
Testing Deterministic Avionics Networks Using
Orthogonal Arrays

Muhammed Efe Altuntaş1,2, Muhammed Şeker1,2

Pınar Kışla1,2, Eyüp Can Akpolat2

1Yildiz Technical University
Dept. of Avionics Engineering

Istanbul, Turkey
2Turkish Aerospace Industries, Inc.

Ankara, Turkey
email: muhammedefe.altuntas@tai.com.tr

İbrahim Hökelek
Muhammet Selim Demir

TÜBİTAK, BİLGEM
Kocaeli, Turkey

email: ibrahim.hokelek@tubitak.gov.tr

Erhan Akdoğan

1Yildiz Technical University
Dept. of Mechatronics Engineering

2Health Institutes of Turkey
İstanbul, Turkey

email: eakdogan@yildiz.edu.tr

Abstract—ARINC 664 is a widely used Ethernet-based Deter-
ministic Network (DTN) standard providing the bounded latency
and jitter for safety critical applications in the avionics systems.
It is not possible to generate a test suite with a feasible size
without employing a formal method such as Orthogonal Arrays
(OAs) if we consider all possible combinations of DTN switch
configuration parameters such as the number of Virtual Links
(VLs), the frame size, and bandwidth allocation gap for each
connection. However, using OAs is not sufficient to generate test
cases representing real-life usage of DTN switches since many
combinations of VL parameters may be inadvertently eliminated
by the OA generation process. In this paper, we present an
approach, called chained OAs, where multiple applications of
OAs are applied to the test factors to generate test cases that
are representative of real-life usage of DTN switches. The test
cases are converted into executable test scripts to be run by
the AIM commercial test system. This study shows that chained
OAs method is capable of reducing prohibitively large number
of tests required for complex systems, while covering pair-wise
combinations of all test parameters.

Index Terms—orthogonal array; test generation; deterministic
network; ARINC 664; avionics

I. INTRODUCTION

Ethernet-based Deterministic Network (DTN) technologies
have been developed to cope with the high speed data com-
munication requirements of the modern avionics applications.
ARINC 664, which is a commonly used DTN technology,
provides the bounded latency and jitter when safety critical
applications communicate with each other over the avionics
networks within an aircraft. Because of their safety-critical
nature, the availability of large number of configuration op-
tions and high speed operation using thousands of virtual links,
testing ARINC 664 switches is a challenging task.

Prohibitively great numbers of combinations of DTN config-
urations necessitates that formal test generation techniques be
employed to effectively reduce the number of tests. Orthogonal
Array (OA) is a popular technique to optimize test suite
size for systems with many features while maintaining their
coverage [1]–[7]. However, using a single level OAs is not
sufficient to generate test cases representing realistic operating

conditions of DTN switches. Many combinations of switch
configuration parameters may be inadvertently eliminated by
the OA optimization process. In this paper, we present an
approach, called chained OAs, where multiple and consecutive
applications of OAs are employed to generate tests that are
representative of real-life usage of DTN switches. Chained
OAs method allows for preserving the number of combinations
for a set of selected features, while eliminating redundant
combinations for others as decided by test engineers. We
define two stages for the chained OA method in test generation
of DTN switches. First, combinations of different number of
VLs that can be assigned to each switch port are generated
by OAs. Then, the OA output elements are used as inputs
to a set of second stage OAs to determine the remaining
switch parameters such as transmission time gaps between
consecutive frames, minimum and maximum frame sizes,
and VL priorities. The OA outputs are generated using an
open source Python library, called oapackage [8]. The tests
generated by the chained OAs method are converted into
executable scripts, which are applied to a DTN switch under
test by a commercial test system, called AIM [9].

This paper is organized as follows. ARINC 664 avion-
ics deterministic networks are outlined in Section II. The
fundamental features of OAs are introduced in Section III.
Section IV presents the complexity of test space for avionics
deterministic networks and impact of the chained OA method
to reduce the test suite size while preserving important test
features. The architecture of our DTN switch test system is
summarized in Section V.

II. ARINC 664 - AVIONICS DETERMINISTIC NETWORK

The most important elements of an ARINC 664 DTN include
Switch (SW), End Systems (ESs), and Virtual Links (VLs) [10].
Applications running on different ESs communicate with each
other using VLs that are routed by SW. The bounded latency
and jitter requirements for VLs are met by offline planning of
ARINC 664: the number of VLs, the source and destination
ESs, the minimum and maximum frame sizes, and Bandwidth

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 1. An example ARINC 664 DTN with 2 SWs and 4 ESs

Allocation Gap (BAG) for all VLs [11]–[13]. The main idea
behind providing deterministic communication is to limit the
amount of traffic injected by each VL to the network by
setting allowed frame size and BAG values, to achieve the
desired delay and jitter objectives. BAG specifies the minimum
transmission time between the first bits of two consecutive
frames. A traffic shaping mechanism running over each VL
will ensure that the amount of traffic injected by each node
will be controlled and the traffic exceeding the average and
peak rates will be shaped. The switch will enforce filtering and
policing requirements, limiting fault propagation, and ensuring
determinism.

In the ARINC 664 redundancy management architecture,
the same frame is transmitted over two independent SWs
and one of the received copies is sent to the application
layer at the receiver. ARINC 664 does not provide a reliable
transmission guarantee that all frames will be delivered to
their destinations. However, in a properly planned network,
the amount of congestion can be predicted and limited during
the planning phase and the priority concept along with the
redundancy management provide a reliable data transmission
service. For the safety certification of ARINC 664, it is a
common practice that the Network Calculus (NC) framework
can be applied to calculate the worst-case delay and jitter
bounds for a given network configuration [14] [15]. Figure 1
depicts an ARINC 664 DTN with two SWs, one primary and
the other secondary, and four ESs, each of which is connected
to the SWs via service and redundant VLs.

III. ORTHOGONAL ARRAYS

Orthogonal Arrays (OAs) [7] are among mathematical tools
to design an optimum mix of multiple variables in a set of
experiments. They are effective in reducing the number of
experiments, where, otherwise, a prohibitively large number of
combinations would be needed [1]–[3] [7]. They are classified
as the same and mixed level OAs as described in Sections III-A
and III-B, respectively.

A. Same level OAs

In general, an OA is defined as a 4-tuple:

OA(N,F,L, S), (1)

where
• N is the number of experiments (also referred to as runs)

which represents the number of rows in an OA.
• F , called a factor, is the number of columns in an

OA, where each column corresponds to a variable of an
experiment.

• L is the number of levels, representing the number of
distinct values that a factor can take. It is possible that,
in a given experiment, different factors may possess
different levels.

• S is called the strength of an OA (0 < S ≤ F). An OA is
designed in such a way that the number of rows needed
to cover S-wise combinations of variables is given as LS

[1]. When S = F , all possible combinations of variables
will be included in the experiment. A user can select the
degree of combinations of variables to be considered by
setting smaller values for S.

When all F factors have the same number of L levels,
the OAs are referred to as the same level OAs. For a given
experiment having F factors with L levels, there are LF

possible runs to cover all combinations of variables (assuming
that all factors have the same number of levels L). OAs allow
for reducing the number of runs to LS by selecting an S
value to cover S-wise combinations of variables. For example,
all pairwise combinations of variables can be covered when
S is set to 2. The number of runs can be further reduced
as N = λ · LS due to time limitations, where λ is a real
number between 0 and 1 [5] [16]. Selection of λ is determined
by testers depending on the complexity and the number of
parameters of a given system under test such that smaller
values are preferred for complex systems.

Let us consider an experiment with F = 3 factors, each
with L = 2 levels. Without using an OA, the number of
runs required to cover all possible combinations of variables
is 23 as shown in Table I (a). We can observe that all possible
situations between any two factors appear more than once in
Table I (a). For example, (f1 = 0, f2 = 1) is listed twice for
factors 1 and 2 in runs 3 and 4, respectively. Orthogonal arrays
eliminate such repetitions and reduce the total number of runs
for experiments with large number of factors and levels. If
we design an OA for this example with all factors having 2
levels and selecting the strength as S = 2, we will have a total
of N = 22 runs. In this case, the OA will be represented as
OA(4, 3, 2, 2) as shown in Table I (b).

B. Mixed level OAs

In the OAs described in Section III-A, all factors have
the same number of levels. However, it is possible that, in
real-life situations, some factors may have different number
of levels to be tested. For example, in an ARINC 664 switch,
mapping incoming traffic flows to outgoing ports may have a
large number of possible assignments to be tested (e.g., up to
24 ports), whereas the number of different priorities for a flow

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE I. EXAMPLE FOR SAME LEVEL OA: (a) AN EXPERIMENT
WITH 3 FACTORS EACH WITH 2 LEVELS AND (b) RUNS FOR

OA(4, 3, 2, 2)

Runs f1 f2 f3
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

(a)

Runs f1 f2 f3
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

(b)

may require much fewer options (e.g., two priorities of High
and Low). OAs whose factors have different levels are called
the mixed level OAs. The tuple defining a mixed level OA is
given as [1]:

OA(N,L
|F1|
1 L

|F2|
2 . . . L|Fv|

v , S) (2)

where |Fi| is the number of different factors with the same
number of levels Li for (i = 1, 2, . . . , v) and

∑v
i=1 |Fi| = F .

N and S are defined in Eq. (1). For a factor Fi with the
number of levels Li, the number of possible runs will be Li

|Fi|,
which may be restricted by selecting an appropriate value of
strength S as LS

i as discussed above for the same level OAs.
N , the number of runs, is selected in such a way that it is
the least common multiplier of the number of S−wise factor
level combinations. For a pairwise coverage, the combinations
between any two factors can be generated as Li · Lj for
i 6= j and i, j = 1, . . . , F . The generalization to S−wise
combinations is studied in [1].

As an example, consider an experiment with F = 5 factors,
where F1 = 4 of them are with L1 = 2 levels and one factor
F2 = 1 with L2 = 3 levels. For the factors having 2 levels, the
number of possible runs is L|F1|

1 = 24, whereas, for the factor
having 3 levels, there are L

|F2|
2 = 31 possibilities. Without

using OAs, there are a total of L|F1|
1 · L|F2|

2 = 48 runs for
this example experiment. Suppose that we are interested in
pair-wise combinations of these factors (i.e., S = 2). A mixed
level OA can be defined as (12, 2431, 2), where N = 12 is
calculated as the least common multiplier between the pair-
wise combinations of any two factors. Since there are two
levels (i.e., 2 and 3), the number of different combinations
between any two factors can only be 2 · 2 = 4 or 2 · 3 = 6
with the least common multiplier is 12, which is the number
of runs in Table II.

IV. TESTING AVIONICS NETWORKS USING ORTHOGONAL
ARRAYS

A. Test Space for DTN Switch

While traditional Ethernet switches perform switching func-
tion by routing frames from input ports to output ports by
means of MAC tables, DTN switches utilize statically config-
ured VL tables to route frames from input to output ports,
where each frame carries VL identifier within its frame header
to be used for switching purpose. An example DTN switch

TABLE II. EXAMPLE RUNS FOR A MIXED LEVEL OA(12, 2431, 2)

Runs f1 f2 f3 f4 f5
1 0 0 0 0 0
2 0 1 0 1 0
3 1 0 1 0 0
4 1 1 1 1 0
5 0 0 1 1 1
6 0 1 1 0 1
7 1 0 0 0 1
8 1 1 0 1 1
9 0 0 1 1 2
10 0 1 0 0 2
11 1 0 0 1 2
12 1 1 1 0 2

configuration, which is selected as the System Under Test
(SUT), uses 4 ports and operates at the speed of 1 Gbps. The
DTN switch includes filtering, policing, and switching features.
A selected subset of parameters defining these features such
as minimum and maximum frame lengths, BAG, and priority
are shown in Table III.

For this example switch configuration, there are eight dif-
ferent BAG values (in milliseconds) each indicating the time
slot in which a VL needs to be transmitted. For example, VLs
with BAG = 2ms are guaranteed to be transmitted within an
interval of 2ms. Lmin and Lmax values define the minimum
and maximum frame sizes, respectively (Lmin < Lmax).
Although the ARINC 664 standard allows for frames between
64 and 1518 bytes [11], different minimum and maximum
frame sizes within these limits are permitted. For example, if
a VL selects Lmin = 100 bytes, the switch will not permit a
99-byte packet to be transmitted in this VL. A small sample of
Lmin and Lmax values are shown in Table III. Determining the
BAG values for all VLs, together with Lmin and Lmax values,
will specify the maximum speed of operation for a switch. In
deterministic networks, it is important to classify packets by
their importance so that they are prioritized in switch queues.
For this example configuration, priority values are defined as
Low and High. The number of incoming and outgoing VLs into
a given port are selected to be eight distinct values between
192 and 3840.

B. Complexity of the Test Space
The number of VLs is an important parameter possibly

indicating the traffic utilization rate of the ports and eventually
the determinism features of a switch. Based on Table III, there
are 4 ·8 ·8 ·8 ·2 ·8 ·8 = 262,144 different configurations for one
VL. Since the maximum number of VLs in our example SUT
implementation is 4096, the number of possible combinations
of different VL configurations is prohibitively large. In an
example configuration driven from Table III, port 2 sends 1152
VLs to output ports 3 and 4 with BAG = 64, Lmin = 128,
Lmax = 1518 and with high priority, whereas port 3 receives
384 VLs and port 4 the remaining 768 VLs (the total number
of VLs sent and received will be equal among all ports).
For the parameters shown in Table III, the total number of
combinations C for a given VL becomes

C = BV · LV
s · LV

u · pVi · P (3)

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE III. SAMPLE CONFIGURATION PARAMETERS FOR DTN
SWITCH

Number
of Ports

BAG
(ms)

Lmin

(Bytes)
Lmax

(Bytes) Priority Incoming VLs
to a Port

Outgoing VLs
from a Port

1 1 64 1518 High 192 192
2 2 128 1400 Low 384 384
3 4 150 1300 576 576
4 8 200 1200 960 960

16 300 1100 1152 1152
32 400 1000 1920 1920
64 512 900 2880 2880

128 750 800 3840 3840

where B, V , Ls, Lu, pi and P are the number of different
values for BAG, VLs, Lmin, Lmax, priorities, and the number
of ports, respectively. As an example with 1152 VLs for
each port, the resulting complexity of the test space can be
expressed using Eq. (3) as:

C = 81152 · 81152 · 81152 · 21152 · 4 (4)

It is clear from Eq. (4) that it is not possible to generate
a test suite with a feasible size without employing formal
methods such as OAs. However, using OAs given in Table III
may not generate test cases representing real-life usage of
DTN switches. For example, a run generated from Table III
with 2 ports, BAG = 4ms, Lmin = 300, Lmax = 1000, and
high priority implies that all VLs will have the same number
of BAG, Lmin Lmax and priority values. But, in a realistic
scenario, each VL can independently have any of the parameter
values given in Table III. In Section IV-C, we present an
approach, where a sequence of OAs are employed to remedy
this limitation.

C. Using Chained OAs for DTN Test System

As described in Section IV-B, the DTN network features
define a prohibitively large test space. Although OAs can be
used to reduce the test space significantly by limiting the
coverage to a subspace with pairwise combinations of factors,
directly using the parameters in Table III may inadvertently
eliminate important test cases representing real-life usage of
DTN switches. In this paper, we use chained OAs, where the
test factors are divided into groups and OAs are generated
sequentially such that the outputs of the first OA is used as the
inputs for the next OA. Without loss of generality, let us first
present the chained OA for two groups of input parameters,
namely Fg1 and Fg2, where Fg1 ∪ Fg2 = F . With chained
OAs, first, the parameters for Fg1 that are considered to be
more influential in system performance are selected and OA
runs are generated with possibly higher values of strength Sg1.
This way, suppression of different combinations is kept at
minimum for this subset. After Fg1 is handled, subsequent
OAs are generated using the remaining parameters.

Let us consider an OA, called OAg1, with Ng1 runs, Fg1

factors, each with level Lg1, and strength of Sg1:

OAg1(Ng1, L
Fg1

g1 , Sg1)

OAg1 generates an orthogonal array with Ng1 rows and Fg1

columns as follows:

TABLE IV. DTN SWITCH VARIABLES FOR OAs: (a) THE NUMBER
OF INCOMING VLs TO PORTS FOR OAg1, AND (b) TEST

PARAMETERS FOR VLs FOR OAi,j

Number of VLs
Port 1 Port 2 Port 3 Port 4

192 192 192 192
384 384 384 384
576 576 576 576
960 960 960 960

1152 1152 1152 1152
1920 1920 1920 1920
2880 2880 2880 2880
3840 3840 3840 3840

(a)

Number
of Ports

BAG
(ms)

Lmin

(Bytes)
Lmax

(Bytes) Priority

1 1 64 1518 High
2 2 128 1400 Low
3 4 150 1300
4 8 200 1200

16 300 1100
32 400 1000
64 512 900
128 750 800

(b)

n1,1 n1,2 ... n1,Fg1

n2,1 n2,2 ... n2,Fg1

...
...

...
...

nNg1,1 nNg1,2 ... nNg1,Fg1

where ni,j is the element of run i for factor j. Using the
chained OAs approach, for each element ni,j of OAg1, we
generate a secondary OA, called OAi,j :

OAi,j(ni,j , L
Fg2

g2 , Sg2)

where Fg2, Lg2 and Sg2 are the number of factors, levels and
the strength selected for the secondary level orthogonal arrays,
respectively (Sg2 ≤ Sg1). After applying the chained OAs, the
total number of runs will be:

N∑
i=1

Fg1∑
j=1

(OAi,j) (5)

where OAi,j generates a matrix with dimensions of (ni,j ×
Fg2). For the general case with R subsets of F factors, where
Fg1 ∪ · · · ∪ FgR = F , subsequent OAs can be generated in a
similar manner.

In testing a DTN switch, the number of VLs is the most
critical parameter since it directly impacts the determinism of
traffic flows through port utilization. Therefore, the first OA,
called OAg1, is defined to generate runs with different number
of VLs for each of the four incoming and outgoing ports. Once
these runs are generated by OAg1, another OA, called OAg2,
is needed to cover the individual parameters of each of these
VLs.

In defining OAg1, the range of 1 to 4096 possible VLs
for each of the four ports of a switch is arranged for this

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 2. Architecture and information flow of DTN test system

study by eight different values from 192 to 3840 as shown in
Table IV(a): OAg1(256, 8

4, 2), where 256 is selected as the
feasible number of runs and the strength is chosen as S = 2.
Note that since the switch supports a maximum of 4096 VLs,
any cases that exceed this upper limit in OAg1 are eliminated,
resulting in 256 rows being reduced to 143.

VL configurations assigned by OAg1 to each switch port
are determined by OAi,j using the five (5) parameters
shown in Table IV(b). These parameters are selected as
the most influential ones on testing switch performance:
OAi,j(ni,j , 4

18321, 2), where ni,j is the number of runs for
element at ith row and jth column generated by OAg1.

For the sake of simplicity, this study assumes that there are
4 ports in this implementation of a DTN switch and, hence,
there are a total of 143 · 4 = 572 orthogonal arrays generated
based on Table IV(a):

143∑
i=1

4∑
j=1

OAi,j (6)

where OAi,j is a matrix with the dimensions of (ni,j ×Fg2),
ni,j ranging from 192 to 3840 from Table IV(a) and Fg2 = 5 is
the number of columns in Table IV(b). Therefore, 572 different
matrices with the dimensions of ni,j×5 are generated for this
simplified version of DTN switch, where each matrix corre-
sponds to a different switch configuration. The total number
of VL configurations ranges approximately from 143 ·4 ·192 =
109,824 to 143 ·4 ·960 = 549,120. Note that there are multiple
test cases in each configuration as described in Section V.

V. IMPLEMENTATION OF DTN TEST SYSTEM

A. System Architecture

High level architecture of a DTN switch test system and
its information flow are presented in Figure 2. First, OA
model parameters representing realistic operation of the switch
are determined as presented in Tables III, IV(a) and IV(b).
These parameters include the number of switch ports, possible
number of VL combinations to be used for each port and
the set of VL parameters to be included in OA array runs.
Selection of switch parameters is an important step in test

generation process since there are typically multiple trade-
offs between a feasible number of test cases and a desired
coverage of switch features that need to be decided together
by the systems engineers, developers and test engineers. The
current implementation of the DTN test system generates exe-
cutable test scripts using the chained OAs method described in
Section IV-C, which are applied to an SUT using a commercial
tool called AIM [9].

Once the OA parameters are determined (e.g., the number
of runs and the factors with their levels), the next step is to
construct the OAs with the desired level of strength. In step 1
of Figure 2, the OA tables were generated using an open source
Python library, called oapackage [8], whose capabilities were
suitable for the study presented in this paper. The chained OA
method uses two different stages of OAs for this case study.
In the first OA output, combinations of different number of
VLs that can be assigned to each of the four switch ports are
generated. The inputs used in this paper for generating the first
OA are given in Table IV(a). Then, each element of first OA
output is used as the number of runs for the second stage OA
to determine the remaining parameters such as BAG, Lmin,
Lmax, and priority as shown in Table IV(b).

The outputs of the chained OA method are now ready to be
converted to SUT configurations, which define the operational
characteristics of a DTN switch. Since AIM is used as the tool
to apply the tests to the SUT, similar conversions are performed
to prepare the corresponding AIM configurations, as depicted
in step 2 of Figure 2. With these configurations, test cases
are executed by generating data frames, sending and receiving
them to and from the SUT ports and checking their validity
with respect to the expected outputs (step 3 in Figure 2).

Because there are large number of tests to be executed
on SUT, logging the test results and generating appropriate
reports are important for the test system (step 4 in Figure 2).
In addition, since the tests are expected to run for many
hours in a continuous manner, observing the status of the
test progress in real-time is an important requirement for the
test system. The GUI shown in Figure 3 is an example for
test monitoring capabilities of the test system, which depicts
switch configurations, the number of tests that are already run,

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 3. GUI sample for real-time status monitoring of DTN test system

pass/failure ratios, and the expected time of the completion.
By clicking on any of the tabs on the GUI, test engineer will
have access to more detailed outcomes of a given test.

B. Current Status of Test System

We estimate that, using chained OAs, the test suite will de-
ploy hundreds of thousands of VLs to verify real-life scenarios
that the SUT is expected to be exposed. Currently, the test suite
includes 143 switch configurations, each of which represents
a different setting for distinct usage of the DTN switch in the
field. Each switch configuration will be run continuously for
3-4 hours, representing a realistic load for typical avionics
applications.

VI. CONCLUSIONS AND FUTURE WORK

Test generation for network switches used in safety critical
avionics systems is a significant challenge since these systems
possess a large number of configuration options and high
speed operation using thousands of virtual connections. There
are prohibitively large number of test cases if one wishes
to include all possible combinations of switch configuration
parameters. One popular tool to reduce number of tests is OAs,
especially suitable for complex industrial applications. In this
paper, we presented chained OAs method, where test parame-
ters are divided into multiple groups and the OA generated for
a group is used as an input for the next group. Independent
of implementation or employed test architecture, chained OAs
method can be applied to any SUT with large number of test
parameters. For test generation of DTN switches, we defined
two groups, where the first group deals with different number
of virtual connections to be assigned to each switch port and
the second one determines the remaining switch parameters
such as transmission time gaps, minimum and maximum frame
sizes and priorities. The test cases generated by the chained
OAs method were converted into executable test scripts, which
were applied to an SUT by a commercial test system.

Future extension of this work includes development of OAs
that incorporate parameters defined for single and multiple end

systems and reliability test suites for interoperability of switch
and end systems for avionics applications. We expect that these
extensions will be capable of representing real-life usage of
deterministic avionics network systems and, hence, provide
more effective test cases. We also plan to present a formal
study to explicitly quantify the complexity and efficiency
trade-off achieved by the chained OAs approach.

REFERENCES

[1] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays:
Theory and Applications. Springer, ISBN 978-1-4612-1478-6, 1999.

[2] M. S. Phadke, Quality Engineering Using Robust Design. Prentice-Hall,
ISBN 0-13-745167-9, 1989.

[3] K. Gopalakrishnan, D. Stinson, and D. Cheriton, “Applications of
Orthogonal Arrays to Computer Science,” in Proc. of ICDM., 2006,
pp. 149 – 164.

[4] G. Taguchi and S. Konishi, Taguchi Methods: Orthogonal Arrays and
Linear Graphs - Tools for Quality Engineering. American Supplier
Institute, Center for Taguchi Methods, ISBN 978-0-94-1243-01-8, 1987.

[5] R. Kacker, E. Lagergren, and J. Filliben, “Taguchi’s Orthogonal Arrays
are Classical Designs of Experiments,” Journal of Research of the
National Institute of Standards and Technology, vol. 96, no. 5, p. 577,
1991.

[6] E. D. Schoen, P. T. Eendebak, and M. V. M. Nguyen,
“Complete Enumeration of Pure-Level and Mixed-Level Orthogonal
Arrays,” Journal of Combinatorial Designs, vol. 18, no. 2,
pp. 123–140, 2010, retrieved 15.05.2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.20236

[7] S. Yazar, “Reconstruction of the Taguchi Orthogonal Arrays with the
Support Vector Machines Method,” Balkan Journal of Electrical and
Computer Engineering, vol. 9, pp. 129 – 137, 2021.

[8] P. Eendebak, “The Orthogonal Array Package,” retrieved 04.04.2021.
[Online]. Available: http://www.pietereendebak.nl/oapackage/index.html

[9] “AFDX / ARINC 664P7 Modules with a Difference,” retrieved
15.05.2021. [Online]. Available: https://www.aim-online.com/products-
overview/modules/afdx-arinc664p7/

[10] J.-P. Moreaux, “Data transmission system for aircraft,” U.S. Patent
US6925088B1, Nov. 1999.

[11] ARINC 664, P7: Avionics Full Duplex Switched Ethernet (AFDX)
Network. INC Aronautical Radio, 2005.

[12] E. C. Akpolat et al., “Genetic Algorithm Based ARINC 664 Mixed
Criticality Optimization Using Network Calculus,” in 2021 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2021, pp. 1–6.

[13] M. N. Durceylan, O. F. Gemici, I. Hokelek, and H. Asmer, “Recon-
figurable arinc 664 end system implementation on fpga,” in 2020 28th
Signal Processing and Communications Applications Conference (SIU),
2020, pp. 1–4.

[14] M. Yeniaydin et al., “Priority Re-assignment for Improving Schedula-
bility and Mixed-Criticality of ARINC 664,” in 2021 IFIP Networking
Conference (IFIP Networking), 2021, pp. 1–6.

[15] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. John Wiley &
Sons, ISBN 978-1-119-56341-9, 2018.

[16] H. Bayrak and A. Alhan, “On the Construction of 2-Symbol Orthogonal
Arrays,” Hacettepe Journal of Mathematics and Statistics Volume,
vol. 31, pp. 57–62, 01 2002.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-886-0

UBICOMM 2021 : The Fifteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

