
A Programming Model for Heterogeneous CPS from the Physical Point of View

Martin Richter, Theresa Werner, Matthias Werner
Operating Systems Group

Chemnitz University of Technology
09111 Chemnitz, Germany

email: {martin.richter, theresa.werner, matthias.werner}@informatik.tu-chemnitz.de

Abstract—The emergence of Cyber-Physical Systems leads to
an integration of the digital and physical world through sensors
and actuators. Programming such systems is error-prone and
complex as a plethora of changing heterogeneous devices is
involved. In existing approaches, the developer views the world
from the digital point of view. He or she has to implicitly interpret
digital values as sensor measurements of the environment or
as control values, which influence the environment through
actuators. This leads to an increase of complexity as the number
of sensors and actuators in Cyber-Physical Systems is ever-
increasing and different types of devices may become available
during the runtime of the system. Additionally, the interactions
between different types of distributed sensors and actuators have
to be coordinated, which increases the likelihood of errors in
the programmer’s implicit interpretations of the digital values.
Current approaches mainly focus on providing abstractions from
the distribution and heterogeneity of the system, but fail to
explicitly address the impact of digital calculations on the physical
world. We present a programming model, which reverses the view
of the developer on the system. It allows him or her, to take the
perspective of the physical system of interest and to explicitly
describe its desired behavior.

Keywords—cyber-physical systems; programming model; context
awareness, heterogeneity.

I. INTRODUCTION

Because of emerging trends like the Internet of Things
[1], Smart Grid [2], automated warehouse logistics [3], and
Industry 4.0 [4] an increasing number of devices are inter-
connected and have access to a multitude of different sensors
and actuators in their environment. The emergence of such
Cyber-Physical Systems (CPS) leads to an integration of digi-
tal computations and the physical world. This entanglement
raises multiple challenges, which do not exist in classical
distributed systems [5]. Apart from being distributed over
space, each of the devices may be connected to a multitude
of sensors and actuators. They possess varying capabilities,
regarding what they measure and how they influence their
environment. As the main goal of the developer is to monitor
and control a physical system, he or she has to consider
these capabilities when designing his or her application. In
classic programming models for CPS, the developer implicitly
converts sensor measurements to a digital representation of the
physical phenomenon of interest (e.g., reading a value from
a register of a sensor). Based on this digital representation,
the programmer’s application performs calculations of which
the results are implicitly converted to impacts on the physical
world (e.g., writing a value into a register of an actuator). This
procedure increases the difficulty of designing applications.

The semantics of controlling actuators and interpreting sensor
readings are not always clear with respect to their influence
on the physical and digital world, respectively. Our goal is
to relieve the programmer from having to convert distributed
measurements of physical phenomena to a digital representa-
tion and subsequently having to translate digital computations
to a variety of actuator influences on the physical environment.

This paper presents a programming model for reducing the
complexity of designing applications for heterogeneous CPS.
To achieve this, we provide the developer a new view on the
system. We reverse the programmer’s perspective, such that he
or she no longer directly controls the devices through digital
computations. Instead, he or she describes the properties of the
physical system of interest and how these properties should
evolve over time to reach a target state. The developer is
concerned with the CPS’ effect on the environment (i.e., the
desired state change) rather than the cause (i.e., the con-
trolled actuators). As the programmer designs the application
from the view of the physical system, he or she does not
have to implicitly translate physical phenomena to digital
representations and vice versa anymore. Rather, the Runtime-
Environment (RTE) handles this conversion transparently by
utilizing sensor and actuator specifications in addition to the
programmer’s physical system and target state descriptions.
The RTE maintains a digital representation of the physical
system by interpreting sensor measurements. Additionally, it
takes advantage of a constraint solver to compute sufficient
actuator inputs to reach a target state. These computations
are based on the programmer’s specification and the digital
representation of the system. The RTE chooses a sufficient
set of actuators and sensors at each point in time, based
on the required physical inputs and outputs to control and
observe the system. Hence, our programming model abstracts
from complex conversions between digital computations and
physical phenomena. Moreover, it provides transparency to the
developer with respect to changing device configurations. It is
intended to be used in applications utilizing a variable set of
arbitrary sensors and actuators to measure and influence phys-
ical systems with well-understood properties and dynamics.

As a running example we use a set of robots interacting
with a soccer ball. This example offers all the system traits that
are of interest to us. There are different sensors and actuators
attached to each robot and the system consists of multiple
physical objects of interest (i.e., the robots and the ball).

This paper is structured as follows. Section II reviews
the related work. Section III describes the concept of our

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

approach. It depicts the programmer’s view on the system and
the functionality of the RTE. Section IV supplies a conclusion
and an outlook for future work.

II. RELATED WORK

A CPS incorporates the digital and the physical world. The
configuration of such heterogeneous distributed systems may
change at any point in time due to device failures and the
emergence of new types of sensors or actuators. Under such
circumstances, programming errors are easily introduced as
current solutions rely on the developer to handle the interpre-
tation of physical phenomena through digital computations.

Approaches like Aggregate Computing [6] focus on con-
vergence. They enable the developer to write an application
for a set of computational nodes situated in a given region.
The computations of each node take place on the basis of its
local state and its neighbors states. Therefore, the behaviors
of the nodes in a region converge over time. Such approaches
abstract from the distribution of the system. Nevertheless, they
are only suited for homogeneous CPS since a converging node
behavior implies that the devices possess similar capabilities.

Other propositions like Spatial Views [7] or Spatial Pro-
gramming [8] allow the programmer to control specifically,
which part of the code is executed in which region. Addition-
ally, the developer statically specifies, which sensors and actu-
ators are required for the execution of the corresponding parts
of the program. Thus, it is not possible for the programmer to
take changing types of sensors and actuators into account.

Physical modeling languages like Modelica [9] or Simulink
[10] enable the developer to describe the properties and the
behavior of a physical system. These approaches are designed
for the simulation of physical systems and for code generation
purposes for non-distributed systems. Here, the developer
explicitly handles the heterogeneity of the system. The main
goal of physical modeling languages is to draw conclusions on
the design of a system rather than controlling and observing
it directly in a distributed fashion.

Approaches like Regiment [11], Hovering Data Clouds [12]
or Egocentric Programming [13] provide mechanisms for the
rule-based aggregation and dissemination of environmental
data in a distributed CPS. The goal of these propositions is
to monitor the environment, rather than to influence it. The
programmer therefore has to utilize additional frameworks to
describe the desired changes of the physical system state.

The presented solutions tackle challenges like providing
distribution transparency or managing heterogeneity. The pro-
grammer’s main concern still is the management of digital
data, which obstructs him or her from focusing the main
goal: influencing the physical environment. Our programming
model reverses the developer’s view on the system. He or
she describes the properties and the desired behavior of the
physical system from which the RTE deduces the required
digital computations while managing a possibly changing set
of heterogeneous devices.

III. CONCEPT

Our programming model provides means for the developer
to define the properties of a physical system of interest,
such that the RTE is able to transparently create a digital
representation of it. Apart from that, the programmer is able
to specify desired target states for the physical system. This
allows the RTE to deduce required actuator actions to cause
an appropriate state change. The following sections present
a system model to introduce our definition of a physical
system. Subsequently, we introduce the developer’s view on
the system, and an execution model for the RTE.

A. System Model

The programmer desires to influence a physical system
through digital computations, such that a certain goal is
reached. A physical system Σ is part of the environment and
consists of a set of physical objects 𝑂. Each object 𝑜 ∈ 𝑂

features a state ®𝑠𝑜, which comprises of multiple properties 𝑠𝑖:

®𝑠𝑜 (𝑡) =
[
𝑠1 (𝑡) 𝑠2 (𝑡) . . . 𝑠𝑛 (𝑡)

]𝑇 (1)

Each property 𝑠𝑖 is an interpretation 𝑔𝑖 of one or more sensor
measurements ®𝑚 of the environment at each point in time 𝑡:

𝑠𝑖 (𝑡) = 𝑔𝑖 (®𝑚, 𝑡) (2)

A measurement comprises of a value in a unit, which can
be represented by a combination of possibly multiple SI base
units. The set of all sensors makes up the input interface of
the CPS. They allow the CPS to recognize physical objects
through measurements of the environment. Subsequently, the
RTE interprets these measurements to derive the objects’
properties. For example, one property of a physical object may
be its shape. One way to measure the shape of an object is to
interpret the measurements of a digital camera. It transforms
the reflected light of the environment (i.e., its wavelength or
frequency) into a pixel array, which then can be interpreted to
identify the shape of the object.

Properties of physical objects may change over time, which
leads to a change of their state ®𝑠′. This change of state can be
caused by internal dynamics (e.g., a rolling ball) or external
influences ®𝑢(𝑡) (e.g., a ball being kicked). External influences
are the impact of actuator actions on the properties of a
physical object (e.g., a force acting on the ball during the kick).
The change of state at each point in time is a function 𝑓 of
the object’s state and the corresponding external influences.

®𝑠′ (𝑡) = 𝑓 (®𝑠, ®𝑢, 𝑡) (3)

An actuator takes a digital signal as input and transforms it
into one or more actions that affect their environment. These
actions have measurable impacts on the properties of physical
objects. For example, a gripper arm performs the action of
grabbing an object. This action can be measured as a force
(in Newton) acting on the object from two directions. The set
of all actuators makes up the output interface of the CPS. The
external influences ®𝑢Σ on the physical system of interest are

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the concatenation of the external influences on the different
physical objects:

®𝑢Σ =
[
®𝑢𝑜1 (𝑡) ®𝑢𝑜2 (𝑡) . . . ®𝑢𝑜𝑚 (𝑡)

]𝑇 (4)

The state ®𝑠Σ of the system is a concatenation of the different
physical object states ®𝑠𝑜𝑖 :

®𝑠Σ (𝑡) =
[
®𝑠𝑜1 (𝑡) ®𝑠𝑜2 (𝑡) . . . ®𝑠𝑜𝑚 (𝑡)

]𝑇 (5)

The change of the state of the physical system ®𝑠′
Σ

depends on
the internal dynamics of the physical objects that populate the
system and their external influences. The function 𝑓Σ describes
the system’s state change:

®𝑠′Σ (𝑡) = 𝑓Σ (®𝑠Σ, ®𝑢Σ, 𝑡) (6)

We limit our approach to viewing actuator actions as exter-
nal influences on physical objects. This stands in contrast to
regarding any interactions between arbitrary physical objects
as external influences. Considering all possible interactions
between any physical objects would lead to an explosion in
complexity, as there may be an arbitrary number of specified
and unspecified physical objects. Instead, we treat interactions
between objects as disturbances, which may or may not require
counter measures by the CPS.

B. The Programmer’s View

In our programming model, the developer views the system
from a standpoint of physics. He or she provides specifications
for the objects that populate the physical system. These
specifications encompass information on the properties of the
physical objects (i.e., their state) and a definition of their
behavior, based on internal dynamics and external influences.
The RTE requires these descriptions to determine, which
sensors are necessary for observing the physical objects and
how they react to given actuator inputs.

For the RTE to decide, which actions have to be taken by
the actuators to reach a target state, a target state description is
necessary. This description refers to the whole physical system
rather than a single physical object, as relative relationships
between physical objects may be of interest to the programmer.
The target state description spans a state space, because
different states may satisfy the goal of the developer. Table I
summarizes the described requirements for the programming
interface and for which of the RTE actions they are necessary.

1) Physical Object Specification: Since the physical system
consists of possibly multiple physical objects of interest, each
of which possess a designated state and behavior, the object-
oriented programming paradigm fits the described require-
ments and system model. A class enables the developer to
specify attributes (state) and methods (change of state) of a
physical object. From such a class, the RTE creates a digital
representation of a physical object whenever it recognizes the
corresponding properties of the described object in the envi-
ronment. If the RTE recognizes multiple objects of the same
class, multiple instances are created. As a physical system may

TABLE I. REQUIREMENTS FOR RTE ACTIONS.

ID Specification Requirement RTE Actions

Req.1 Physical objects’ properties Recognizing objects and com-
paring the current system state
with the target state space.

Req.2 Physical objects’ internal dy-
namics

Estimate when objects reach
the target state through inter-
nal dynamics.

Req.3 Physical objects’ reactions to
external influences

Estimate when objects reach
the target state through exter-
nal influences.

Req.4 Target state description Calculate actuator actions to
reach a target system state.

encompass a variety of physical objects, the programmer may
have to provide multiple different class specifications.

Through inheritance, a class may extend the state and
behavioral descriptions of other classes. This simplifies the
description of different types of objects, which partly have
a similar state and behavior. For example, a car and a ball
both possess the properties of moving objects (i.e., position,
velocity, and acceleration) and they also have similar internal
dynamics in the sense that their position changes with their
velocity and their velocity changes with their acceleration. The
specific differences in the behavior and properties of balls and
cars are then described in their specific classes respectively,
e.g., how external influences affect their positions, velocities
and accelerations. Figure 1 shows an example of a ball, which
extends the class of a moving object.

The state of an object of a given class is the vector of its
attribute values. The value of an attribute is a digital repre-
sentation of a physical object property, i.e., an interpretation

C l a s s MovingObject e x t e n d s P h y s i c a l O b j e c t {
MovingObject () {

t h i s . p = P o s i t i o n (? [m] , ? [m] , ? [m]) ;
t h i s . v = V e l o c i t y (? [m] , ? [m] , ? [m]) ;
t h i s . a = A c c e l e r a t i o n (? [m] , ? [m] , ? [m]) ;

}
mot ion (ElapsedTime d e l t a) {

t h i s . v = t h i s . a + d e l t a * t h i s . a ;
t h i s . p = t h i s . p + d e l t a * t h i s . v ;

}
}

C l a s s B a l l e x t e n d s MovingObject {
C o n s t r u c t o r B a l l () {

t h i s . s = Sphere (r a d i u s ==30[cm]) ;
t h i s .m = Mass (mass = 0 . 3 [kg]) ;

}
Requ i remen t (Act (v) == Act (m) AND

Act (v) . p o s i t i o n == t h i s . p)
k i c k (V e l o c i t y v , Mass m) {

t h i s . v = 1 / (t h i s .m + m) * (t h i s .m * t h i s . v +
m * v + m * 0 . 8 (v − t h i s . v)) ;

}
}

Figure 1. Example for physical object specifications.

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

of sensor measurements (see Section III-A). The type of an
attribute describes which property it is (e.g., a shape). For a
programmer to declare such attributes comfortably, a library
provides commonly used classes. Further, the developer spec-
ifies the characteristics of the property for the given physical
object in the constructor (e.g., the radius of a sphere). Such
characteristics allow to distinguish multiple similar physical
objects, if necessary. This allows the RTE to identify physical
objects reliably and continuously through the available sensor
measurements. In Figure 1, a ball is defined as a spherical
object with a radius of exactly 30 centimeters. Its position,
velocity, and acceleration are unknown and therefore have to
be measured by sensors or computed by the RTE, which is
syntactically indicated by the corresponding question marks.

The methods of a class describe the state change induced
by the physical object’s internal dynamics and its reactions
to external influences. Each method has access to the object’s
state and describes a change of its state. A method’s calcula-
tions may depend on parameters, which represent inputs from
actuators. They affect the digital object’s state and correspond
to external influences on the physical object. For example, in
Figure 1, the method kick takes the actuator’s velocity and
its mass as parameters, which influence the velocity of the ball
after the impact.

Multiple actuators may provide the inputs to an object’s
method. This enables the RTE to coordinate a variety of
actuator actions for better efficiency or to supply inputs, which
a single actuator may not be able to provide. For example,
if a building component has to be clamped, two forces on
opposite sides of the component have to be at work towards
its center. From a result perspective, it does not matter whether
this is accomplished by one single actuator or two independent
actuators.

Depending on the properties of the physical object and
the method parameters, the programmer may have to specify
requirements for the inputs from actuators. For example, an
actuator has to be close to a component to exert a force on
it. The actuator requirements may incorporate the following
information:

• the origin of the inputs to the method (e.g., they have to
be provided by the same actuator),

• the actuators’ states (e.g., their positions), and
• the object’s state (e.g., its position).

This allows the RTE to choose actuators capable of influencing
the given object and of achieving the desired results.

Figure 1 depicts two methods for the classes
MovingObject and Ball. Method motion describes
the change of position and velocity, based on the object’s
velocity and acceleration, respectively. The delta parameter
stands for the elapsed time between two evaluations of the
method. Method kick takes two parameters v and m, which
correspond to an actuators velocity and mass, respectively.
For this method, requirements for the actuator inputs are
given. They specify that both mass and velocity have to be
provided by the same actuator and that the actuator has to
be situated at the position of the ball. The method calculates

the approximate velocity of a ball after being kicked by an
actuator with a coefficient of restitution of 0.8.

2) Target State Description: We chose the concept of
constraint programming [14] for describing the target state.
It allows the developer to specify the properties of a solution
to a problem rather than how to reach the solution. This fits
our requirements, as the developer describes a desired physical
system state and the RTE deduces the sufficient actuator
inputs to the physical system. This approach abstracts from
the individual actuators. Therefore, the developer is able to
focus on the impact of the actuators’ actions on the individual
physical objects.

The programmer defines target states based on the overall
system state, since relations between the different states of
physical objects may be of interest. The RTE evaluates the
set of constraints periodically in order to analyze whether a
target state is reached and whether the system state develops
correctly.

Figure 2 shows an example of a defending constraint for a
game of robot soccer. The target state refers to the positions of
the players of the own team with respect to the ball, goal, and
enemy player positions. All players of the own team should be
close to an enemy player (i.e., closer than one meter); there
should always be one player between the ball and the own
goal; there should always be one player between any enemy
player and the ball. This positioning allows to intercept the
ball, prevents undisturbed passes and enemy attempts to score.
To reach this objective, the RTE has to coordinate the available
actuators, such that the physical properties of the robots (i.e.,
their positions and velocities) are changed accordingly.

C. Runtime-Environment

The RTE maintains a set of physical object descriptions,
which specify the digital representation of the physical system.
It continuously evaluates sensor measurements of the CPS
environment to determine the state of the physical objects pop-
ulating the physical system. Moreover, the RTE continuously
evaluates the constraint system for the target state, based on
the current state of the physical system. In its evaluations the
RTE takes into account the actuator requirements in addition
to the available actuators, since they narrow down the available
physical inputs.

Defense {
do ub l e k , l ;

∀𝑝𝑙𝑎𝑦𝑒𝑟 , 𝑒𝑛𝑒𝑚𝑦 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 × 𝐸𝑛𝑒𝑚𝑦𝑃𝑙𝑎𝑦𝑒𝑟 :
d i s t a n c e (p l a y e r . p , enemy . p) <= 1 . 0 [m] ;

∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 , ∀𝑔𝑜𝑎𝑙 ∈ 𝑀𝑦𝐺𝑜𝑎𝑙, ∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙 :
g o a l . p + k * (g o a l . p − b a l l . p) == p l a y e r . p ;

∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙, ∀𝑒𝑛𝑒𝑚𝑦 ∈ 𝐸𝑛𝑒𝑚𝑦𝑃𝑙𝑎𝑦𝑒𝑟 , ∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 :
b a l l . p + l * (b a l l . p − enemy . p) == p l a y e r . p ;

}

Figure 2. Examples of defensive positioning in robot soccer.

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 3 depicts the architecture of the RTE. It consists
of four modules, which are executed in a distributed fashion:
the interpreter, the observer, the controller, and the constraint
solver. Furthermore, it facilitates drivers for sensors and ac-
tuators. They provide an interface for utilizing the devices
and supply information on them to the other modules. The
following paragraphs describe the functionalities of the RTE.

1) Interpreter: The interpreter offers an interface to the
programmer for registering physical object specifications. It
extracts three basic types of information from them:

(i) The state description of the physical object, i.e., what the
properties of the object are and how it differs from other
objects.

(ii) The behavioral description, i.e., how the object’s state
changes, based on internal dynamics and external influ-
ences.

(iii) The actuator requirements for providing input signals,
i.e., what conditions have to be met for an actuator to
be able to supply an input to the physical system.

The interpreter creates a vector of state variables ®𝑥𝑐 from
the state description of a given class 𝑐. The constraint solver
is later able to assign values to these variables. Each state
variable stands for a physical object’s property, i.e., a set of
interpreted sensor measurements. The state variables are uti-
lized in the state equation of the physical object. This equation
is created from the set of methods 𝑀 of the given class. Each
method 𝑚 ∈ 𝑀 describes a change of state ®𝑥′𝑐,𝑚 for an object
of the given class. A method may take parameters (external
influences caused by actuators). The interpreter converts them
to input variables ®𝑢𝑚. Each method describes a change of state,
which depends on the state of the object, the specified internal

Programmer

Interpreter

Class
Specifications

Target State
Specification

Constraint
Solver

State Equations,
Constraints,
Actuator Requirements

Observer

Property
Descriptions

State
Variable
Values

Controller

Actuator
Input Space

Actuator
Information

Environment

Sensor
Drivers

Actuator
Drivers

Sensor
Measurements

Actuator
Inputs

Sensors Actuators

Figure 3. Architecture of the Runtime-Environment.

dynamics and reactions to external influences. The function 𝑓𝑚
describes this change of state:

®𝑥′𝑐,𝑚 (𝑡) = 𝑓𝑚 (®𝑥𝑐, ®𝑢𝑚, 𝑡) (7)

If the function 𝑓𝑚 is linear or linearized, the equation can be
rewritten as a system of first order differential equations:

®𝑥′𝑐,𝑚(𝑡) = 𝐴𝑚®𝑥𝑐 (𝑡) + 𝐵𝑚 ®𝑢𝑚 (𝑡) (8)

If the class’ overall behavior is linear or linearized, its state
change can be described by the sum of all the methods state
changes, as the principle of superposition holds:

®𝑥′𝑐 (𝑡) =
∑︁
𝑚∈𝑀

®𝑥′𝑐,𝑚 (𝑡) =
∑︁
𝑚∈𝑀

(𝐴𝑚®𝑥𝑐 (𝑡) + 𝐵𝑚 ®𝑢𝑚 (𝑡)) (9)

Since the constraint solver evaluates the constraints periodi-
cally in discrete steps, the interpreter converts the described
equation into a time discrete variant:

®𝑥𝑐 (𝑘 + 1) =
∑︁
𝑚∈𝑀

(𝐴𝑚®𝑥𝑐 (𝑘) + 𝐵𝑚 ®𝑢𝑚 (𝑘)) (10)

For each new class the interpreter appends the new classes
state to the existing system state ®x

Σ
. Therefore, a new system

state ®𝑥Σ is created (see Section III-A):

®𝑥Σ (𝑘) =
[
®x
Σ
(𝑘) ®𝑥𝑐 (𝑘)

]𝑇 (11)

Hence, a similar approach is used for the state change equa-
tions. The new system state change equation is a concatenation
of the old system state change equation and the new classes
state change equation:

®𝑥Σ (𝑘 + 1) =
[
®x
Σ
(𝑘 + 1) ®𝑥𝑐 (𝑘 + 1)

]𝑇 (12)

Moreover, the interpreter creates constraints from the ac-
tuator requirements for each method of a class. These con-
straints allow allocating the available actuator inputs to the
corresponding input variables. The target state description is
added to the constraint system and restricts the possible system
states and system state changes. From the given system of
equations, requirements, and constraints, the constraint solver
is able to compute a set of actuator inputs, which lead to a
target state.

2) Observer: The observer module creates and maintains
a digital representation of the state of the physical system.
It gathers measurements from the available sensors of the
system, similarly to the data aggregation and dissemination
process described in [12]. This allows to gather and distribute
data of the system, based on given rules (i.e., according to the
object specification).

The programmer provides classes, which are specifications
of the physical objects encompassing the physical system. The
observer recognizes an object of a class, if the sensor mea-
surements relate to the class attributes and the corresponding
attribute description in the class’ constructor.

The observer interprets the sensor measurements (see Sec-
tion III-A) based on given rules. These rules describe the rela-
tion between physical object properties and the corresponding

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

measurements. The observer maintains all the created object
instances by updating their states. These updates are applied
whenever new sensor values are available, which relate to
the objects’ properties. Moreover, the module populates the
state variables of the constraint system with the corresponding
attribute values (i.e., object states).

3) Constraint Solver: The constraint solver computes a set
of sufficient actuator inputs to reach a state of the target
state space. As inputs, it takes the system’s state equation,
the measured current state, the actuator requirements, and
information about the currently available actuators. The solver
evaluates the constraints periodically to check whether a target
state is reached and to update the set of actuator inputs.

Mathematically, the constraint solver’s task is to find a point
in time 𝑡1, which lies before a given deadline 𝑑, and a state
trajectory for the system state. The trajectory depends on a set
of actuator inputs between the current point in time 𝑡0 and the
chosen point in time 𝑡1, such that all constraints hold for the
state at time 𝑡1:

®𝑥Σ (𝑡1) = ®𝑥Σ (𝑡0) +
∫ 𝑡1

𝑡0

®𝑥′Σ (𝑡)𝑑𝑡, 𝑡1 ≤ 𝑑 (13)

4) Controller: The controller module manages the set of
available actuators. For each actuator, the controller module
maintains information about the actuator’s state and which
inputs it is able to provide. It offers this information to
the constraint solver whenever an evaluation round starts.
This enables the constraint solver to evaluate the actuator
constraints for determining, which actuators are able to provide
the required inputs.

The controller module uses the constraint solver’s results
(i.e., a set of sufficient inputs to reach a target state) and
distributes it to the corresponding available actuators. As the
module is executed in a distributed fashion, a consistent view
on the available actuators and their information has to be
maintained and a consensus for distributing the required inputs
has to be found.

IV. CONCLUSION AND FUTURE WORK

The presented programming model allows the developer to
focus on the description of a physical system and its target
state. It allows him or her to specify explicitly what a desired
state for a physical system is and how this state changes, based
on given inputs and internal dynamics. This abstracts from
the need to manage a changing set of actuators and sensors
directly, as the required information by the programmer is
reduced to defining the influences of actuators on the system
and specifying properties of physical objects.

We present a RTE, which encompasses an interpreter, an
observer module, a controller module, and a constraint solver.
The observer module maintains a digital representation of
the physical system’s state, based on the physical object de-
scriptions. The interpreter translates the programmer’s system
specification to a set of constraints and equations such that
the constraint solver is able to utilize them. The constraint
solver derives target states and required actuator inputs for the

physical system from the programmer’s specification and the
current state of the system. The constraint solver’s results are
passed to the controller module. It utilizes this data to control
the corresponding actuators in order to reach a target state.

The presented programming model abstracts from implicit
conversions between digital computations and physical phe-
nomena. Therefore, the physical semantics of a program are
made explicit. They are easier to understand and errors in
the translation between digital and physical quantities are
prevented. Additionally, the RTE transparently handles a set
of changing devices as the programmer is concerned with the
influences on the physical system of interest, rather than their
cause.

For future work, we intend to provide a formal description
of sensor and actuator specifications, which allows deducing
their properties with regard to how they observe and influence
their environment. Further research will be focused on describ-
ing the interactions between arbitrary physical objects, which
are currently viewed as disturbances. To test the described
approach, we will create a prototypical implementation of the
RTE. In this regard, we intend to provide verifications of the
real-time capabilities of the RTE. Additional research will
concentrate on implementing consensus and consistency al-
gorithms for the RTE, as a consistent view of the environment
and an optimal utilization of the devices have to be ensured.

REFERENCES

[1] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243,
2014.

[2] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,”
in Proc. of the IEEE, vol. 104, 2016, pp. 1058–1070.

[3] F. Basile, P. Chiacchio, and J. Coppola, “A cyber-physical view of
automated warehouse systems,” in 2016 IEEE Int. Conf. on Automat.
Science and Eng. (CASE), 2016, pp. 407–412.

[4] N. Jazdi, “Cyber Physical Systems in the Context of Industry 4.0,” in
IEEE Int. Conf. on Automat., Quality and Testing, Robotics, 2014, pp.
103–105.

[5] E. A. Lee, “Cyber physical systems: Design challenges,” in 11th
IEEE symposium on Object Oriented Real-Time Distributed Computing
(ISORC). IEEE, 2008, pp. 363–369.

[6] M. Viroli et al., “From distributed coordination to field calculus and
aggregate computing,” Journal of Logical and Algebraic Methods in
Programming, vol. 109, no. 100486, pp. 1–29, 2019.

[7] Y. Ni, U. Kremer, and L. Iftode, “Spatial views: Space-aware program-
ming for networks of embedded systems,” in Lang.s and Compilers for
Parallel Comput. Springer, 2004, pp. 258–272.

[8] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode, “Spa-
tial programming using smart messages: design and implementation,” in
24th Int. Conf. on Distrib. Comput. Syst., 2004, pp. 690–699.

[9] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3, 2nd ed. John Wiley & Sons, 2014.

[10] E. Hossain, MATLAB and Simulink Crash Course for Engineers.
Springer, 2022, ch. Introduction to Simulink, pp. 317–359.

[11] R. Newton, G. Morrisett, and M. Welsh, “The regiment macropro-
gramming system,” in 2007 6th Int. Symp. on Inf. Process. in Sensor
Networks, 2007, pp. 489–498.

[12] S. Ebers et al., “Hovering data clouds for organic computing,” in Organic
Comput. — A Paradigm Shift for Complex Syst., 2011, pp. 221–234.

[13] C. Julien and G.-C. Roman, “Egocentric context-aware programming in
ad hoc mobile environments,” in Proc. of the 10th ACM SIGSOFT Symp.
on Found.s of Softw. Eng. ACM, 2002, pp. 21–30.

[14] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,” in
The Journal of Logic Programming. Elsevier Science Inc., 1994, pp.
503–581.

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

