry Pi,
SVR, LSTM, CNN.

I. INTRODUCTION

Smart Things and connected devices have become an inte-
gral part of people’s daily lives as well as various industries,
such as healthcare and manufacturing. One of the key areas
that is driving this trend is location-based services. While for
outdoor applications the Global Positioning System (GPS) is
an established standard [1], Indoor Positioning Systems (IPSs)
face different challenges [2].

Compared to outdoor positioning, some of these challenges
are: Need for higher accuracy, while having higher levels of
signal interference, need for low power consumption, and han-
dling environmental changes [3]. Since the demand for IPSs
is rising, different approaches to solving these problems have
emerged. With some approaches utilizing Radio-Frequency
Identification (RFID), Bluetooth, or Ultra-Wideband (UWB)
the use of Wi-Fi-signals, which are available in almost every
indoor environment, has become a good option to provide
accurate indoor localization [4]. They are compatible with

almost every mobile device, are low cost, and have wide signal
coverage.

Various signal metrics, such as Channel State Information
(CSI) and Received Signal Strength Indicator (RSSI) can be
employed in Wi-Fi-based IPSs, as well as different position-
ing techniques, like proximity, multilateration, angulation, or
fingerprinting, to determine the location of a device within
an indoor environment [5], [6]. In recent years, the appli-
cation of Machine Learning (ML) algorithms has exhibited
considerable improvements in the performance of IPSs [7].
These algorithms have the potential to effectively analyze the
complex patterns and relationships present in the collected
data, enabling accurate localization and tracking.

Since no CSI dataset for indoor positioning used in related
work are publicly available, one primary objective of this work
is to create an extensive CSI and RSSI dataset for a laboratory
at the University of Passau. Subsequently, a comparative anal-
ysis of different Deep Learning (DL) approaches, including
Support Vector Regression (SVR), Long Short-Term Memory
(LSTM), and Convolutional Neural Networks (CNN), will be
conducted to evaluate their effectiveness in achieving accurate
indoor localization.

The remainder of this paper is structured as follows:
Section II starts by outlining the proposed approach of a
Wi-Fi-based indoor positioning system. After that, the data
collection steps and the processing techniques for both CSI and
RSSI data are detailed. Section III presents the adopted ML
algorithms, i.e., SVR, LSTM and CNN. Section IV describes
a comparative analysis of the results. Section V concludes the
paper and identifies future challenges.

II. PROPOSED METHODOLOGY

A. Overall System Architecture
This subsection presents the proposed system architecture

and the methods employed in this work. Our system is
composed of three main phases, as depicted in Figure 1:

• Phase 1: consists of creating a dataset of RSSI and CSI
values based on the specific collection tool Nexmon on
a Raspberry Pi.

• Phase 2: involves the application of multiple data pro-
cessing methods to clean up the datasets and prepare the
fingerprint dataset.

• Phase 3: details the different implemented ML algorithms
and their results.
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Fig. 1. Overall system architecture.

B. Data Collection

The collection of high-quality data is crucial for subsequent
steps of preprocessing and the application of machine learning
algorithms. This section provides details on the tool Nexmon
CSI extractor, which is used to collect CSI and RSSI data in
this work.

The Nexmon CSI Extractor [8], [9] is configured on a
Raspberry Pi, allowing for the collection of CSI and RSSI data
in a laboratory setting at the University of Passau. Introduced
in 2019, it provides a good option to collect CSI data. It
employs rooted Broadcom Wi-Fi chips found in multiple
devices such as Nexus smartphones, Raspberry Pi boards, and
Asus RT-AC86U routers. Custom firmware is employed to
enable CSI data collection by listening on a specific User
Datagram Protocol (UDP) socket. The Nexmon CSI Extractor
offers support for 128 subcarrier groups with the highest
resolution of 32 bits. Another significant advantage is its
ability to simultaneously collect CSI and RSSI data.

The CSI and RSSI data was collected in a laboratory room
located in the ITZ Building at the University of Passau. The
room has a pentagon shape with an approximate area of
45 m2. For each Reference Point (RP) (i.e., A RP is the
point learned from the training phase, where the different RSS
values were recorded.) inside the room, data was collected in
four directions, north, east, south, and west. The RPs are 1
m apart from each other and most of the outer ones are 0.45
m apart from the walls. The numbering scheme of the RPs
follows a vertical-horizontal structure, with the first (or first
two, for three-digit numbers) digits representing the vertical
position, and the last digit representing the horizontal position.
The vertical axis ranges from 1 to 10 and the horizontal
axis ranges from 1 to 5. This gives the room a matrix-like
structure, which is useful for further data processing and
position predictions.

For each RP, data was collected in four directions. The
Raspberry Pi was positioned in front of a person’s body, with

a collection direction arrow pointing away from them. In each
direction at each RP, 100 Wi-Fi Frames were collected. This
resulted in a total of 400 Wi-Fi Frames per RP, and with 45
RPs amounting to a total of 18000 collected Wi-Fi Frames.
The data is stored in .pcap files on a per direction, per RP basis,
meaning that every .pcap file contains 100 Wi-Fi Frames.
Data was collected over the course of one day (10h) by two
researchers.

TABLE I
EXCERPT OF COLLECTED WI-FI FRAME STRUCTURE

Bytes Type Name Description
1 uint8 RSSI RSSI value in Two Complement

Form
6 uint8[6] Source Mac Source Mac ID of the Wi-Fi Frame

variable int16[] CSI Data Each CSI sample is 4 bytes with
interleaved Int16 Real/Imaginary.

An excerpt of the structure of a collected Wi-Fi Frame can
be found in Table I. For an IPS, the three shown variables
in the table are of particular importance. The RSSI and CSI
data fields describe the wireless characteristics of the Wi-
Fi Frame with a specific Source MAC Address. While the
RSSI and Source MAC field contain single values, the CSI
data field contains both amplitude and phase information for
each Orthogonal Frequency-Division Multiplexing (OFDM)
subcarrier in complex form. In the setup of this study, data
for 256 subcarriers (Bandwidth (80Mhz) * 3.2) is available.
This raw network data is crucial for creating a high-quality
fingerprint database. In the next step, this data must be cleaned
and preprocessed, to prepare it for the machine learning
algorithms.

C. Data Processing

To create the fingerprint database, data processing is a
crucial step before training the ML models. In this paper,
two fingerprint databases were created, one for the RSSI data
and one for the CSI Amplitude data. The CSI Phase was
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not considered since CSI Amplitude data was more stable
and easier to process. For both RSSI and CSI Amplitude
data, different preprocessing was performed. This section aims
to give an insight into the used techniques and results of
creating the datasets. To apply the preprocessing methods,
the data was first extracted with the CSIKit library [10]. This
library extracts the raw data of the .pcap files into a python
environment, where further steps can be executed.

1) The CSI Amplitude dataset: it contains data for 45 RPs,
and 1283 columns with information, shaping the dataset to be
in a matrix form of 45x1283. With three columns containing
position and direction information, the input dataset contains
57600 CSI Amplitude values. The mean CSI Amplitude values
of all four directions were calculated for every RP, to make
the dataset more robust. Also, the mean direction value of 2.5
was kept in the dataset to make this clearer.

The other columns each represent the CSI Amplitude values
of a subcarrier for a specific Source MAC address. Subcarriers,
that do not contain CSI Amplitude data like for example null
subcarriers [11], are removed. The dataset is filtered using
only the Source MAC addresses, which contain a reasonable
amount of data. Not a Number (NaN) values are replaced with
the minimum value of each column. To further improve the
data quality, more preprocessing actions were done for the CSI
Amplitude data. CSI data often contains noise and outliers that
can distort the essential information. In this study, three filters
are used for CSI Amplitude data processing: the running mean
filter, a lowpass filter, and a Hampel filter [12]. For the running
mean filter, a window size of 10 was chosen, the lowpass filter
was configured to isolate frequencies below 10Hz and for the
Hampel Filter, a window size of 10 and a significance of 3
was set. Figure 2 shows the effects of preprocessing the CSI
Amplitude data for a specific RP.

2) The RSSI dataset: the size of this dataset is 45 RPs,
with 8 columns containing data making it a matrix-like shape
of 45x8. Three columns contain position and direction infor-
mation, amounting to a total of 225 RSSI values. The other
columns contain the actual RSSI values in dBm, the column
names are the Source MAC addresses. Here, again only the
Source MAC addresses with a reasonable amount of data
were added, in order to reduce complexity of the dataset and
therefore improve performance. As discussed earlier, for every
direction of each Reference Point, there are 100 collected Wi-
Fi Frames. For frames with the same Source MAC address, the
mean RSSI values of them is used as value, further improving
the robustness of the dataset. Frames with no Source MAC
address information are ignored.

If no Wi-Fi Frame was collected for a specific MAC address
at a RP, the resulting NaN values were replaced with the
minimum possible value for RSSI, -100. With the now clean
and preprocessed datasets, it is possible to train the machine
learning models. The setup and results will be explored next.

III. ML ALGORITHMS APPLICATION

In this section, the effectiveness of SVR, LSTM and CNN
algorithms in leveraging both CSI amplitude and RSSI data, is

evaluated and compared. With the preprocessed RSSI and CSI
datasets of the previous section, the three different models are
trained and evaluated. For better comparability, the horizontal
and vertical positions are predicted separately, as the SVR ap-
proach allows for only one output. For the combined accuracy
predicting both horizontal and vertical positions, the mean of
the separate values is taken for the SVR approach. The LSTM
and CNN implementations allow two outputs. To compare the
results, the Mean Squared Error (MSE) is calculated for each
model. For all three models, the CSI Amplitude and RSSI
datasets are split into train and test datasets. Table II depicts
the input dataset sizes for both datasets.

TABLE II
SIZES OF INPUT DATASETS

Value Train Data (80%) Test Data (20%) Total
RSSI 180 45 225
CSI Amplitude 46080 11520 57600

A. Support Vector Regression (SVR)

SVR is a powerful machine learning technique used for
solving regression problems [13]. SVR utilizes kernel func-
tions to transform the input data into a higher-dimensional
feature space, where linear regression is performed. For the
environment of this study, the Radial Basis Function (RBF)
kernel was chosen for transforming the input data into a
higher-dimensional feature space. It can capture complex non-
linear relationships between the input features and the output
variable and therefore gave significantly better results than
configurations with other kernels. Table III depicts the MSE
results for the RSSI and CSI Amplitude datasets.

TABLE III
MSE PREDICTING WITH SVR MODEL

Value Vertical Horizontal Vertical and
Horizontal

Train Test Train Test Train Test
RSSI 0.0110 0.0292 0.0531 0.0670 0.032 0.048
CSI
Amplitude

0.0076 0.0419 0.0082 0.1156 0.007 0.078

For the RSSI dataset, the MSE was 0.032 for evaluating
with the train data, and 0.048 when evaluating with unseen
data. With the CSI Amplitude dataset, a the MSE for the train
dataset was 0.007 and for the test dataset 0.078.

B. Long Short-Term Memory (LSTM)

In this study, a carefully designed and optimized LSTM
model architecture was employed. The selected architecture
comprises two layers. The first layer of the model is an LSTM
layer. The LSTM layer consists of 50 units for the RSSI
dataset, and 8 units for the CSI Amplitude dataset, allowing the
model to capture and learn complex patterns in the input data.
By leveraging its inherent memory cells, the LSTM layer can
retain and utilize essential information from past observations
to inform future predictions accurately. An overview of the
configuration when predicting the vertical and the horizontal
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Fig. 2. Heat Maps of CSI Amplitude before (left) and after (right) preprocessing.

position for the LSTM approach is displayed in Table IV. The
second layer of the model is a dense layer. The purpose of
this layer is to consolidate the information extracted by the
LSTM layer and make precise predictions. The number of
units in the dense layer is determined based on the desired
dimensions of the predicted outputs. For single-dimensional
predictions, such as determining the location along a specific
axis, a single unit is utilized. However, when predicting both
the vertical and horizontal dimensions simultaneously, two
units are employed to capture the multi-dimensional nature
of the indoor positioning problem.

The MSE for the RSSI dataset was found to be 0.0415 when
evaluating it with the training data, and 0.0691 when assessing
it with unseen data. Regarding the CSI dataset, the MSE was
0.0008 for the training dataset and 0.0801 for the test dataset,
as seen in Table V.

C. Convolutional Neural Networks (CNN)

In this work, a CNN-based ML model is employed for
IPSs utilizing the CSI Amplitude and RSSI data. CNNs are
particularly well-suited for tasks involving grid-like data, such
as images or in this case, CSI Amplitude and RSSI data
[14]. Two different architectures for RSSI and CSI Amplitude
models were created, since the RSSI data differs a lot from
the CSI Amplitude data. An overview of the architectures is
depicted in Figure 3 for the RSSI dataset, and Figure 4 for
the CSI Amplitude dataset.

MSE Results for both architectures are shown in Table VI.
The RSSI based model achieves a MSE error of 0.031 for
the training data, and 0.077 for unseen data. For the model
trained with CSI Amplitude data, the MSE for training data
is 0.0000007, and 0.066 for the test data. The MSE values
were again calculated by getting the mean MSE of 30 trained
models, to improve the robustness of the result.

Next, the results are transformed to represent distance error,
compared, and discussed.

IV. RESULTS AND DISCUSSIONS

To further compare the results of all three applied algo-
rithms, the approximate average distance errors are computed,
by rescaling the MSE to the length of the axes (i.e., 900 cm

conv1d_input input: [(None, 5, 1)]

InputLayer output: [(None, 5, 1)]

conv1d input: (None, 5, 1)

Conv1D output: (None, 4, 32)

flatten input: (None, 4, 32)

Flatten output: (None, 128)

dense input: (None, 128)

Dense output: (None, 64)

dense_1 input: (None, 64)

Dense output: (None, 2)

Fig. 3. CNN model architecture for RSSI data

conv1d_2_input input: [(None, 1280, 1)]

InputLayer output: [(None, 1280, 1)]

conv1d_2 input: (None, 1280, 1)

Conv1D output: (None, 1279, 200)

max_pooling1d input: (None, 1279, 200)

MaxPooling1D output: (None, 639, 200)

flatten_1 input: (None, 639, 200)

Flatten output: (None, 127800)

dense_2 input: (None, 127800)

Dense output: (None, 2)

Fig. 4. CNN model architecture for CSI data
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TABLE IV
LSTM MODEL CONFIGURATION FOR PREDICTING VERTICAL AND HORIZONTAL POSITION

Value LSTM-
Layer units

Dense-
Layer units

Optimizer Epochs Batch
Size

RSSI 50 2 Adam 1000 64
CSI Amplitude 8 2 Adam 200 32

TABLE V
MSE PREDICTING WITH LSTM MODEL

Value Vertical Horizontal Vertical and
Horizontal

Train Test Train Test Train Test
RSSI 0.0185 0.0267 0.0496 0.1343 0.0415 0.0691
CSI
Amplitude

0.0015 0.0363 0.0062 0.1059 0.0008 0.0801

for the vertical axis, 490 cm for the horizontal axis). This is
done for each axis separately, as shown in Table VII and Table
VIII, as well as when predicting the position with both axes,
shown in Table IX.

A. Vertical Axis

Table VII focuses on predicting the vertical position using
RSSI and CSI data. The distance errors are reported for both
the training and testing sets.

The SVR algorithm achieves a distance error of 9.91 cm
in the training set and 26.30 cm in the testing set when using
RSSI data. When using CSI Amplitude data, the distance error
reduces to 6.86 cm in the training set but increases to 37.79
cm in the testing set

The LSTM algorithm performs with a distance error of
16.66 cm in the training set and 24.05 cm in the testing
set when using the RSSI data. However, when using CSI
Amplitude data, the performance improves significantly, re-
sulting in a distance error of only 1.42 cm in the training
set and 32.70 cm in the testing set. The CNN algorithm
demonstrates superior performance in predicting the vertical
position. When using RSSI data, the distance error is 7.51
cm in the training set and 27.05 cm in the testing set. When
utilizing CSI Amplitude data, the performance improves even
further, achieving a remarkable distance error of only 0.0007
cm in the training set and 32.56 cm in the testing set.

Comparing the algorithms for vertical position prediction,
the SVR has reliable results with the RSSI data, but strug-
gles with the more complex CSI Amplitude data. The CNN
approach gives comparable results as the SVR approach for
the RSSI data, but outperforms both SVR and LSTM, as
it consistently achieves lower distance errors with the CSI
Amplitude data.

B. Horizontal Axis

Table VIII focuses on predicting the horizontal position
using RSSI and CSI data. Like before, the distance errors are
reported for the training and testing sets.

When using RSSI data, SVR achieves a distance error of
26.02 cm in the training set and 32.86 cm in the testing

set. With CSI Amplitude data, the distance error decreases
to 4.03 cm in the training set but increases to 56.65 cm
in the testing set. LSTM performs with a distance error of
24.30 cm in the training set and 65.82 cm in the testing set
when using RSSI data. When using CSI Amplitude data, the
distance error improves slightly to 3.05 cm in the training
set and to 51.93 cm in the testing set. CNN shows consistent
performance in predicting the horizontal position. When using
RSSI data, the distance error is 23.79 cm in the training set
and 57.10 cm in the testing set. With CSI Amplitude data, the
performance improves significantly, achieving a distance error
of only 0.000009 cm in the training set and 43.24 cm in the
testing set.

Comparing the algorithms for horizontal position prediction,
CNN again outperforms SVR and LSTM in terms of distance
errors, especially when utilizing CSI Amplitude data. For
unseen RSSI data, SVR gives the best result.

C. Vertical and Horizontal Axis

Table IX presents the overall performance of the algorithms
in predicting both vertical and horizontal positions using RSSI
and CSI data.

The distance error for SVR when using RSSI data is 17.97
cm in the training set and 29.58 cm in the testing set. When
utilizing CSI data, the performance improves with a distance
error of 5.44 cm in the training set and 47.22 cm in the
testing set. LSTM achieves a distance error of 20.48 cm in the
training set and 44.93 cm in the testing set when using RSSI
data. With CSI Amplitude data, the distance error improves
to 2.23 cm in the training set and 42.31 cm in the testing set.
CNN performs consistently well in predicting both vertical and
horizontal positions. When using RSSI data, the distance error
is 15.65 cm in the training set and 42.07 cm in the testing set.
When utilizing CSI Amplitude data, the performance improves
further, achieving a distance error of only 0.0003 cm in the
training set and 37.90 cm in the testing set.

Comparing the algorithms for predicting both vertical and
horizontal positions, CNN again demonstrates superior per-
formance, achieving lower distance errors compared to SVR
and LSTM, especially when utilizing CSI Amplitude data.
Overall, based on the results of this study, the CNN algorithm
consistently outperforms SVR and LSTM in terms of distance
errors for predicting both vertical and horizontal positions
in an indoor positioning system using CSI Amplitude data
by about 20% and 10% respectively. Additionally, the per-
formance of all algorithms, except SVR, generally improves
when CSI data is used instead of RSSI data, highlighting the
importance of considering CSI Amplitude data for accurate
indoor positioning. For RSSI data only, SVR can give reliable
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TABLE VI
MSE PREDICTING WITH CNN MODEL

Value Vertical Horizontal Vertical and
Horizontal

Train Test Train Test Train Test
RSSI 0.0083 0.0300 0.0485 0,1165 0.031 0.077
CSI Amplitude 7 ∗ 10−7 0.0361 2 ∗ 10−8 0.0882 7 ∗ 10−7 0.066

TABLE VII
DISTANCE ERROR (CM) PREDICTING VERTICAL POSITION (MSE-BASED)

RSSI CSI Amplitude
Algorithm Train Test Train Test
SVR 9.91 26.30 6.86 37.79
LSTM 16.66 24.05 1.42 32.70
CNN 7.51 27.05 0.0007 32.56

TABLE VIII
DISTANCE ERROR (CM) PREDICTING HORIZONTAL POSITION

(MSE-BASED)

RSSI CSI Amplitude
Algorithm Train Test Train Test
SVR 26.02 32.86 4.03 56.65
LSTM 24.30 65.82 3.05 51.93
CNN 23.79 57.10 0.000009 43.24

results as well, but the algorithm has limitations with the larger
and more complex CSI Amplitude dataset.

V. CONCLUSIONS

In this study, an extensive dataset of CSI and RSSI data
was meticulously collected within a controlled laboratory en-
vironment. The dataset serves as a solid foundation for future
research endeavors in the field of IPSs. It encompasses crucial
information, including the position with direction details, CSI
Phase, CSI Amplitude, and RSSI measurements.

To assess the performance of the IPSs, three distinct ML
algorithms were applied to the preprocessed datasets: SVR,
LSTM and CNN. Notably, the integration of both CSI Am-
plitude and RSSI data yielded promising results, with all
models achieving a mean distance error based on MSE of less
than 50 cm, which is superior to all related works [14]–[16].
Among the individual metrics, SVR based solely on RSSI data
demonstrated superior performance, attaining an MSE-based
accuracy level of approximately 30 cm. Conversely, CNN,
utilizing CSI Amplitude data, showcased the best results with
an average MSE-based distance error of about 38 cm.

The findings of this work underscore the effectiveness of
employing ML techniques, along with comprehensive prepro-
cessing methodologies, to enhance the accuracy and reliability
of IPSs. The results pave the way for future research to
explore alternative algorithms, feature engineering techniques,
and hybrid approaches to further improve the localization
accuracy of IPSs in various indoor environments. By refining
and expanding upon the methodologies established in this
paper, IPSs can be further improved.

TABLE IX
DISTANCE ERROR (CM) PREDICTING VERTICAL AND HORIZONTAL

POSITION (MSE-BASED)

RSSI CSI Amplitude
Algorithm Train Test Train Test
SVR 17.97 29.58 5.44 47.22
LSTM 20.48 44.93 2.23 42.31
CNN 15.65 42.07 0.0003 37.90
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