
SPACE: An Empirical Approach towards a User-Centric Smart Campus

Thammineni Prathyusha, Vipul Jindal, Saurabh Gangwar, Anand Konjengbam and Kotaro Kataoka

Indian Institute of Technology Hyderabad, India

Email: {ee14btech11034, es14btech11022, cs15mtech11019, cs14resch11004, kotaro}@iith.ac.in

Abstract—Making a campus smart involves a wide variety of
devices, users, and other stakeholders. This gives rise to many
issues including scalability, extensibility, user-centricity, and
cost in terms of both deployment and maintenance. To
overcome these issues, we propose a novel platform called
SPACE that (1) enables end-to-end commanding and execution
of tasks on a smart campus operation in a distributed
and modulated manner, and (2) attempts to mitigate the
above-mentioned issues. As an initial research testbed, the
proposed SPACE has been deployed for di�erent scenarios in
a university campus including a classroom, a faculty o�ce,
and a lab. This paper empirically reports how the SPACE
system enables a smart campus testbed and further lessons
from the deployment.

Keywords–Internet of Things (IoT); IoT Platform; Smart
Building; Cloud-based IoT.

I. Introduction

While many research and development e�orts were made

under the concepts of ubiquitous computing, pervasive com-

puting and Internet of Things (IoT), we have not seen domi-

nating research in the area of IoT platforms that addresses the

challenges a�liated with providing seamless user-experience

and ease of maintaining the system [1]. Moreover, many of

the papers on IoT platform assume that the devices (e.g.,

bulb, fan, Air Conditioner (AC), etc.) are already smart and

have communication capabilities [2][3]. There are virtually

unlimited number of “things” that can be connected to the

Internet under the umbrella of IoT. Hence, an IoT platform

that can connect and accommodate such “things” is needed.

A university campus is an interesting and challenging

premises to apply the concept of IoT. A university campus

involves many smart contexts [4][5]. Many stakeholders

including students, professors, working sta�, guests, and ad-

ministrators are involved there and they have various needs

to be satis�ed. Professors and students need features such

as user-centricity, universal access, and multi-purpose space

sharing. Administrators would prefer an economically viable

and easy to maintain IoT-enabled campus. A smart campus

provides intelligent facilities like universal access, location

awareness, user-centricity, and support for heterogeneous

devices to the campus community, while the operational cost

gets reduced.

This paper presents a platform called SPACE for making

a university campus smart by connecting various types of

things and facilities (e.g., AC, fan, and bulb) in one system.

The proposed platform enables 1) integration of existing cam-

pus facilities into SPACE in a cost-e�ective manner, 2) end

users with personalized access to the campus facilities, and 3)

an extensible platform where end users can easily assemble

new components such as new end devices, controllers, and

new communication modules supporting di�erent protocols

and standards.

In this paper, we present the implementation and deploy-

ment of the proposed platform, and a reference model of

end-user oriented and ad-hoc deployment of a smart campus

that has not been originally designed and constructed to be

smart and user-centric. We introduce the concept of Device

Interfacing Gateway (DIGW) and used it to connect any

campus facility to the system.

The rest of the paper is organized as follows. Section II

provides an overview of related works. Then, we discuss the

problems of modelling the system design in Section III, and

present the implementation details in Section IV. We evaluate

and validate the system in Section V and �nally, we conclude

the paper and discuss the future works in Section VI.

II. Related Work

Zhang et al. [6] addressed the problem of lack of a

versatile and cost-e�ective software platform for smart build-

ings. They developed an open source software called Build-

ing Energy Management Open Source Software (BEMOSS)

that works on a single board computer for monitoring and

controlling energy consumption of a building. The system

included features like plug and plays using device discovery,

and interoperability of di�erent communication protocols.

However, the supported devices were limited to already smart

ones.

Sánchez et al. [7] implemented IoT applications and

services in the city of Santander, Spain, with a physical

deployment of more than 2000 sensors. They presented

a high-level architectural model supporting real-world IoT

experimentation facilities on di�erent devices. In order to

address the problem of scale and heterogeneity of devices

and application domains, they divided their architecture into

three tiers; IoT device, gateway, and server. Georgakopoulos

et al. [8] presented an IoT architecture with the concept

of service discovery and on-demand integration of devices,

storage and computing resources over the cloud. They in-

corporated data analytics and visualization to create an on-

demand IoT application. Although progress has been made on

implementation of large-scale IoT, the implementations are

generic and personalization of the system is not considered.

The following works addressed the lack of standards for

IoT and discussed frameworks for integrating various smart

devices. Puatru et al. [9] presented a solution for connecting

di�erent types of home appliances to one platform. They

focused on how di�erent platforms like Google Nest and

Philips Hue can be operated via a mobile device with a Web

browser for easy accessibility and better user experience.

Nati et al. [10] worked on user-centric IoT for integrating

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

embedded heterogeneous smart devices in a real-life o�ce

environment. The solution o�ered modular implementation

of an open source smart home system using Intel Edison

board [11] as a gateway. Mozzami et al. [12] proposed a smart

phone based platform to handle heterogeneous devices and

multi-vendor smart home appliances in home environment

without the need for painstaking con�guration and custom

programming. They developed an Android application with

an open speci�cation for XML driver support. Hernandez

et al. [13] proposed a framework for the development of

IoT applications where smart objects exhibit autonomy in

regards to platforms and human users through management

functions. These works assumed that such smart devices

can be IP-proxied and capable of sensing and actuating, and

device-speci�c applications are already available.

Hentschel et al. [14] proposed a campus-wide sensor net-

work using Raspberry Pi. They de�ned supersensors as sen-

sors (light, temperature, motion, sound, and Wi-Fi) attached

to Raspberry Pi that are capable of local computer operations

and data transmission to a centralized database. The use of

Raspberry Pi reduced the cost of procurement compared to

standard expensive IoT sensors and has a small footprint.

They considered that di�erent sensors have di�erent com-

munication modes and tried to cope with a heterogenous

environment. They also discussed the advantages of their

method which include intelligent �ltering of sensor data as

well as capture and bu�ering of incoming data while the

network connectivity is disrupted. Joshi et al. [15] designed

a low-cost basic home automation system to control multiple

appliances that can be globally monitored and accessed using

low cost Raspberry Pi, Arduino and web server.

Some researchers have carried out works related to per-

sonalized and user-centric IoT systems. Jayatilaka et al. [16]

proposed an assisted living system where appliances exhibit

seamless social interactions with people. They embedded

multiple sensors such as thermometer, hydrometer, and scale

into appliances (refrigerator, microwave, and trash bin). The

appliances used Twitter as a messaging system to send

noti�cation messages to authorized people. Wu et al. [17]

developed a framework for human-system interaction by

analyzing the interactive relationship among services, spaces,

and users in a smart home environment. Lee and Lin [18]

implemented a situation-aware IoT based system that can

detect user activities in a room and control the devices in the

room accordingly. Alam et al. [19] worked on predicting user

behavior based on human activity pattern. Their approach

used episodes of events of home appliances that have on-

o� states (such as lights, fans, heater, and window blinds)

as an input to a sequence prediction algorithm to predict

the next activity from previous history. Using multi-sensor

data streams, Chen et al. [20] worked on a knowledge-driven

real-time continuous activity recognition using multi-sensor

data streams in a smart home environment. The approach

uses domain knowledge, ontologies, semantic reasoning and

classi�cation for activity recognition. Our work is related

to developing a platform for smart and user-centric campus

environment that provides facilities such as universal access,

user-centricity, and support for heterogeneous devices.

III. System Design

A. System Requirement Organization

In this section, we describe the system requirements of

our proposed SPACE platform and explain the approaches

for implementing a smart campus.

Universal access: End devices and campus facilities should

be accessible from anywhere so that users can control devices

without physically being present near the devices. SPACE

provides universal access by enabling end users to operate

all the end devices using a single mobile application.

User-centricity: The system should be simple in terms

of deployment, usage, and maintenance for the user. As a

consequence of user-centricity, SPACE provides pleasing user

experience and user-friendly interface.

Cost e�ectiveness: The cost of a system includes its de-

ployment, maintenance and the cost of upgrading/adding new

components. The cost of deploying SPACE over the existing

infrastructure is considerably lower than replacing all the

existing components (e.g., lights) in the infrastructure with

smart components (e.g., smart bulbs). Physical contact with

switches is generally required to control the components.

Repeated physical contact results in wear and tear of switches

and may lead to accidents. Such accidents can be avoided

by replacing physical switches with virtual switches that are

controlled through a mobile/desktop application.

Support for heterogeneous IoT devices: Various hetero-

geneous devices are present in an environment. Such devices

have di�erent operations and need di�erent protocols to

control them. It is desirable to identify, integrate, and control

such devices via a single application so that the user need

not use a di�erent application for each end device.

Extensibility: The system needs to be extensible regarding

support of both non-smart and already smart devices. It

should accommodate various kinds of communication and

processing technologies as per the need of the environment in

the deployed system. Users should be able to integrate devices

with minimum support from the system administrator.

B. System Architecture/Design Overview

The overall architecture of SPACE consists of four main

components - local controller, central controller, Device In-

terfacing Gateway (DIGW), and mobile application. Figure 1

shows the system overview of SPACE.

As shown in the �gure, the platform is divided into

three layers: User Interface (UI) layer, logical control layer,

and physical control layer. A local controller is deployed

in each environment such as rooms, o�ces, and labs. It

performs edge computation and it is responsible for managing

its local environment. All end devices in an environment

communicate with a local controller via DIGW. A DIGW is

attached to each of the end devices and is among one of

the most important components of the platform. The mobile

application can interact with the end devices via central con-

troller or local controller. Each of the components has some

speci�c functions and they interact with one another to ful�ll

the system requirements. Figure 2 shows the information

exchange among the components of SPACE.

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

.

Figure 1. System overview of SPACE

Dynamic UI

Device
status

Location
awareness

Database

Command
routing

Remote
access

Database

Protocol
conversation

Edge
computation

Communicat
ion module

Command
processing

module

Interfacing
module

Mobile/Desktop
application

DIGW
Central

controller Local
controller

Actuate

Location
awareness

Dynamic UI
Device statusActuate

Location awareness

Devices,
Sensors

Figure 2. System block information exchange of SPACE

The Device Interfacing Gateway (DIGW) is used to proxy

and control end devices. Generally, end devices are not

capable of communication. To connect these end devices

to a network, a DIGW is plugged into each end device.

DIGW receives commands from local controller and sends

data/feedback from sensors and end devices to local con-

troller, as illustrated in Figure 2. It also enables discovery

of end devices. DIGW is comprised of four modules: com-

munication module, command processing module, interfacing

module, and power module. The details of each module are

explained below.

• The communication module takes care of receiv-

ing and sending signals over any particular commu-

nication protocol like ZigBee, Bluetooth, and Wi-Fi.

It does necessary processing of signals to convert

them into a standard format understandable by the

command processing module.

• The command processing module receives com-

mands from communication module, interprets the

commands and accordingly calls the right functions

that are stored in its memory. The functions then

trigger the interfacing module to actuate the com-

mand. It also takes care of internal optimization

regarding power consumption.

• The interfacing module is the physical interface

between an end device and DIGW. It consists of

actuators such as switches, valves, and infrared (IR)

modules that can control the end device. Actuators

provide functions such as turning ON/OFF of end

devices, modulating control changes, and switching

action between di�erent states.

• The power module takes care of the power con-

sumed by all the DIGW modules. It is interchangeable

with di�erent parts such as adapter, battery, and solar

cell.

The central controller is responsible for data storage, data

processing, command routing, and remote access. The central

controller is a cloud server through which all the local

controllers and mobile applications can interact. All the

information about end devices, room environments, and user

information (such as user authentication, and location) are

stored in the database of the central controller. The mobile

application uses the information present in the database of

the central controller for functions such as device status and

dynamic UI. The use of cloud service is to provide scalable

computing and storage power for developing, maintaining,

and running multiple services simultaneously.

The local controller is a control unit present in all the

environments such as rooms and labs. It is responsible for

all the activities happening in its local environment apart

from the authentication process, which is taken care of by

the central controller. It stores the relevant information of end

devices present in its local environment. It supports di�erent

communication protocols and acts as a bridge between the

DIGW and the central controller. It is responsible for the real-

time processing of sensor data in its environment. It is also

responsible for protocol conversion. For example, consider a

scenario where some end devices speak Zigbee via DIGW,

and some other devices speak Wi-Fi and remaining devices

speak Bluetooth and Radio-Frequency Identi�cation (RFID).

The local controller converts the command request from

the mobile application/central controller to the supported

protocol and sends the formatted command to the respective

DIGW and vice-versa. The local controller broadcasts its

location information along with a list of end devices that

can be controlled within its environment. This information

helps mobile applications to be aware of the location and

improves user experience (explained in the next section). If

the user is near a local controller, commands from the mobile

application reach the local controller earlier before reaching

the central controller, and so the command gets executed

faster. It performs edge computing which helps in optimizing

various latencies such as command execution time.

The mobile application gets access to end devices via

the central controller or the local controller depending on

the location (remote/local) of the user. It has a dynamic UI

that changes depending on the location of the user. This

feature helps in minimizing the number of manual operations

required to perform an action, hence providing a good user

experience. The UI of the application re�ects consistent

information regardless of the technology used at lower layers.

For example, two di�erent temperature sensors have the same

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

type of UI even though they are from di�erent manufacturers

and use di�erent protocols such as ZigBee or Bluetooth. The

mobile application also supports voice commands to control

devices.

IV. System Implementation

This section details the implementation of SPACE inside a

university (Indian Institute of Technology Hyderabad, India)

as a testbed. We assume that, initially, the end devices are

not capable of any communication.

A. Technical Components

TABLE I. Software and hardware components of SPACE

Component Software Hardware

Mobile ap-

plication

Operating System

(OS): Android K,L,M;

Google Speech

Application Program

Interface (API)

Any smartphone

with Internet

connectivity

Central

Controller

OS: Ubuntu 16.04;

Database: PostgreSQL

2.40 GHz quad core

Intel Xenon CPU;

8GB RAM

Local Con-

troller
OS: Raspbian

Raspberry Pi (v2,v3),

Bluetooth Low En-

ergy (BLE) module

DIGW

for air

conditioner

Real-Time Operating

System (RTOS) and

ATtention (AT)

commands API;

Arduino Interactive

Development

Environment (IDE)

Espressif Systems

(ESP8266EX) [21], IR

module

DIGW for

room lights

RTOS and AT com-

mands API; Arduino

IDE

ATMEGA328P [22];

SPDT relay

Table I presents a concise summary of the various

software and hardware elements used by components for

implementing the SPACE platform. It may be noted that

implementation is done mostly using open-source software.

Figure 3 shows a cropped interface of the mobile ap-

plication. The sidebar displays information about the user,

Figure 3. UI of mobile application - side menu and main menu buttons

rooms, recorded data, and available settings. The main menu

has clickable icons to control the devices present in a room.

The icon changes from grey to blue when the corresponding

device changes its state from OFF to ON and vice versa.

The mobile application also supports voice commands

through Google Speech API. Certain key phrases are used

to train the API to perform actions similar to user clicks. For

example, we used the phrase "Lights on" to initiate function

calls for turning on lights. The voice command control was

deployed in an o�ce. However, we removed this feature in

the latest version of the mobile application as the Google

Speech API was not accurately detecting the voices and

required extensive samples for training data.

Figure 4 shows the block diagram of a local controller

along with DIGW and ampere sensors. Here, Raspberry Pi

Figure 4. Block diagram of a local controller along with DIGW and ampere

sensors

v3 is used as the local controller for performing edge com-

putation and storing data. Arduino, as well as Single Pole

Double Throw (SPDT) relay are used as DIGW to interact

with ampere sensors and end devices. Ampere sensors detect

the state of devices using the current readings.

Figure 5 shows the di�erent modules of DIGW used

in the real-time deployment of SPACE. All these modules

Power module (9V Battery)

Processing module
(ESP 8266)

Communication
module 
(ESP 8266)

Interfacing modules

(A) Sensor 
 connector

(B) Toggle switch

(C) Selector  
 switch

Figure 5. DIGW used in real-time deployment of SPACE

work independently, hence, making DIGW modular. The four

modules communicate with each other over General-Purpose

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Input/Output (GPIO) interface [23], which is a standardized

mode of communication. Consider a case where, after the

deployment, the user wishes to change the mode of com-

munication from Bluetooth to Wi-Fi. The user can do so by

getting a Wi-Fi module, which is compatible with DIGW and

replacing the Bluetooth module by the Wi-Fi module in a plug

and play fashion. This feature helps in saving the upgrading

cost of the system, as we need not change the whole DIGW

to change some particular features of the system.

B. Communication Protocols
Figure 6 shows the information �ow with regards to time

between various components of the system for executing a

command.

UI
(Smart phone)

Central
controller

Local
controller DIGW Device Sensors

M1

M2

M3

M1: Communication module
M2: Command processing module

M3: Interfacing module

Command:

{Bulb1;1;0} {Bulb1;1;0} {Bulb1;1;0}

{Bulb1;1;0}

F(C)
{Bulb1;1}

{Bulb1;1;1}{Bulb1;1;1}{Bulb1;1;1}
T1;22T1;22

Temperature
sensor T1

Ampere
sensor A1

F(C): Function called for the command

Time
Bulb1

T1;22

Figure 6. Information �ow between components of SPACE

For illustration, we examine two types of information

�ow: 1) the message �ow of user triggered command followed

by the sensor data �ow that senses the state of the end device

after execution of the command, and 2) periodic update of

sensor data. Consider a remote user is sending a command

to turn on a light bulb using the mobile application. The

application generates a command packet consisting of device

ID, desired state, and reply status ({Bulb1;1;0}) and passes it

to the central controller. The central controller parses the

command and routes it to the appropriate local controller.

The local controller identi�es the light bulb from the device

ID and routes the command to the appropriate DIGW, which

is connected to the desired light bulb. The communication

module (M1) of the DIGW receives the signal from the local

controller and converts the signal into a format, which is

understandable by the processing module (M2) and then

passes the message to M2. M2 then calls the appropriate

function F(C) to turn on Bulb1. F(C) gets executed via the

interface module (M3), and the light bulb gets switched on.

The ampere sensor connected to Bulb1 detects a change in the

state after the command execution and sends the sensor data

to the mobile phone via the local controller and the central

controller, respectively. The application then automatically

re�ects the new state of the light bulb in the UI. Also, the

temperature reading of the room is periodically sent from

the temperature sensor (T1) to the mobile application via the

local controller and the central controller.

C. Data Structure
Our system implementation used six data types, as shown

in Table II.

TABLE II. Data structure of message packets

Data Type Fields
Authentication Username, Password, Reply �ag

Location LocationID (IPv6 address), Location SSID

Device DeviceID, Device name, Device type,

LocationID, StateID

Sensor data SensorID, FloatData

Command DeviceID, DesireState, Reply

Preset Room Type, DeviceID, DesireState

Each data type is described as follows.

• Authentication: Username and Password are used

for storing the credentials for authorized users. Reply
�ag indicates whether a command is successful or

not.

• Location is identi�ed by the static IPv6 address

assigned to the local controller. In addition, it consists

of a human-readable name in the form of an Service

Set Identi�er (SSID) that in projected in each room.

• Device stores the details of a device. The mobile

application uses this message packet to know the

type and state of devices present in a room.

• Sensor data stores the reading of the sensors. This

reading is periodically sent to the local controller.

• Command is a message triggered by the end user

via the mobile application. It contains information

regarding the requested action by the end user along

with the id of the end device on which the action

must be performed.

• Preset is used to change the setting of a group of

devices for performing a combined task. For example,

lecture preset is used to turn on AC, projector and

turn o� lights to prepare for a presentation.

V. Evaluation

In this section, we discuss the output of implementing

the proposed platform. For evaluation, we consider three

di�erent room environments: a personal room, a professor’s

o�ce room, and a computer lab. 10 student volunteers were

selected to evaluate various scopes manually.

Universal Access: To test the universal access of the system,

the volunteers were asked to control various devices in the

rooms via the mobile application. Three di�erent scenarios

were considered: 1) when they are inside the room and

connected to the university Wi-Fi, 2) when they are at

a di�erent location of the institute and connected to the

university Wi-Fi, and 3) when they are out of the institute and

connected to the Internet using 3G/4G LTE. In all the three

scenarios, the volunteers could successfully control all the

functions of the system, monitor room temperature, motion

inside the rooms, and state of the devices (light, fan, and

air conditioner) in real time. This shows that the devices are

accessible to the users irrespective of where they are present.

Personalization: The volunteers were asked to install the

application and perform the sign-up process on their own.

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Using the application, they were asked to add a room and

all controllable devices present in the room. The volunteers

could arrange the layout of the icons according to their

convenience. In average, they took 8 minutes to complete

the whole setup under regular Wi-Fi connectivity. This shows

that the users could complete the set up and personalize the

UI with ease.

Location Awareness:Global Positioning System (GPS) was

not used to detect location because of its high power con-

suming property. A unique SSID, which was projected by

all the local controllers, was used to detect the present

location of the user. The transmission power of Wi-Fi was

controlled to be minimal so that its signal did not penetrate

the walls of the room and was available only inside the room.

Once a user entered the room, the mobile application picked

up the SSID from the local controller and the application

dynamically changed its UI, depending on the location (e.g.,

room, lab, etc.) of the user. This ensured that the user was

shown the UI of the room along with devices that could be

controlled, rather than seeing the UI of some other room.

Consistent observations were made in all the three di�erent

room environments. This feature of dynamically changing

the UI of the application reduced the number of manual

operations a user needs to turn on a device from three to

just one.

Cost E�ectiveness: Most of the existing IoT solutions use

expensive components that are designed for some speci�c

purpose. On the contrary, our implementation uses general

readily available inexpensive components such as Raspberry

Pi, Arduino, etc. This brings the current cost of the deployed

platform to $51 only per room. Each deployed system can

accommodate up to 20 end devices. Table III shows the

breakdown of the cost of deployment per room.

TABLE III. Cost for deploying the platform in a room

Gadget Price (in USD) # devices supported
Raspberry Pi v3 35 20

Arduino 6 17

ESP8266 5 1

SPDT 5 8

Misc. devices 5 1

Total 51

Scalability of storage space and processing power: The

use of central controller and cloud infrastructure makes the

platform scalable in terms of storage space and processing

power. Using cloud infrastructure, the storage space and

processing power of the central controller can be increased as

per the scale of deployment. The storage space and processing

power for a local controller depend on the speci�cation of the

Raspberry Pi used.

Reaction Time: To test the reaction time and concurrent

execution of the commands, we present three instances of

command request and the time delays in di�erent stages

of execution. The details of the performance of command

request through a local controller are shown in Table IV.

In the table, the Number of requests represent the parallel

requests made to the same local controller simultaneously,

from di�erent end devices. Pi execution time represents the

time taken by the local controller to process and forward the

TABLE IV. Service processing time comparison of three instances of

command execution

Instance Number of requests Pi execution Communication delay Net latency
time (ms) delay (ms) (ms)

1 5 0.002 0.165 0.167

2 10 0.002 0.213 0.215

3 30 0.003 0.250 0.253

command to the DIGW after receiving it from the mobile

application. Communication delay represents the time taken

from the command to go from the mobile application to the

local controller. Net latency represents the total latency, i.e.,

the sum of Pi execution time and communication delay. The

same user may make multiple requests (e.g., turn on light and

AC), but each user is asked to make a di�erent request at the

same time. More parallel requests mean more processing load

on the local controller and more probability of request drops,

hence increasing the reaction time. We observe that the net

latency increases with the number of parallel requests. The

increase in latency is because of 1) drop of packets by the

local controller due to overloading, and 2) Wi-Fi signal delay

between the mobile and the local controller. The total delay

is consistently low and the system works well even in the

situation where 30 di�erent command requests were made

concurrently.

VI. Conclusion and Future Works

This paper presented a novel framework for making a

smart campus environment called SPACE. Our platform o�ers

user-centric functionality based on user location and prefer-

ence for controlling devices in the surrounding space through

a mobile application. We validated the performance of the

SPACE platform through implementation and practical use-

cases in a university campus. The modularization property

of the DIGW allows SPACE to integrate various modes of

communication, power supply, and devices. The proposed

platform has high potential to support a wide variety of

services and applications on it.

The future work involves polishing the hardware by

3D-printing custom-designed circuit boards and casing with

standard design guidelines. This may also help in downsizing

and reducing the cost of the local controller and the DIGW.

Another direction of future work is optimizing the behavior

of the smart campus based on learning of user activity data.

Arti�cial Intelligence and data mining algorithms may be

used to predict user activities and actuate the campus facility.

Privacy preservation of the user-generated data must be

considered for using such data.

References

[1] J. Bergman, T. Olsson, I. Johansson, and K. Rassmus-Gröhn, “An

exploratory study on how internet of things developing compa-

nies handle user experience requirements,” in International Working

Conference on Requirements Engineering: Foundation for Software

Quality. Springer, 2018, pp. 20–36.

[2] M. Swan, “Sensor mania! the internet of things, wearable computing,

objective metrics, and the quanti�ed self 2.0,” Journal of Sensor and

Actuator Networks, vol. 1, no. 3, 2012, pp. 217–253.

[3] T. Sztyler, “Towards real world activity recognition from wearable

devices,” in Pervasive Computing and Communications Workshops

(PerCom Workshops), 2017 IEEE International Conference on. IEEE,

2017, pp. 97–98.

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[4] A. Alghamdi and S. Shetty, “Survey toward a smart campus using the

internet of things,” in Future Internet of Things and Cloud (FiCloud),

2016 IEEE 4th International Conference on. IEEE, 2016, pp. 235–239.

[5] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context

aware computing for the internet of things: A survey,” IEEE Commu-

nications Surveys & Tutorials, vol. 16, no. 1, 2014, pp. 414–454.

[6] X. Zhang, R. Adhikari, M. Pipattanasomporn, M. Kuzlu, and S. R.

Bradley, “Deploying iot devices to make buildings smart: Performance

evaluation and deployment experience,” in Internet of Things (WF-

IoT), 2016 IEEE 3rd World Forum on. IEEE, 2016, pp. 530–535.

[7] L. Sánchez, V. Gutiérrez, J. A. Galache, P. Sotres, J. R. Santana,

J. Casanueva, and L. Muñoz, “Smartsantander: Experimentation and

service provision in the smart city,” in Wireless Personal Multimedia

Communications (WPMC), 2013 16th International Symposium on.

IEEE, 2013, pp. 1–6.

[8] D. Georgakopoulos, P. P. Jayaraman, M. Zhang, and R. Ranjan,

“Discovery-driven service oriented iot architecture,” in Collaboration

and Internet Computing (CIC), 2015 IEEE Conference on. IEEE, 2015,

pp. 142–149.

[9] I.-I. Pătru, M. Carabaş, M. Bărbulescu, and L. Gheorghe, “Smart home

iot system,” in RoEduNet Conference: Networking in Education and

Research, 2016 15th. IEEE, 2016, pp. 1–6.

[10] M. Nati, A. Gluhak, H. Abangar, and W. Headley, “Smartcampus:

A user-centric testbed for internet of things experimentation,” in

Wireless Personal Multimedia Communications (WPMC), 2013 16th

International Symposium on. IEEE, 2013, pp. 1–6.

[11] Hardware Guide, Intel Edison Kit for Arduino. San Val, 2015.

[12] M.-M. Moazzami, G. Xing, D. Mashima, W.-P. Chen, and U. Herberg,

“Spot: A smartphone-based platform to tackle heterogeneity in smart-

home iot systems,” in Internet of Things (WF-IoT), 2016 IEEE 3rd World

Forum on. IEEE, 2016, pp. 514–519.

[13] M. E. P. Hernández and S. Rei�-Marganiec, “Towards a software

framework for the autonomous internet of things,” in Future Internet

of Things and Cloud (FiCloud), 2016 IEEE 4th International Conference

on. IEEE, 2016, pp. 220–227.

[14] K. Hentschel, D. Jacob, J. Singer, and M. Chalmers, “Supersensors:

Raspberry pi devices for smart campus infrastructure,” in Future

Internet of Things and Cloud (FiCloud), 2016 IEEE 4th International

Conference on. IEEE, 2016, pp. 58–62.

[15] J. Joshi, V. Rajapriya, S. Rahul, P. Kumar, S. Polepally, R. Samineni, and

D. K. Tej, “Performance enhancement and iot based monitoring for

smart home,” in Information Networking (ICOIN), 2017 International

Conference on. IEEE, 2017, pp. 468–473.

[16] A. Jayatilaka, Y. Su, and D. C. Ranasinghe, “Hotaal: Home of social

things meet ambient assisted living,” in IEEE International Conference

on Pervasive Computing and Communication Workshops (PerCom

Workshops). IEEE, 2016, pp. 1–3.

[17] C.-L. Wu and L.-C. Fu, “Design and realization of a framework for

human–system interaction in smart homes,” IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 42,

no. 1, 2012, pp. 15–31.

[18] S.-Y. Lee and F. J. Lin, “Situation awareness in a smart home environ-

ment,” in Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on.

IEEE, 2016, pp. 678–683.

[19] M. R. Alam, M. B. I. Reaz, and M. M. Ali, “Speed: An inhabitant activity

prediction algorithm for smart homes,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 42, no. 4,

2012, pp. 985–990.

[20] L. Chen, C. D. Nugent, and H. Wang, “A knowledge-driven approach to

activity recognition in smart homes,” IEEE Transactions on Knowledge

and Data Engineering, vol. 24, no. 6, 2012, pp. 961–974.

[21] E. S. C. Platform, “Esp8266,” Espressif Systems, 2013.

[22] W. Kunikowski, E. Czerwiński, P. Olejnik, and J. Awrejcewicz, “An

overview of atmega avr microcontrollers used in scienti�c research

and industrial applications,” Pomiary Automatyka Robotyka, vol. 19,

2015.

[23] S. Balachandran, “General purpose input/output (gpio),” Michigan State

University College of Engineering. Published, 2009, pp. 08–11.

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

