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Abstract—We consider the development problem of smart
monitoring systems for Internet of Things (IoT) environments.
Such systems form a special class of Tactile Cyber-Physical
Systems (TCPS) with the essential role of sensorics and artificial
intelligence (AI). Sensorics enables the touching sense when a
remote object is monitored in Tactile Internet (TI). IoT and
AI technologies support near real-time data processing and
feedback to perceive and control the object. The applicability of
strain gauges is discussed for the needs of emerging applications
of smart monitoring in manufacturing, building construction,
and vehicle operation. We introduce a multi-layer architecture
of TCPS that focuses on the bigdata and smart interaction
requirements of industrial monitoring systems. The architecture
takes into account the Information&Communication Technolo-
gies (ICT) that have already shown efficiency in the industrial
settings.

Index Terms—Smart Monitoring, Sensorics, Tactile Internet,
Cyber-Physical System, Bigdata Processing.

I. INTRODUCTION

We consider the development problem of smart moni-
toring systems for Internet of Things (IoT). In particular,
such systems are rapidly developed in Industrial Internet or
Industrial IoT (IIoT) for the case of machinery equipment
monitoring, e.g., see [1]. The data come from multiple sensors
that surround the equipment (and its assembly parts—nodes).
Monitoring implements functions for recognition of technical
state and utilization condition.

Smart monitoring assumes consideration of the following
requirements to the system development.

1) The bigdata requirement (RBD): Data processing is
based on Artificial Intelligence (AI) with advanced
methods of Machine Learning (ML) and recognition for
Bigdata analytics [2], [3].

2) The smart interaction requirement (RSI): System com-
ponents act as smart IoT objects that interact in IoT
environment to construct services using Ambient Intel-
ligence (AmI) [4], [5].

The progress in the IoT/IIoT technology leads to shortening
the distance between the human and monitored objects. The
results of analytics can be delivered to the user in near real-
time. As a result, a person can extend her/his sensory system
despite the physical distance (five senses: eyesight, hearing,
taste, touch, and smell). In particular, the emerging technology
of Tactile Internet (TI) introduced haptic data related to the
human perception of objects through its sensory nervous

system [6]. This human perception property is considered
in Ambient Intelligence (AmI) when human is in a digital
environment (e.g., IoT environment) and surrounding devices
construct various recognition services by monitoring the phys-
ical, informational, and social worlds [4], [7], [8].

The bigdata and smart interaction requirements can be
implemented using the concept of Cyber-Physical System
(CPS) [9]. CPS components act as data producers (sensing)
and consumers (processing) from the physical, informational,
and social worlds [4]. Integration of physical and information
processes in an AmI environment provides the ability to
perceive the environment and its participants based on analysis
of the sensed data.

We limit this study with the tactile sense, aiming at mon-
itoring systems that are based on sensing deformations and
mechanical stresses. Production machinery (under monitoring)
is equipped with various strain gauges, which we elaborated
in our previous work [10]. Our target case is Tactile Cyber-
Physical System (TCPS).

In this paper, we consider the applicability of strain sen-
sorics in development of IoT monitoring systems, such as
manufacturing, building construction, robot movement, wear-
able sensorics, and vehicle operation. TCPS implements reg-
ular measurements (in real-time) of various deformations and
mechanical stresses. Application examples and possible strain
gauges can be found in [11]–[13]. In particular, magnetic strain
sensors and their use are considered in [14].

The key contribution of this paper is the proposal of a multi-
layer TCPS architecture for sensed data processing, either in
batch mode or near real-time mode. The proposed architecture
is based on the latest technologies from IoT, TI, AmI, AI, and
Bigdata. The technologies are selected based on our review
of existing industrial solutions. Although the architecture is
oriented to the specific characteristics of data sensed from
various strain gauges, other sensors can be added to TCPS.
Easy addition is supported by the layered structure.

The rest of the paper is organized as follows. Section II
introduces the problem of applying TCPS in industry, where
strain gauges are used to implement the required tactile sense.
Section III proposes our multi-layer TCPS architecture for data
processing of sensed data, either in batch mode or real-time.
Section IV summarizes the key findings of this study.
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II. SMART MONITORING WITH THE TACTILE SENSE

Smart monitoring is widely used in AmI environments,
where CPS components act as data producers and consumers
from the physical, informational, and social worlds [4]. In-
tegration of physical and information processes in an AmI
environment provides the ability to perceive the environment
and its participants based on analysis of the sensed data.

In the context of Industry 4.0 and IIoT, a given CPS
implements monitoring functions related to recognize equip-
ment technical state and utilization condition, diagnostics
and prognosis, making recommendations for maintenance,
and selecting optimal operating modes [15]. Such monitoring
functions supports analytics of sensed data for diagnostics,
prediction, and prescriptive maintenance. In this study, we
focus on the monitoring problem machinery equipment.

A monitoring system implements of iterations for manip-
ulating objects (sending commands and receiving feedback).
The iterations support construction of the informational and
control services. An example of the informational service is
predicting technical state of nodes in the machinery equipment
(e.g., bearing and their defects [16]). Examples of control
service are manipulating effects with feedback in real-time
to achieve the desired results [17].

For monitoring and manipulation with real objects, a system
is needed for collecting and processing the data from sensors.
We focus on tactile sensors, which enhance such a human
sense as “touch”. The monitoring CPS acts as TCPS [18].
TCPS extend a set of applications and services by combining
machine-to-machine and human-to-machine interactions. The
following properties are typical for sensorics in a TCPS [11],
[12].

• Digitalization of the primary results of measurements.
• Use of many sensors and sensor nodes for monitoring

the state of one object as well as processing of the data
obtained in parallel from many sensors.

• Correction for noninformative factors (e.g., the influence
of temperature on strain sensors).

• Recognition of failures of nodes or communication lines
and built-in fault-tolerance capability.

• The sensors used for monitoring are by themselves smart
and able to function as nodes of IIoT.

• Wireless connection of the components of the system.
• The ability of the components of the system to commu-

nicate with each other in real-time mode.
• High-level characterization of the state of the object under

monitoring (e.g., normal or dangerous).
• Recognition of abnormal behavior of the object and

making decisions on this base.
• The use of the machine learning (ML) methods for

classification of the states of the object under monitoring.
• Flexibility of the system, i.e., possibility to re-configure

when necessary.
An example of a TCPS application is remote manipulation

of real or virtual robotic industrial equipment in inaccessible
and dangerous conditions. In TCPS, an operator remotely

controls a robot (e.g., a manipulator) to perform production
operations using robotic equipment. Even though the sense of
presence can be provided through the exchange of audio/video
information, complete immersion is impossible without the
exchange of haptic information.

The haptic feedback gives the operator a sense of force,
movement, vibration, etc. For example, the operator can adjust
the position and grip of the manipulator. The exchange of
tactile sense includes commands to the object and feedback
from the object. The network round-trip latency in such a
loop cannot exceed a few milliseconds to solve the problem
of delayed and asynchronous feedback [19]. Reaching the
boundary values of delay imposes additional requirements
on the development of hardware and software architecture,
algorithms, and protocols for TCPS.

Almost any TCPS is characterized by multi-source multi-
type data sensing and information exchange followed by data
fusing. Strain gauges can serve as an additional source of
information on the technical state and utilization condition
of production machineries (metalworking machines, gas tur-
bine equipment, presses, pumps, etc.). Multiple data sources
provide “redundancy” in measurements. The redundancy can
be used to improve the accuracy, reliability, objectivity and
validity of technical state assessment and operating conditions.
In this regard, measurements of elastic deformations can be
based on non-destructive testing methods [20]. This kind of
measurements of physical parameters can be used to improve
the accuracy of solving a wide class of promising production
problems, as we summarized in Table I.

III. MULTI-LAYER ARCHITECTURE

We propose the multi-layer TCPS architecture for data pro-
cessing of sensed data, either in batch mode or near real-time
mode. The model is shown in Figure 1. The proposed architec-
ture combines a number of the well-proven technologies used
in the digitalization of manufacturing industry. In particular,
the bigdata technologies aims at storing and processing huge
(in most cases, redundant) sets of continuously arriving sensor
data with the possibility of horizontal scaling [3].

A related concept for TCPS is Digital Shadow (the basic
component of Digital Twin) [21]. The architecture maintains
connections and dependencies (rules) that describe the be-
havior of a real object under normal operating conditions.
Also, any digital object is augmented with additional data
collected from the corresponding real object using the IIoT
technology [22].

The architecture is based on the data life cycle model “data-
information-knowledge-decisions” [2]. The following concept
layers are used: (1) physical layer; (2) edge layer; (3) network
layer; (4) gateway layer; (5) storage layer; (6) computation
layer; (7) analytics layer; (8) service layer.

The physical layer (together with the edge layer) imple-
ments the hardware and software enclosure for measuring con-
trol around a monitoring and manipulation object—industrial
equipment. The measuring control enclosure is created without
making any structural changes and does not require taking the
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TABLE I
TCPS APPLICATIONS IN INDUSTRY USING STRAIN GAUGES

Application Use of tactile sensors
1. Remote manipulation of real or virtual objects in inaccessible and
dangerous conditions.

Tracking movement and position of human body parts by flexible strain
sensors.

2. Monitoring the state of transport vehicles, ship hulls and airframes, wind
turbines, railway lines, dams, oil drilling platforms, structural components
of bridges and buildings.

Detection of early structural damage based on the analysis of strain measure-
ments; data source in wireless telemetry system; measurement of mechanical
resonance frequencies of structures.

3. Design and exploitation of aerospace and aircraft technologies. Comparison of deformations arising under the action of various forces with
the results of CAD (Computer Aided Design) and FEA (Finite Element
Analysis) simulations; monitoring the actual stresses in mechanical parts
during flight to ensure that it is safe.

4. The control of deformations of parts during processing to adjust the
pressing forces by robotic metalworking equipment.

Strain measuring of the part during machine processing by the pressure of
the cutter (e.g., during drilling).

5. Measurement of the torque applied by a motor, turbine, etc. to generators,
wheels, etc. for optimization of the regime of the equipment

The torque is calculated from the measured strain and the rotational speed
on a shaft.

6. Manufacturing of weight and pressure measuring devices for the creation
of robotic systems for industrial production.

Strain sensors are the basic (sensing) elements of load cells.

industrial equipment out of operation. The physical layer con-
tains many heterogeneous high intensity sensors and actuators.
Industrial automation sensor equipment is used as the main
sources of information on the technical state, operation, and
operating conditions.

Stresses and strains are the main parameters for monitoring
and manipulating the state of objects (including industrial
ones), which must withstand dynamic loads. To ensure re-
dundancy of information and coverage of most application
scenarios in TCPS, strain measurement should be performed
together with such physical parameters as vibration, current,
rpm (revolutions per minute), and temperature. For example,
using vibration and strain data in integration, one can deter-
mine the critical stretch of material and reduce vibration so
that this limit is not exceeded. There is also a relationship
between shock events and deformation values.

The edge layer ensures that a significant part of the data
processing computations is performed close to the data sources
and the object under monitoring. Preprocessing data on edge
devices increases the performance of upstream digital diag-
nostics and predictive analytics algorithms by reducing the
amount of streaming data and network latency, as well as by
distributing the load across edge compute nodes. For edge
devices, algorithms must be not only mathematically simple,
but also energy efficient to execute them on microcontrollers.

Raw data are collected and presented in a summary form for
further time-domain statistics [23]. The summary form for an
individual strain data processing stream is determined by a set
of such statistical metrics as Root Mean Square (RMS), max,
min, crest factor, and kurtosis within a given time window
for providing initial, approximate information about faults.
We follow the model of [24], where such computation is
implemented by so-called sensor computing modules (SCM—
data acquisition system instance, DAQ), which can collect data
from high-resolution sensors with high-speed measurement.
The sensor data are digitized with high precision, preprocessed
using basic mathematical transform operations (e.g., Fast
Fourier Transform—FFT). SCM uses an external ADC with

24-bit resolution operating (ADS127L01) and a maximum
sampling rate of 512 kSPS (Samples Per Second).

A single SCM can connect from 1 to 15 sensors of differ-
ent types. The sampling rates and duration of sampling are
customized along with algorithms to establish an appropriate
value for them. In the monitoring system using 10 modules,
the daily total volume for the continuous flow of raw and
preprocessing data can reach 1.236 TB. In this regard, TCPS
faces with Bigdata challenges and specialized technologies
and architecture patterns are required to organize storage,
stream synchronization, and data processing when designing
the overlying architecture layers [3].

Due to the significant requirements for computing resources
and the possibility of horizontal scaling, systems for working
with Bigdata are developed mainly as distributed systems that
implement parallel processing of large data sets [25]. The
architecture is with Massive Parallel Processing (MPP) [26].
Many independent computing nodes are connected by a high-
bandwidth LAN. A local dedicated server is deployed at the
edge. The nodes provide initial data to the local server. The
server transmits the processed data further to a data center.

The network layer connects the edge layer and the Bigdata-
oriented layers, providing an environment for communication
over wireless or wired network channels (Wi-Fi, ZigBee,
Ethernet, Bluetooth, RS-485, CAN and similar network proto-
cols). Such protocols as MQTT, CoAP, AMQP, and DDS pro-
vides standardized data transfer based on IoT solutions [27].
Nevertheless, proprietary protocols can also be developed to
provide lightweight options for polling the DAQ system, re-
questing a one-time fetch of data from a sensor, and requesting
a continuous data acquisition (subscription) [24]. For secure
access to both external data sources and a private data center,
a virtual private network is used with the creation of dedicated
secure circuits and with tunneling protocols [28].

When working with large data sets, the execution is time-
consuming for queries to implement the application functions.
Many queries cannot be executed in real-time, since they
require the execution of algorithms that work with distributed
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Fig. 1. The multi-layer TCPS architecture model for near real-time intelligent analysis of sensor data.

storages on several nodes of the data center, processing data
in parallel. The processing can take several hours, making
the results irrelevant. Specialized architectural patterns are
needed for obtaining the results in near real-time (likely, with
some loss of accuracy) and for complementing them based
on executed slow queries over a large set of retrospective
data [29].

In particular, the Lambda architecture design pattern sepa-
rates real-time and batch data processing [30]. The Lambda
pattern is applied in many practical industrial applications. Our
TCPS architecture (in Figure 1) follows the basic principles of

the Lambda pattern. Our model combines the batch processing
path (bottom) and the speed processing path (top), so providing
a unified, merged view to the service layer. Moreover, the users
are not interested to consider these two data streams. The users
simply need the analytics results. In particular, if real-time
analytics is needed then the accuracy becomes lower, since
the result comes from the speed path. Nevertheless, after the
completion of complex distributed queries on the batch path,
the results obtained by users can be enriched or updated with
more accurate information after long-term, deep analytics.

The batch processing path performs heavy-weight, time-

14Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



consuming, and resource-intensive queries with no real-time
requirements. Free time slots can be used to perform data
processing (depending on the schedule, e.g., at night). In
this case, reports and various statistics are built only on
retrospective data (e.g., for the last day, months, etc.). The
result is completed after some time (e.g., tomorrow). However,
such results are significantly more accurate and reliable. Note
that all incoming data on the batch path is always appended
to the existing one, i.e., previous data are not overwritten (by
the “log” storage type), allowing storing the history for deeper
analytics.

The speed processing path implements near real-time pro-
cessing. The trade-off is the loss of accuracy with respect
to fast ready-made results. On this path, some small data
processing functions (e.g., average, some aggregation) operate
on individual records in a sensor data stream or in a sliding
window mode.

The gateway layer is used to receive, transform, and store
information from edge devices and external sources. Control of
edge devices is possible by sending configurations to adjust
the intensity and content of data streams (depending on the
needs of the data processing). According to the data source
and destination, the sensed data are forwarded to the batch
path (for retrospective data, at rest) or to the speed path (for
streaming data, in motion).

For processing streaming data, time synchronization is
needed as many streams from various sources. A stream can
be aggregated (by types of data sources with reference to a
specific equipment node) to provide services in real-time (e.g.,
diagnostics). Message brokers are used for distributed stream-
ing and data processing (e.g., Apache Kafka, RabbitMQ) [31].
A broker has low latency, since all data processing is executed
in-memory, with no slow disk access.

The data-driven interaction between data producers and con-
sumers follows the publish/subscribe model using a message
broker [32]. Another equally important task is the creation
of a retrospective storage of raw data of physical measure-
ments (batch data) for the further execution of analytical
computations and training of neural networks on the results.
Software tools designed to automate the transfer of large data
batches from data sources to TCPS use the concept of “extract,
transform, load” (ETL), e.g., Apache NiFi, Sqoop [25].

The storage layer is critical for the Bigdata requirement
in TCPS. Storage and processing of accumulated data from
sensors and recognized knowledge are the most resource-
intensive operations that uses distributed computing [21], [33].
A MPP architecture is commonly applied to data lakes and
databases (or data warehouse) [26], [34]. Data processing is
performed by multiple computing nodes. Each node has its
own storage and computing resources to resolve a part of
the overall data query. Depending on the volume, structure,
variety, and variability of data, a storage location is selected.

A data lake is an object storage designed to store various
data (structured, semi-structured, or unstructured) in its origi-
nal, raw form (only the file object and the path to it) without
using schemas, types, and data models. A data lake involves

storing data in a distributed file system. Hadoop Distributed
File System (HDFS) is fault-tolerant and low-cost object
storage with low performance when working with small data
amounts (file block size from 128MB) [35]. HDFS is suitable
for storing samples of raw physical measurements, grouped in
large files, e.g., by sampling period (file size depends on the
length of the period and the sampling frequency).

A database is suitable for semi-structured and structured
data with support for data queries. Compared to a data lake, a
database uses a data model that defines how to store, organize,
and process data. There are three classes of databases [25],
[34], [36]: relational database management systems (RDBMS),
NoSQL, and NewSQL databases. RDBMS provide operation
of transactional systems using the “online transaction process-
ing” (OLTP) approach (e.g., MySQL, Oracle).

NoSQL databases emerged as an alternative to traditional re-
lational databases with a tabular data organization format (e.g.,
MongoDB, Neo4j). Depending on the problem being solved,
NoSQL databases offer the following set of fundamental data
structures: wide column, document, key-value pair, or graph.

NewSQL databases emerged as a combination of the
NoSQL and RDBMS advantages. They solve the ACID prob-
lems (atomicity, consistency, isolation, durability) with hori-
zontal scalability of OLTP databases (e.g., Clustrix, NuoDB).
Therefore, RDBMS and NewSQL databases focus on trans-
actional loads. They are rarely used in TCPS, since the key
issue is the analytics of large sets of time series from physical
parameters measurements and predicting the technical state of
machinery equipment [25].

Nevertheless, columnar NoSQL databases are traditionally
designed to support business analytics (e.g., Vertica, Click-
House) [37]. Typical use is a large data warehouse solving
analytical problems using the “online analytical processing”
(OLAP) approach. An analytical database is at a level higher
than a data lake. Data are further processed (partitioning,
compression) to make analytics easy and fast. In turn, graph-
oriented NoSQL databases [38] can be used for digital virtu-
alization of the monitoring and manipulation object (sensors,
actuators, nodes) and the surrounding context (employee pro-
files, operating conditions). Detection of composite events is
possible to understand the nature of cause-and-effect chains
and the simultaneity of a set of basic events for decision
making (a knowledge base is created).

Fusing (linking) data in a graph model is the process of
combining data sets obtained from heterogeneous sources to
form a unique consistent view and to reduce the uncertainty
of multi-source information. “Reducing uncertainty” means
moving to a new level of abstraction, with a more reliable and
accurate way to identify events occurring within TCPS [39].

The computation layer is core in the Bigdata architecture.
Data sources are heterogeneous both in structure and content.
As we considered above, the two computing modes are used:
batch processing and stream processing. In batch processing,
a large data block (batch) is received at the input processed
in certain time period. In streaming data processing is not
limited with beginning and end points. Data processing acts
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in a sliding window or as individual records. It is necessary
to process data on the fly, i.e., in near real time. Stream
processing is easily scalable by creating new handlers on a
given stream. Spark is a versatile large-scale batch and stream
computing engine suitable for industrial applications [40].
Generally, the computation layer also handles data preparation,
aggregation, fusing, and cleansing.

The analytics layer is designed to extract information and
knowledge for decision making from the collected Bigdata.
Two areas of analytics can be distinguished [39]: 1) online
analytical processing (OLAP) using analytical queries, 2) data
mining and machine learning algorithms (e.g., decision trees,
convolutional artificial neural networks, regression, support
vector machines). A toolkit is used depending on the require-
ments of the system. Spark SQL is used in analytics over
structured batch data [40]. Spark Streaming is used for stream
analytics [41]. MLlib and TensorFlow are used for machine
and deep learning [42].

OLAP databases provide their set of tools in the form of
a query language (usually SQL) for advanced analytics and
business intelligence (e.g., Greenplum, Teradata). Analyzing
streaming and retrospective data, analytical tools can recognize
knowledge for decision making in TCPS (e.g., statistical
metrics and spectral images for vibration diagnostics of rotary
equipment, events about equipment deviations from normal
operation modes, residual equipment life).

Data-driven extrapolation requires strain measurements to
be made in all states of interest over a representative time
period [43]. The collected strain data can be used to train the
extrapolation algorithm. If there are no data for training, the
missing data (beyond the range) are generated by simulation.
In particular, the correlation between deformation and applied
loads is non-linear under extreme stress conditions, so calculat-
ing and predicting deformation of equipment assemblies is dif-
ficult with traditional numerical methods. A back propagation
neural network (improved by particle swarm optimization) can
be used for determining the non-linear relationship between
strain and load [44].

The service layer is on the top of our architecture. The layer
is based on interactive multimedia human-machine interfaces.
They provide users with a set of information and analytical ser-
vices. The provision is a merged, seamless view, while hiding
advanced analytical algorithms and differences in streaming
and batch processing from the users. This view visualizes
the results of the underlying layers using dashboards, reports,
and plots. The service layer combines business and artificial
intelligence with visualization to help in interacting the users
and machines, in making decisions based on collected data,
analytics, and expert evaluation [45].

On this layer, an interactive situational center is constructed
to implement the “data–information–recommendation–
evaluation–decision” cycle. Decisions are made based on the
representation of the object’s state. In particular, a decision
is on timely equipment maintenance and the feedback is
monitored. Recommendation services provide an evaluation
of remaining life of machinery equipment components. Such

decision making reduces maintenance costs and improves
overall production reliability.

Reports are generated (according to plan and online) with
information about the residual resource, recent and predicted
state of the machinery equipment. Managing workflows for
business, data processes, and resources requires orchestration
tools that are used on all layers of the architecture, especially
along the batch processing path [46]. A data workflow is a
set of interrelated time steps that trigger specific jobs, such
as Spark job or SQL query. Apache NiFi can be used as an
orchestration tool for creating data streams and integrating data
with the interactive service layer.

IV. CONCLUSION

This paper studied the use of TCPS to smart monitoring. We
considered the two requirements of the system development:
the bigdata requirement (RBD) and the smart interaction
requirement (RSI). The role of the requirements was shown
with respect to the tactile sense. A particular application area
in demand is monitoring of various production machineries
in real-time. We analyzed the properties from practical appli-
cation problems and existing technologies for industrial data
processing. We proposed the multi-layer TCPS architecture for
effective processing of sensed data, either in batch mode or
near real-time mode. Elements of the TCPS architecture have
been already implemented in several monitoring applications.
Our plan is to continue the development of smart monitoring
IoT/IIoT systems based on the proposed generic architecture.
We expect that the role of the tactile property becomes
increasing in manufacturing, building construction, vehicle
operation, robotics, and mobile healthcare.
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