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Abstract—An approximate analytical model to analyse the
performance of the handover process in cellular networks is
proposed, where new and handover calls that arrive when
insufficient free resources are available are queued instead of
being lost. The approximation is based on the aggregation of
states of the double infinite continuous-time Markov chain that
models the system, and exhibits an excellent accuracy and low
computational cost. The approximate model might be of interest
to the next-generation of 5G mobile networks that must be
engineered to achieve high QoS and extremely low latencies.

Index Terms—Guard Channel Algorithm (GCA); handover;
priority; forced termination; Quasi Birth Death (QBD) process.

I. INTRODUCTION

Handover algorithms are of paramount importance in wire-
less cellular networks, and suitable analytical models are
needed to evaluate their performance. From the user equipment
(UE) point of view, it is less desirable the interruption of a
call in progress than the blocking of a new one. The most
commonly deployed strategy to achieve this Quality of Service
(QoS) objective has been to assign higher priority to calls in
progress than to the newly arriving ones.

One of the most celebrated prioritization schemes is the
Guard Channel Algorithm (GCA) [1]. Let C be the total
number of Resource Units (RU) available at an LTE eNodeB
(eNB). The meaning of a unit of resource depends on the
specific implementation of the radio interface. Let Ch ≤ C
the number of guard RUs. Then, new and handover calls are
admitted when the number of free RUs is larger than Ch.
However, when the number of free RUs is equal to Ch, or
less, only handover calls are admitted, while new calls are
blocked. Clearly, when all C RU are occupied, both new and
handover requested calls are blocked. Note that there is no
prioritization when Ch = 0. It is worth pointing out that the
GCA has been proposed in other wireless networks, such as
trunking systems in which interconnect calls have priority over
dispatch calls [2].

The problem of prioritization of handover calls over new
one has been commonly treated in the context of admission
control in cellular networks. Table I summarizes the four main
schemes that have received attention in the literature. In the
loss-loss scheme, both new and handover requests that arrive
when not enough free RU are available, will terminate being
lost.

Cell area

Handover area

Fig. 1. Cell area and handover area.

In the loss-delay scheme, new calls might be blocked, but
instead of blocking handover requests, they are placed in
a waiting queue of capacity Qh until enough RU become
available. The time handover requests are maintained in the
queue is mainly a function of two parameters: i) the residence
time of the UE in the handover area, i.e., the overlapping
area between the current serving cell and the new one; ii) the
speed of the UE. Please refer to Fig. 1. This scheme has been
analyzed in [3] with the GCA and the first-in-first-out (FIFO)
service queue discipline for the queued handover requests. A
later study in [4] extended the work in [3] by considering that
a call might terminate while waiting in queue.

In the third scheme, the delay-loss one, handover requests
might be blocked, but instead of blocking new requests, they
are placed in a waiting queue of capacity Qf , until enough free
RU become available. In this case, the time new requests are

TABLE I
TREATMENT OF CALLS OR SESSIONS.

Scheme New, (f) handovers, (h) Queue size, Q∗
1 Loss Loss (Qf = 0, Qh = 0)
2 Loss Delay (Qf = 0, Qh > 0)
3 Delay Loss (Qf > 0, Qh = 0)
4 Delay Delay (Qf > 0, Qh > 0)
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maintained in the queue is mainly a function on the residual
sojourn time in the non-overlapping area of the cell. Such
scheme has been analysed in [1], and revisited in [5], where
the system was modeled as a Quasi Birth and Death (QBD)
Markov process and basic principles of the M/G/1 system were
used to analyse the queuing model [6].

Finally, in the delay-delay scheme, both, new and handover
requests, are queued when insufficient RU are available upon
arrival. An exhaustive analysis of this fourth model is provided
in [4] when both Qf and Qh are finite.

The interest of the delay-loss scheme is based on the fact
that, in general, UEs spend a short time in the handover area.
This might be due to small overlapping areas, UEs speed or
both. In any case, the time spent by a UE in the handover
area might be negligible when compared to the time spent
in the non-overlapping area of the cell. However, the next-
generation of 5G cloud-enabled services are being engineered
to achieve high QoS and latencies as small as 1 ms. In such
network operation scenarios, it is gaining a renewed interest
the performance evaluation of handover schemes that might
place handover requests in a queue for short periods of time.

An approximate analytical model to evaluate the delay-delay
scheme is proposed, where the time evolution of the number of
new and handover calls in the system is modeled by a double
infinite continuous-time Markov chain (CTMC), that has the
form of a QBD process. The QBD process turns out to be non-
homogeneous in both dimensions, and therefore its solution is
computationally expensive. The approximate analytical model
is based on the aggregation of states of the CTMC, and exhibits
an excellent accuracy and low computational cost. The original
QBD process is in this way converted into an equivalent finite
QBD, for which different efficient solution algorithms have
been proposed.

Although in this paper a brief description of the approxima-
tion method and a preliminary study of the accuracy achieved
is given, our interest is to extend the study and apply it to the
analysis of the handover procedure in 5G cellular networks.
In particular, to analyse the impact that different network
features, such as size of the cell overlapping areas, UEs speed,
density of small cells, etc, might have on the QoS perceived
by the UEs, when both new and handover requests might get
queued at eNB.

The paper is structured as follows. Section II defines the
Markovian hypothesis for the queue models. Section III deals
with a detailed qualitative description of the scheme analyzed
in our work. The development of the analytical approach to
determine the stationary distribution of the CTMC and the
main performance parameters are presented in Sections IV and
V, respectively. A cellular scenario is presented in Section
VI, and the corresponding results are reported in Section
VII. Conclusions and future work in progress are reported in
Section VIII.

II. MAKOVIAN HYPOTHESIS

For model tractability, it is assumed that new and handover
requests arrive following a Poisson process with rates λf and

λh. respectively. This modeling approach has been widely
debated and accepted in the literature [7], [8], [9]. In the
same way, it is assumed that call or session duration, cell
residence time, and residence time in the handover area, are
exponentially distributed random variables with rates µM , µR

and µF , respectively. Due to the memory-less property, the
RU holding times are again exponentially distributed, with
rates µH = µM + µR when the UE resides in the cell area,
and µQ = µM + µF when it resides in the handover area.
Obviously µR < µF so µH < µQ. Note that in most of
previous works it has been assumed that µQ ≈ µF . Then, the
call was not able to terminate while residing in the handover
area. This limitation was overcome in the model proposed
in [4], where, for the first time and to our best knowledge,
the authors consider that the call can finish in the handover
area, i.e., µQ = µM +µF . Finally, note that according to [10]
and [11], the mean residence time in the handover area, 1/µF ,
can be around 5-10 seconds, which is much shorter than the
cell residence time 1/µR, or to the call duration 1/µM , that
can be around 2 minutes on average.

III. MODEL OF THE DELAY-DELAY SCHEME

In this Section, we describe the model proposed for the
scheme 4 of Table I. As described before, let C the total
number of RUs of the eNB and Ch the number of guard RUs.
Sessions or calls occupy a singe RU in the eNB while being
served. Two types of requests are offered to the eNB, new
(fresh) and handover calls requests. A new call originated in
a given cell is admitted if more than Ch free RUs are found
upon arrival. Otherwise, the fresh call is placed in a queue of
infinite capacity, and remains in that queue while residing in
the cell area. No impatience is assumed for the calls in the
queue. A handover request is admitted if at least one free RU
is found upon arrival. Otherwise, it joins a queue of infinite
capacity and remains in that queue until the UE abandons the
handover area, or until the call ends, whichever occurs first.

The system is modelled as a 2-D Markov process of infinite
size in both dimensions, as shown in Fig. 2. The system
state is defined by the tuple (i, j), i, j = 0, 1, 2, . . .∞, where
min(i, C) define the number of calls in progress in the cell,
max(i−C, 0) the number of handover requests in the queue,
and j the number of new (fresh) calls in the queue.

Our model is an extension of the one studied in [1] and [5]
in two aspects. First, queued fresh calls are allowed to leave
the queue when they leave the cell area. In this case, the set up
request will be rejected, and it will not be transferred to any
neighboring cell. Although the subscriber might retry the call
after a random period, this behavior has not been considered
in the current model. Second, different to the treatment in [5],
we allow that a handover request that joins the queue remains
in it until the call in progress ends, or until the UE leaves the
handover area, whichever occurs first.

Parallel to [5], when visiting state (i, j) we say that the
process is at phase i and at level j. Two key observations. First,
for any phase i > Cs = C − Ch, we realize that transition
between phases are independent of the arrival rate of new calls
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Fig. 2. State transition diagram of the 2D CTMC for the delay-delay model.

λf . Second, for any level j > 0 we realize that transitions
between levels are independent of the arrival rate of handover
requests λh. Also, note that for i ≥ C, the number of handover
requests in the handover queue increases by one unit when a
transition from phase i to phase i+1 occurs. In the same way,
for j ≥ 0, a transition from level j to level j + 1 makes the
number of new requests in its queue to increase by one unit.
Finally, note also that a transition form level j to level j − 1
that happens when the system is in phase C − Ch, leads to
the reduction of the number of new calls in its queue by one
unit.

In the next Section, we describe the approximate model. As
mentioned before, is based on the aggregation of sets of states
of the 2D Markov process [12].

IV. STATE AGGREGATION APPROACH.

First, we focus on the set of states at level j ≥ 0, and which
phases meet i ≥ C, i.e., states in which the handover queue is
not empty. This infinite set of states recall us a similar set of
states in a M/M/∞ queue. This infinite set of states recall us
a similar set of states in a M/M/∞ queue. Then, we evaluate
the mean value of the first passage time from state C+M +1
to state C +M and approximate this infinite set of states by
a single (aggregated) state for which the service (exiting) rate
equals the inverse of the mentioned mean value.

Second, we focus on the set of states at a fixed phase i ≥ Cs,
and which levels meet j > 0, i.e., states in which the queue of
new calls is not empty. The aggregation procedure turns out
to be similar to the one described above, with the exception
that two sets of states must be taken into account. The first
one is the set with phase i = Cs = C −Ch, while the second
is with phase i > Cs. Clearly, aggregating a set of states into
a single one is an approximation, where only the first moment
of the first passage time is being taken into account.

A. First passage time from phase C+M +1 to phase C+M

An upper and lower bound for the mean value of the first
passage time from phase C+M+1 to phase C+M , M > 0,
is derived. This mean value is denoted as tph(λh, µQ, q,M)
where q = CµH/µQ. Please refer to Table II for details. The
procedure is as follows. From Fig. 2 the set of states with
phase i ≥ C and level j = 0, define a birth-death process, as

C,0 C+1,0 C+M,0 C+M+1,0

(q+1)µQ (q+2)µQ (q+M+1) µQ (q+M+2) µQ

λh λh λh λh

(q+M)µQ

λh

Fig. 3. Part of the CTMC of Fig. 2 for phases i ≥ C and level j = 0.
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TABLE II
MAIN PARAMETERS

Capacity (RUs) Definition

C = Cs + Ch # of RUs in the cell.
Cs # of RUs shared (fresh or new and handovers).
Ch # of RUs reserved for handovers.

Rate (e.r.v.) Definition

λf Rate of offered fresh (new) calls
λh Rate of offered handover calls
λt = λf + λh Total arrival rate
γf Admitted fresh (new) calls
γh Admitted handover calls
γt = γf + γh Total rate of admitted calls.

µM Call (message) departure rate
µR UE residence time in the cell area
µH = µM + µR RU occupancy in the cell
µF UE residence time in the handover area
µQ = µM + µF RU occupancy in the handover area

q = CµH/µQ qf = bqc , qc = dqe
r = CsµH/µR rf = brc , rc = dre

Erlangs Traffic

Aos = λf/µM Offered new traffic -session, call or message-.
Af = λf/µH Offered traffic at cell level -RU-.
Ah = λh/µH Handover requested traffic at cell level -RU-
At = Af +Ah Total offered traffic at cell level -RU-.
AR = λf/µR “Unattended” new traffic in the queue.
AQ = λh/µQ Ongoing handover traffic in the queue.
AF = λh/µF “Unattended” handover traffic in the queue.

Probability Definition

Psc = µM/µH Call ends in the cell.
Phd = µR/µH Request for a handover.
Psh = µM/µQ Call ends in the handover area.
PB Blocking of new (fresh) calls.
Pfh Failure of handover request.
PFT Forced termination.
PNC Unencumbered call.

shown in Fig. 3. Omitting the level sub-index in Fig. 3, the
transition rates and the steady state probabilities are given by,

λi = λh; i ≥ C
µi = (q + i− C)µQ; i ≥ C + 1.

(1)

PC+i =



PC =

[
1 +

∞∑
k=1

Ak
Q

k∏
n=1

(q + n)

]−1
; i = 0

Ai
Q

i∏
n=1

(q + n)

PC ; i ≥ 1

(2)

with AQ = λh/µQ.
Following Appendix A in [13], we can derive the mean

value of the first passage time from phase C +M to phase

C +M + 1. Its mean value, denoted as τph(λh, µQ, q,M),
can be written as,

τph(λh, µQ, q,M)λh =[
1 +

M∑
k=1

Ak
Q

k∏
n=1

(q +M + n)

][
AM

Q

M∏
n=1

(q +M + n)

]−1
(3)

Finally, it is straightforward to see that tph(λh, µQ, q,M),
the mean value of the first passage time from phase C+M+1
to phase C +M can be written, after some simple algebra,

tph(λh, µQ, q,M) =

τph(λh, µQ, q,M)

1−
C+M∑
k=C

Pk

C+M∑
k=C

Pk

=

1
λh

∞∑
k=1

Ak
Q

k∏
n=1

(q +M + n)

(4)

where Pk are the steady state probabilities given in (2).
In addition, it can be verified that,

tph(λh, µQ, q,M) =
1 + λhtph(λh, µQ, q,M + 1)

(q +M + 1)µQ
(5)

From now, unless ambiguity does not allow it, we will use
a short notation, i.e., tph = tph(λh, µQ, q,M, Th). Then, for a
suitable threshold Th ≥ 1, the following lower (lw) and upper
(up) bounds can be written as,

tph,lw = 1
λh

Th∑
k=1

Ak
Q

k∏
n=1

(q +M + n)
(6)

tph,up = tph,lw+

1
λh

ATh

Q
Th∏
n=1

(q +M + n)

AQ

q +M + Th −AQ
(7)

Note that tph,lw is obtained by truncating up to the first Th
elements the infinite sum in (4). This approximation defines
a lower bound to (4). To obtain tph,up we set µk constant at
µk = (C+M+Th)µQ for k > C+M+Th. As (q+k−C) >
(q+M + Th) for k > C +M + Th, this approximations sets
an upper bound to (4). The infinite terms k > C+M +Th in
(4) define a geometric progression with ratio rph = AQ/(q +
M + Th) that can be added, provided that rph < 1.
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B. First passage time from level L+ 1 to level L

As in previous sub-Section IV-A, for a given phase i ≥
Cs = C −Ch, we analyse the aggregation of states located at
level L + 1, L > 0. Let tle(λf , µR, r, L; i) denote the mean
value of the first passage time from level L + 1 to level L,
where r = CsµH/µR. Please refer to Table II for details. By
inspection of Fig. 2, two different sets of states are identified.
First, when the phase is i = Cs , left side of Fig. 4. Second,
when the phase is i > Cs , right side of Fig. 4. For a level
j > L, the transition rates between levels are given by,

λj = λf ; j ≥ 0

µj = (rδi,Cs + j)µR; j ≥ 1
(8)

where δi,Cs
is the Kronecker delta. Parallel to (4) we can write,

being AR = λf/µR,

tle(λf , µR, r, L; i) =
1
λf

∞∑
k=1

Ak
R

k∏
n=1

(rδi,Cs
+ L+ n)

(9)

A simple inspection to the state transition diagrams in Fig. 4
reveals that tle(λf , µR, r, L; i = Cs, ) < tle(λf , µR, r, L; i >
Cs).

For clarity, we use the notation tle(i) = tle(λf , µR, r, L; i),
unless otherwise specified. Using the same arguments as we
did for (6)-(7), and given a suitable threshold Tf ≥ 0, the
lower and upper bounds for tle(i) are given by,

tle,lw(i) =
1
λf

Tf∑
k=1

Ak
R

k∏
n=1

(rδi,Cs
+ L+ n)

(10)

λf(L+1) µR

C-Ch, L+1 i, L+1

C-Ch,1 i,1

λf(r+2)µR

(r+1) µR

C-Ch,0 i,0

λf λfµR

λf2µR

λfLµRλf

C-Ch,L i,L

(r+L+1) µR λf

λf
(L+2) µRλf

Phase  i>C-ChPhase i=C-Ch

(r+L) µR

(r+L+2) µR

Fig. 4. Part of the CTMC of Fig. 2 for level j ≥ 0 and phases i = Cs =
C − Ch (left); i > Cs (right).

tle,up(i) = tle,lw(i)+

= 1
λf

A
Tf

R
Tf∏
n=1

(rδi,Cs
+ L+ n)

AR
rδi,Cs

+ L+ Tf −AR
(11)

provided that rle = AR/(δi,Cs
+ L+ Tf ) < 1 . Note that the

most restrictive case in the last inequality occurs when i > Cs,
where AR < L+ Tf must be fulfilled.

C. Steady state probabilities

Following the state aggregation process described in Section
IV-A and Section IV-B, the original QBD process is converted
into an equivalent finite QBD, for which different efficient
solution algorithms have been proposed. The interested reader
might refer to [14], or Chapter 10 in [15], for details of
the algorithms used to solve the finite QBD process. Let
Pi,j and P̃i,j denote the exact and approximate steady state
probabilities of the finite QBD, respectively. Clearly, P̃i,j can
be evaluated for the four aggregation approaches shown in
Table III.

TABLE III
FOUR APPROACHES FOR SCHEME 4 OF TABLE I

Approaches Phase (level j independent) Level (phase i dependent)

1: (6)-(10) tph,lw(λh, µQ, q,M, Th) tle,lw(λf , µR, r, L, Tf ; i)

2: (6)-(11) tph,lw(λh, µQ, q,M, Th) tle,up(λf , µR, r, L, Tf ; i)

3: (7)-(10) tph,up(λh, µQ, q,M, Th) tle,lw(λf , µR, r, L, Tf ; i)

4: (7)-(11) tph,up(λh, µQ, q,M, Th) tle,up(λf , µR, r, L, Tf ; i)

V. PERFORMANCE PARAMETERS

The performance parameter evaluated in this study are: i)
the blocking probability of a new (fresh) call, ii) the handover
failure probability, iii) the forced termination probability of an
initiated call, and iv) the non-completed call probability. These
parameter depend on Pi,j through the analytical expressions
defined in the next Subsections.

A. The blocking probability of new calls

Upon arrival, if a new (fresh) call finds Cs = C − Ch

RUs occupied, or more, it joins the queue. The call is finally
blocked when the UE leaves the area of the serving cell. Then,

PB = 1
λf

∞∑
i=Cs

∞∑
j=0

jµRPi,j =
1

AR

∞∑
i=Cs

∞∑
j=0

jPi,j (12)

To evaluate (12) we use the probabilities P̃i,j , obtained in
Section IV-C, that is,

PB,lw ≈
C+M+1∑
i=Cs

L∑
j=0

j
P̃i,j

AR
+

C+M+1∑
i=Cs

ζi,Cs

µle(i)

λf
P̃i,L+1

(13)
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where, µle(i) = 1/tle(i) from (9), ζi,Cs
= 1 − δi,Cs

r/(r +
L+ 1) and AR = λf/µR.

When the phase is i = Cs, ζCs,Cs
= (L + 1)/(r + L + 1)

can be interpreted as the fraction of transitions (Cs, L+1)→
(Cs, L) that represent the blocking of new (fresh) calls. Note
that the transition (Cs, L + 1) → (Cs, L) might also occur
when a call terminates successfully and a queued new call
occupies the freed RU. When the phase is i > Cs, then ζi,Cs

=
1, which means that each transition (i, L+1)→ (i, L) reflects
the lost of one new call.
PB,lw is a low bond as it only considers the blocking of

new calls due to UEs abandoning the cell service area. An
upper bound can be defined when, in addition, we consider the
blocking of new calls that arrive at states (i, L+ 1), i ≥ Cs.

PB,up ≈ PB,lw +

C+M+1∑
i=Cs

P̃i,L+1. (14)

We remark that, when evaluating PB,lw, from (13), we use
µle,lw(i) = 1/tle,up(i) ≤ 1/tle(i) = µle(i) given in (10),
and when evaluating PB,up, from (14), we use µle,up(i) =
1/tle,lw(i) ≥ 1/tle(i) = µle(i), given at (11).

B. Probability of a handover attempt failure

The probability of a handover attempt failure, Pfh , can be
expressed as the quotient between the rate of failure handovers
and the rate of handover attempts,

Pfh = 1
λh

∞∑
i=C

∞∑
j=0

(i− C)µFPi,j (15)

As before, to evaluate (15) we use the probabilities P̃i,j of
the finite QBD process,

Pfh,lw ≈
C+M∑
i=C

L+1∑
j=0

(i− C) P̃i,j

AF
+

L+1∑
j=0

µph

λh
P̃C+M+1,j

(16)

where µph = 1/tph from (4) and AF = λh/µF .
Using the same arguments as in (13), we consider (16) as

the lower bound for Pfh. Also, in a parallel way to (14), the
upper bound for Pfh is define as,

Pfh,up ≈ Pfh,lw +

L+1∑
j=0

P̃C+M+1,j (17)

When evaluating Pfh,lw, expression (16), we use µph,lw =
1/tph,up ≤ 1/tph = µph, from (6), and when evaluating
Pfh,up, expression (17), we use µph,up = 1/tph,lw ≥ 1/tph =
µph, from (7).

C. Forced termination probability

Based on previous result for Pfh, the forced-termination
probability PFT can be evaluated as follows [3],

PFT = Phd

∞∑
k=1

[(1− Pfh)Phd]
k−1Pfh =

=
PhdPfh

1− (1− Pfh)Phd

(18)

where Phd is the probability of handover demand or attempt,
and it is given by Phd = µR/(µR + µM ).

Using previous results of (16) (17), PFT can be approxi-
mated as follows,

PFT,lw =
PhdPfh;lw

1− (1− Pfh,up)Phd
(19)

PFT,up =
PhdPfh;up

1− (1− Pfh,lw)Phd
(20)

D. Call non-completion probability

The new call blocking probability PB , and the forced-
termination probability PFT can be combined to define the
probability that a call does not terminate successfully, i.e., the
non-completion probability,

PNC = PB + (1− PB)PFT (21)

As before, the lower and upper bounds for PNC are defined
as,

PNC,lw = PB,lw + (1− PB,up)PFT,lw (22)

PNC,up = PB,up + (1− PB,lw)PFT,up (23)

VI. CELLULAR SCENARIO. FLOW EQUATIONS

The objective of this section is to determine a realistic value
for λh in a conventional cellular scenario with multiple cells.
As in [8], we assume regular tessellation of the 2D cellular
area, cells of equal size, and uniform spatial distribution of
UEs. We also assume that handover requests arrive following
a Poisson process with rate λh. Basically, λh depends on
the mobility of the UE, and must meet the following flow
equations. Let γc,in be the rate of calls in progress in a
tagged cell. γc,in has two terms, the rate of new calls that
are admitted, i.e., λf,in(1− PB,in), and the rate of handover
requests arriving from neighboring cells that are admitted,
γc,outPhd,out(1− Pfh,in). Then,

γc,in =

λf,in(1− PB,in) + γc,outPhd,out(1− Pfh,in)
(24)

In equilibrium we have γc = γc,in = γc,out; λf = λf,in =
λf,out; Phd = Phd,in = Phd,out; PB = PB,in = PB,out and
Pfh = Pfh,in = Pfh,out. Solving (24) for γc, hence for λh,

λh = γcPhd =
λf (1− PB)

1− Phd(1− Pfh)
Phd (25)
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TABLE IV
BOUNDS FOR tph(λh, µQ, q,M, Th), (6) AND (7); NORMALIZED TO

1/λh = 1/3.5 WITH AQ = 0.70, C = 8, q = 3.2,

tph Th = 1 2 3 4 5

M= up 0.1555 0.1517 0.1514 0.1514 0.0432
1 lw 0.1346 0.1498 0.1512 0.1514 0.0432

relative gap 0.1555 0.0129 0.0010 0.0000 0.0000
rph 0.1346 0.1129 0.0972 0.0853 0.0432
up 0.1272 0.1250 0.1249 0.1248 0.1248

2 lw 0.1129 0.1238 0.1248 0.1248 0.1248
relative gap 0.1272 0.0095 0.0007 0.0000 0.0000

rph 0.0853 0.0972 0.0853 0.0760 0.0686
up 0.1076 0.1062 0.1062 0.1061 0.1061

3 lw 0.0972 0.1055 0.1061 0.1061 0.1061
relative gap 0.1076 0.0073 0.0004 0.0000 0.0000

rph 0.0972 0.0853 0.0760 0.0686 0.0625
up 0.0933 0.0923 0.0923 0.0923 0.0923

4 lw 0.0853 0.0918 0.0923 0.0923 0.0923
relative gap 0.0933 0.0058 0.0000 0.0000 0.0000

rph 0.0853 0.0760 0.0686 0.0625 0.0573
up 0.0823 0.0816 0.0816 0.0816 0.0816

5 lw 0.0760 0.0813 0.0816 0.0816 0.0816
relative gap 0.0823 0.0047 0.0000 0.0000 0.0000

rph 0.0760 0.0686 0.0625 0.0573 0.0530

The rate λh in equation (25) (see also (17) in [16]),
together with the steady state probabilities, P̃i,j , define a
fixed-point equation [17] [18]. To solve it, we set initially
λh ≈ λfPhd and the corresponding P̃i,j are obtained by
solving the QBD process. A new λh is obtained from (25) and
the iteration process is repeated until the difference between
the probabilities P̃i,j of two consecutive iterations is less than
a certain threshold.

The mobility rates µR and µF can been derived according
to the fluid flow model, equations (12), (13) in [19]. Then,

µx =
E(v)Lx

πAx
; x = R,F (26)

where E(v) is the expected velocity of the UE and L (A) the
perimeter (the area) of the coverage area, R for the cell area
and F for the handover area, see Fig. 1. From the geometry of
that figure and denoting by Rc the radius of the circle, it can be
shown that µR = 2(3

√
3 − π)−1E(v)/Rc ≈ 0.9734E(v)/Rc

and µF = 2(π − 3
√
3/2)−1E(v)/Rc ≈ 3.6797E(v)/Rc .

Then, µF /µR ≈ 3.7801.

VII. RESULTS

A reference evaluation scenario is define with the following
parameters: C = 8, Ch = 1, µM = 1, µR = 1 and µF = 4.

Table IV shows the accuracy of the proposed lower and
upper bounds for tph (phase). Results have been obtained
for λh = 3.5, that makes AQ = λh/µQ = 0.7 Erlangs,
and q = CµH/µQ = 3.2. The accuracy is measured in
terms of the relative gap = (up − lw)/lw, i.e., the relative
difference between both bounds. Note that taking the upper
bound as a reference would not change the results. Observe
that the relative gap decreases faster by increasing Th than by
increasing M .

TABLE V
BOUNDS FOR tle(λf , µR, r, L; i), FOR PHASE i > Cs , (10) AND (11);

NORMALIZED TO 1/λf = 1/7, WITH AR = 7.00, C = 8, Ch = 1 ,r =

tle Tf = 7 8 9 10 11

L= up 2.7023 2.6964 2.6942 2.6935 2.6932
7 lw 2.6547 2.6769 2.6867 2.6907 2.6922

relative gap 0.0179 0.0058 0.0028 0.0010 0.0003
rle 0.5000 0.4666 0.4375 0.4117 0.3888
up 2.0816 2.0791 2.0783 2.0780 2.0779

8 lw 2.0594 0.0705 2.0751 2.0768 2.0775
relative gap 0.0107 0.0041 0.0015 0.0005 0.0001

rle 0.4666 0.4375 0.4177 0.3888 0.3684
up 1.6732 1.6721 1.6717 1.6716 1.6715

9 lw 1.6621 1.6679 0.6702 1.6711 1.6714
relative gap 0.0066 0.0024 0.0008 0.0002 0.0001

rle 0.4375 0.4117 0.3888 0.3684 0.3500
up 1.3887 1.3881 1.3880 1.3879 1.3879

10 lw 1.3828 1.3861 1.3873 1.3877 1.3878
relative gap 0.0042 0.0015 0.0008 0.0001 0.0000

rle 0.4117 0.3888 0.3684 0.3500 0.3333
up 1.1814 1.1811 1.1810 1.1810 1.1810

11 lw 1.1781 1.1800 1.1807 1.1809 1.1810
relative gap 0.0027 0.0009 0.0003 0.0000 0.0000

rle 0.3888 0.3684 0.3500 0.3333 0.3181

Table V shows the accuracy of the proposed lower and upper
bounds for tle (level). Results have been obtained for λf = 7,
that makes AR = λf/µR = 7 Erlangs, and r = CsµH/µR =
7. As with the phase, note that relative gap decreases faster
by increasing Tf than by increasing L.

Observe that the relative gap is below 10−4 when rph =
AQ/(q + M + Th) ≤ 0.06 in table IV, and when rle =
AR/(L+ Tf ) ≤ 0.33 in table V, approximately. A sensibility
study of the impact that M , Th, L and Tf have on the accuracy
of the approximation is left for future work.

Figure 5 and Fig. 6 show the evolution of the main perfor-
mance parameters studied with the load in a realistic scenario.
The scenario is composed of multiple cells, and the cell under
study is characterized by C = 80 RU. The approximate
stationary distributions are obtained for rph < 0.01 and
rle < 0.1, that are more restrictive than those suggested above
by inspection of Table IV and Table V. Note that in a multicell
scenario, the fluid flow equation (25) most be solved iteratively
using the fixed-point equation. As can be observed, the Guard
Channel Algorithm is rather efficient, as the handover attempt
failure and the forced termination probabilities decrease quite
rapidly when the number of guard RUs changes from Ch = 1
to Ch = 2, while the non-completion probability keeps
approximately invariant. However, the blocking probability of
new (fresh) calls increases with Ch, as expected.

VIII. CONCLUSION AND FUTURE WORK

We study a cellular system where new and handover calls
that arrive when insufficient free resources are available are
queued instead of being lost. The time evolution of the number
of new and handover calls in the system is modeled by a
double infinite continuous-time Markov chain (CTMC), that
has the form of a QBD process. As the solution of the
QBD process is computationally expensive, we propose an
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Fig. 5. Main parameters for C = 80, Ch = 1. PB (13)-(14); Pfh, (16)-(17);
PFT , (19)-(20); PNC , (22)-(23).
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Fig. 6. Main parameters for C = 80, Ch = 2. PB (13)-(14); Pfh, (16)-(17);
PFT , (19)-(20); PNC , (22)-(23).

approximate analytical model based on the aggregation of
states of the CTMC.

The approximation shows a very good accuracy and low
computational cost. It is applicable to current 4G and forth-
coming systems 5G systems. We plan to extend the study
to analyze heterogeneous scenarios where femtocells and
macrocells coexist, and where the corresponding CTMC that
models the system behavior has a huge amount of states. We
believe that the state aggregation technique is a powerful tool
that makes the analysis of highly complex systems feasible.
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