
R2TCA: New Tool for Developing Reconfigurable Real-Time Context-Aware
Framework

-Application to Baggage Handling Systems-

Soumoud Fkaier∗†§, Mohamed Romdhani∗, Mohamed Khalgui∗‡,and Georg Frey§
∗LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia

†Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia
‡Systems Control Lab, Xidian University, China

§Chair of Automation and Energy Systems, Saarland University, Saarbrucken,Germany
Email:{soumoud.fkaier, georg.frey}@aut.uni-saarland.de , { khalgui.mohamed, mromdhani7}@gmail.com

Abstract—Context-awareness was introduced in various domains
of ubiquitous computing ranging from mobile computing to
automated manufacturing. It gained this importance based on
the fact that it provides the possibility to handle adaptive systems
according to the environment changes. Therefore, a wide variety
of frameworks was developed. However, some requirements are
still not satisfied, especially those related to resolving functional
constraints, such as inclusion, precedence, and shared resources
constraints. Dealing with real-time issues also has not been
satisfied. In this work, we propose a new tool for developing
a context-aware framework able to overcome the mentioned
problems. As proof of concept, we simulated a case study and
performed results analysis.

Keywords–Context-aware framework; Reconfigurable system;
Real-time system; Functional constraint; Flexible software service.

I. INTRODUCTION

Context-aware systems are characterized by their ability
to interact with the surrounding environment [1]. They sense
changes in their environment and adapt their behavior accord-
ingly [2]. These changes act as contexts that will induce system
reconfiguration. Since the 1990s, this issue has gained the
attention of both the academic and manufacturing fields. Thus,
many methodologies, middleware and frameworks have been
proposed [3][4][5]. One important field of application of this
paradigm is developing applications of adaptive control sys-
tems. In fact, these systems are self-adapting systems known
by the flexibility to adapt their behavior to the environmental
dynamic changes [6]. So, this feature can be satisfied based
on context-awareness.

Developing a context-aware framework for adaptive control
systems is a challenging task. In fact, these systems require a
set of particular exigencies. First of all, they have to adapt
their behavior properly without losing system effectiveness.
Reconfigurations must always be done safely without conflicts
or break downs. To clarify, logical relations between the tasks
of reconfiguration processes such as rejection rules must be
absolutely respected. Similarly, precedence constraint as well
as using some shared resources ought to be guaranteed. Just
as respecting these relationships, managing the allocation and
de-allocation of the used resources has to be insured as well.
No doubt, providing the services before their deadlines is of
great importance otherwise the services lose their meaning.

It is true that the available literature on context-aware
frameworks has evolved over time. Particularly, providing

solutions for real-time as well as functional constraints have
gained a great attention from researchers. However, these two
points of interest are still not developed in clear and efficient
way [10] [13] [14]. For this reason, we propose in this paper a
new tool for developing context-aware frameworks to solve the
aforementioned constraints. It is called Reconfigurable Real-
Time Context-Aware (R2TCA) framework. This new tool is
dedicated to developing reconfigurable systems running under
real-time and functional constraints. It enables to develop
applications following a layered architecture composed of four
layers [21]. Every layer has a specific role in the adaptation
process. We took an example of baggage handling systems as
adaptive system in order to prove the suitability of R2TCA.
Moreover, system response time as well as the memory uti-
lization rate is calculated so that we prove R2TCA robustness.

This paper is structured in five main sections. In Section
2, we present the state of the art. Section 3 describes the new
tool. Section 4 shows the application of the new tool to a case
study. Finally, Section 5 concludes the paper.

II. BACKGROUND

Many works have proposed different context-aware frame-
works. In this section, we give an overview of these achieve-
ments.

Forkan et al. [7] have proposed the Cloud-oriented context-
aware middleware in ambient assisted living (CoCaMAAL).
They focused on developing a scalable and context-aware
framework in order to facilitate both data collection and
processing. Forkan et al. [8] have performed a Big Data
for Context-aware Monitoring (BDCaM) that is an extension
of CoCaMAAL. They proposed a discovery-based approach
enabling systems to adapt their behavior at run-time. It enables
finding context information using big data. Mcheick et al. [9]
have proposed a context-aware architecture for health care
systems in which they focused on abstracting the context.
They consider that scalability and inter-operability are the key
features towards the abstraction. They added an extension for
the addition of sensors so that they simplify dealing with
sensed data. Edwin and Alvin [10] have defined CAMPUS,
which is a middleware for making automated decisions of
adaptation at run-time. Their aim was to reduce the effort
made by developers by getting rid of the need to predict
and maintain adaptation rules. Lei et al. [11] have proposed
a tool called PerDe. They focused on designing a domain-
specific language. Also, they provided a set of graphical tool-

113Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

kits covering development steps for ubiquitous computing ap-
plications. Balland and Consel [12] have introduced DiaSuite
which is a tool dedicated to drive the development processes
on specific domains of Sense/Compute/Control (SCC). It has
a compiler responsible for generating customized basis for
every development step. Liu and Cheng [13] have proposed a
middleware framework called MARCHES. It aims to support
time-critical adaptive vehicle systems. Also, they tried to im-
prove reconfiguration efficiency for these systems in changing
environments. Papadopoulou et al. [14] have proposed an
approach of development of pervasive systems based on the
notion of Personal Smart Space (PSS). In this work, they
addressed the issue of sharing resources.

These existing concepts and tools have been developed
in order to satisfy adaptive systems requirements. Although,
most of them do not propose a clear strategy to handle
real-time services. In addition, there are no solutions that
have treated functional constraints like managing dependencies
relations. In addition, resource sharing was not considered in
the majority of the existing works. Moreover, coherence rules,
such as inclusion and exclusion rules, were not considered
either. That is why we propose in this paper a new context-
aware framework in order to overcome these constraints. We
implemented a four layers architecture where every layer has
its specific role. This new tool is able to satisfy what the
existing works do not.

III. R2TCA: NEW TOOL FOR RECONFIGURABLE
REAL-TIME CONTEXT-AWARE SYSTEMS

The four layers architecture is given as follows: (i) Recon-
figuration layer, (ii) Context control layer, (iii) Services layer,
and (iv) Communication layer. The technical description and
details of the internal models and behavior of each layer is
available in a research report at [21]. The goal of this paper
is to present the implemented tool and to show its execution.

Figure 1. The modules of R2TCA layers.

Fig. 1 presents the superposition of the framework’s four
layers. The description of layers and their modules is depicted
in the next paragraphs.

A. Reconfiguration Layer
This is the first layer in the architecture (see Fig. 2). It is

responsible for collecting triggered events in the environment.
This collection is ensured thanks to sensors and the layer
considers these events as reconfiguration requests. Then, it
forwards the reconfiguration requests to the upper layer. The
second role of this layer is to transfer commands coming from

the upper layer after having checked the constraints to the
actuators of the connected devices.

Figure 2. Reconfiguration layer modules.

Fig. 2 shows the composition of this layer. It is composed
of four main modules. Event Listener is listening for the
events. Handling is responsible for treating the sensed events
and forwarding them to the upper layer. Receive Commands
is responsible for switching the changes to the environment.
Apply on Command Devices is responsible for delivering the
needed actions to the actuators.

B. Context Control Layer
This is the second layer in the architecture. It is the key

layer in the entire proposed framework since it is responsible
for controlling the execution of the adaptation process. It is
composed of three components, as follows: controller unit,
functional pool and scheduler pool.

1) Controller Unit: It is the component responsible for
the collaboration between the layers of the architecture and
between the components of the context control layer (see Fig.
3). Its role is to receive reconfiguration requests sent by the
reconfiguration layer and: (i) decides the modification level
that should be processed (whether loading a new service or
updating some objects of a service or updating some data of a
service), (ii) sends functional constraints to the functional pool
to be checked, (iii) sends tasks to be executed to the scheduler
pool.

Figure 3. Controller unit modules.

2) Functional Pool: This pool is responsible for checking
functional constraints that can be present in adaptive systems.
It guarantees the control of dependencies such as using shared
resources. Also, it offers the possibility to order the services
according to their importance and precedence relation through
a priorities table. In addition, it keeps coherent execution of the
services by checking inclusion and exclusion rules. Moreover,
it provides the ability to allocate and de-allocate resources to
be used. Fig. 4 depicts the test levels that guarantee a correct
functional behavior.

114Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 4. Functional pool modules.

3) Scheduler Pool: This pool is responsible for scheduling
real-time tasks. It offers the possibility to employ different
categories of scheduling protocols (see Fig. 5). It takes in
protocols for scheduling periodic tasks with fixed priorities
(Rate Monotonic [15] and Deadline Monotonic [16]) and
dynamic priorities (Earliest Deadline First [17] and Least
Laxity First [18]). Also, it takes in scheduling of aperiodic
tasks thanks to Polling, Deferrable and Sporadic servers [19].
Not only that, but it enables scheduling with regard to sharing
resources through Priority Ceiling Protocol [20].

Figure 5. Scheduler pool modules.

C. Services Layer
This is the third layer in the architecture. It contains

services containers. In fact, a service is the set of tasks to
be accomplished by the system. These tasks are translated in
the form of code organized in objects (these objects are classes
from the object oriented programming).

Figure 6. Services layer modules.

Fig. 6 depicts the services containers. Every container is
composed of a set of classes including the tasks of the system.

D. Communication Layer
This is the fourth and the last layer in the proposed

framework. It represents the interface of the framework to the
developers (Fig. 7). It contains a set of interfaces (from object

Figure 7. Communication layer modules.

oriented programming) that encapsulates the tasks offered by
the services. Each interface represents one service.

R2TCA is distinguished by the high level of control during
leading reconfigurations. It provides a whole component to
handle the correctness of the processes execution. Neither
deadlocks nor blocking will be faced at run-time thanks to the
functional pool. R2TCA solves the problem of system feasi-
bility by including a scheduler pool. This pool guarantees that
all services will be executed before exceeding their deadlines.

IV. APPLICATION

Based on the R2TCA description presented in the previ-
ous section, we have implemented our framework using C#
programming language. We have developed the four layers.
We proved the suitability of our work by developing a control
application of an airport baggage handling system.

A. Baggage Handling System Model and Design
A baggage handling system (BHS) is composed of different

devices like conveyor sections, Radio Frequency IDentification
(RFID) readers, X-ray sections, pushers, etc. The main target
behind using such system is to transport passenger baggage
to the right destination at the right time. Fig. 8 depicts an
example of BHS. There are various services accomplished
by this system: up-stream, down-stream, merging, diverting,
tracking, and stop services.

Figure 8. The baggage handling system structure.

To be executed as expected, the BHS has to overcome
some problems. First, this system can face reconfigurations
at run-time. These reconfigurations can be caused by different
reasons like maintenance, failures, human intervention, actions
in the environment. So, the system should adapt its behavior
accordingly. This adaptation is not a trivial task since putting
the system offline or causing some blockage are not accept-
able. Thus, controlling functional aspects of reconfiguration
processes is really a crucial need. Moreover, conveying the

115Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

baggage from check-in to the right destination must not take
a long time, otherwise the system loses its effectiveness. In
this context, we implemented R2TCA a new tool providing
the possibility to overcome these problems.

B. Contribution: the new tool R2TCA
In this subsection, we present our developed tool R2TCA.

We provide a description of the implementation of the main
functionality.

Figure 9. The developers interface of R2TCA.

We have implemented R2TCA which includes the frame-
work services. Fig. 9 depicts its interface. This interface
enables developers to access the code of the framework and to
use it in order to implement control applications. The folder
Framework shown in Fig. 10 contains all the packages and
classes of our framework. Developers have to use these classes
by means of inheritance. They have the possibility to edit the
folder Developer and create their own project.

Figure 10. The packages of R2TCA.

In their new projects, developers are free to use the
scheduling protocol that fits their needs, they are also free to
modify, add, and delete some services (see Fig. 11):

Figure 11. The developer project files.

We have implemented all the scheduling protocols afore-
said in the section of scheduler pool. Feasibility tests and
simulations were performed. Let us see how this tool can be
used with a baggage handling system.

C. Simulation of the baggage handling system
Before we go to the simulation and test, let us present the

developed services and the relations between them.

TABLE I. SERVICES FEATURES.

Name ID Priority included
services

excluded
services Resources Type

Stop 0 1 4 1,2,3,5 R Real-time
Upstream 1 4 4 0,2 R,Q Real-time
Downstream 2 4 4 0,1 R,Z Real-time
Merge 3 3 4 0,5 - Real-time
Track 4 2 - - R Real-time
Divert 5 3 4 0,3 R,Q Real-time

As mentioned in Table 1: Service stop has the highest pri-
ority, service track has a lower priority, both merge and divert
services have equal priorities which is less than track priority,
up-stream and down-stream also have the same priority, which
is the lowest priority.

The relation between these services can be defined as fol-
lows: (i) Services up-stream and down-stream are in exclusion
(because they are opposite). (ii) Services merge and divert are
also in exclusion. (iii) Service track is in inclusion with all the
rest of services. (iv) Service stop is in exclusion with the rest
of services. We mentioned also the shared resource R and Q
and the type of services (whether they are real-time or not).

We consider the BHS shown in Fig. 8. Baggage has
to be transported from the check-in point to the departure
gates. Initially, service down-stream and track are running. A
reconfiguration scenario arises when the conveyor 16 is broken
down. Baggage has to be routed another way, so the control
application will load the stop service to stop the down-stream
and then to run up-stream until reaching a diverting section
(see Fig. 12).

Figure 12. The reconfiguration scenario.

The controller unit begins by selecting down-stream and
track service from the services layer (see Fig. 13).

Figure 13. The controller selection of downs-stream service

After that, the controller sends a functional request to the
functional pool in order to verify the needed restrictions. Once

116Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

called, the functional pool creates the necessary tables. It
begins with creating the exclusion matrix (this matrix helps
to determine which services can work together and which
services cannot work together, as we mentioned in Table 1).
Similarly, it creates the inclusion matrix that helps to determine
which services can be executed simultaneously. Then, it creates
priorities, dependencies and resources tables.

After creating all the necessary control matrices and tables,
the functional pool starts the verification of the functional
requirements of the down-stream service. First of all, it will
check the priority of the selected service from the priorities
table. The priority of down-stream is 4. The functional pool
will verify inclusion and exclusion rules thanks to the created
matrices. Then, it checks the dependencies rules using the
dependencies table. It verifies if there are shared resources
between the services. As shown in Fig. 14, service down-
stream uses the resources R and Q, and service track uses
the resource R. So, it returns that there are shared resources
and Priority Ceiling Protocol has to be used to control these
resources. Finally, resources allocation table will be checked
to allocate the other needed resources (see Fig. 15).

Figure 14. Checking functional constraints (first part).

Figure 15. Checking functional constraints (second part).

Once all these constraints are verified, the functional pool
sends a positive feedback to the controller. At this level, the
controller verifies if the services type is real-time or not. Down-
stream is defined as real-time service in our system, so it will
be sent to the scheduler pool to be scheduled based on the
chosen protocol (in our case, Rate Monotonic is selected to

handle periodic tasks and the polling server to handle aperiodic
tasks).

The same steps of checking will be repeated with the
service track. As seen in Table 1, the downstream and track
services are real-time services, so they will be switched to
the scheduler pool. The scheduler pool starts the execution of
services. At the period of Polling Server (Fig. 16), it checks
the list of aperiodic events (reconfiguration events).

Figure 16. Checking queue of aperiodic tasks.

While our system is running and conveyors are advancing,
a problem arises with the motor responsible for conveyor 16,
making it unable to execute any command. So, our system
should find another valid path to transport baggage to the target
destination. This change is picked-up by R2TCA when sensors
send an event to stop down-streaming and run up-streaming
until reaching a diverting section. Here, stop and up-streaming
will be inserted in the queue of aperiodic tasks. This change
is considered a reconfiguration scenario.

Before any verification, the controller checks the feasibility
of the system and decides if this event will be accepted or
not. After verifying this condition, the controller verifies that
once accepted, this new event will not cause the lower priority
events accepted and not yet executed by the system to miss
their deadlines.

After accepting the new event, the controller extracts the
ID of the service stop (ID=0), then sends a request to the
functional pool. As Table 1 shows, service stop has the priority
0 (the highest priority) and is in exclusion with all the other
services except the service track. On the other hand, service
stop includes track service. So, the track will not be deleted
from the list of competitive services. The functional pool
verifies dependencies and resources rules then returns the
feedback to the controller. The controller sends the aperiodic
event stop to the scheduler pool by putting it in the queue of
aperiodic tasks (see Fig. 17).

Figure 17. Controller sends aperiodic tasks to scheduler pool.

The stop service is used in order to stop the down-stream
of conveyors. After stopping down-stream, the reconfiguration
layer sends a second request to load the service up-stream.
Conveyors should move back until reaching a divert point.
The controller checks the feasibility, accepts up-stream event,
creates a functional request and sends it to the functional pool.

When sensors detect that conveyors reach the diverting
position, the controller loads the service divert. Then, it creates
a functional request and communicates with the functional pool
to verify the functional rules. After that, the controller sends
diverting event to the scheduler pool which will add it to the
queue of aperiodic events and execute it at the first activation
of the polling server. When the target point is achieved, the
system should resume its ordinary work.

117Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

D. R2TCA Performance
The contribution of R2TCA is that it improves the recon-

figuration process and ameliorates the adaptation of system
behavior. R2TCA helps systems to shorten the execution time
and so to hasten the response thanks to the functional pool.
In fact, this pool helps to avoid the time lost in starting the
execution of a wrong process. By checking the coherence rules
and tasks priorities, developers are confident in the correctness
of tasks execution. In addition, the dependencies table plays an
important role in minimizing the conflicts, avoiding deadlocks
and getting rid of the problem of priorities inversion. We have
performed a comparison between two simulation scenarios:
with and without the functional pool. The results are shown in
Fig. 18.

Figure 18. The system response time.

Fig. 18 shows that the red curve (with functional pool)
has smaller values than the blue curve (without functional
pool). This means that the system response time is faster
when using the functional pool. Also, it shows that, by the
increasing number of reconfiguration requests, more time is
saved compared to using only a few number of requests.
Therefore, using the functional pool is an efficient way to save
time.

Comparing R2TCA with other related work is beneficial in
terms of underlying the differences and highlighting the offered
advantages. To this end, we compared R2TCA with CAMPUS
[10] development tool. CAMPUS was proposed with the aim
of automating context-aware adaptation decisions at run-time.
We choose to compare our tool with CAMPUS since its logic
of the control process is similar to the logic of R2TCA.

In order to execute an adaptation process when using
CAMPUS, if a service is composed of nine tasks and if these
tasks are composed of two tasklets, the developers have to
prepare 2*9= 18 adaptation rules. The number of these rules
will increase with increasing number of services in the system
and also with increasing number of taskelts composing each
service. In addition, the performed rules have the risk to be tied
to a specific application and so it will be less flexible. Instead,
by using R2TCA the same number of adaptation rules will
be applied in all cases. The functional pool of R2TCA offers
the possibility to check six main rules by means of the six
tables (Priority, Precedence, Resources Allocation, Resources
De-allocation, Inclusion Matrix, and Exclusion Matrix). Table
2 shows a clear view of the gain in terms of adaptation rules
provided by R2TCA.

TABLE II. NUMBER OF ADAPTATION RULES OF R2TCA Vs CAMPUS.

Tasks
number

Tasklets
number

CAMPUS
adaptation
rules

R2TCA adap-
tation rules

Service1 1 6 1*6=6 6
Service2 2 3 2*3=6 6
Service3 8 2 2*8=16 6
Service4 6 3 6*3=18 6
Service5 4 7 4*7=28 6
Service6 3 9 3*9=27 6
Service7 5 3 5*3=15 6
Service8 7 2 7*2=14 6

According to Table 2, CAMPUS and R2TCA have the
same number of adaptation rules only in the simple cases
where the service has only one task composed of six tasklets
or in the case where the service has two tasks composed of
three tasklets. Otherwise, R2TCA provides a lower number
of functional rules which makes it easier for developers to
develop the adaptation process. No doubt, every adaptation
rule will use system resources (such as the processor time, the
memory, the energy). The number of these resources depends
on the complexity of the rule and the controlled entities.

Fig. 19 contains an approximate calculation of the system
response time when using R2TCA and CAMPUS.

Figure 19. The processing time.

Fig. 19 shows that the processing time of the services is
almost the same when using R2TCA and CAMPUS for eight
services or less. But when the number of services is higher,
R2TCA has a lower processing time compared with CAMPUS.

After that, we wanted to make sure that by adding the
extra control pools (functional and scheduler) the system will
not be lead to a point of congestion or bottleneck. Processor
utilization as well as energy resources have to be absolutely
sufficient. No doubt, the memory consumption at run-time is of
great importance and it represents a key factor to get a correct
reconfiguration process. That is why we have calculated the
memory utilization rate when there is an increasing number of
reconfiguration requests.

Fig. 20 shows that by increasing the number of reconfig-
uration requests (receiving 60 requests simultaneously), the
system uses 74% of the available memory. This value is
considered acceptable since it does not cause the system to
be very loaded.

118Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 20. The memory utilization.

V. CONCLUSION

In this paper, we have presented the new tool R2TCA, a
context-aware framework devoted to the development of con-
trol applications of adaptive systems. This new tool provides
developers with the opportunity to respect both functional and
real-time constraints. On one hand, the functional pool helps
developers to check the inclusion and exclusion rules as well
as to handle the resources to be allocated, de-allocated and
shared. On the other hand, the scheduler pool guarantees the
feasibility execution of services by offering various types of
scheduling protocols. The robustness of R2TCA was proved by
implementing our case study (the baggage handling system).
R2TCA helps improve the response time of the system. Not
only that, but also it is an interesting tool maximizing the
resources utilization. In further works, R2TCA can be extended
in order to include other control components. We plan to
empower our framework by adding artificial intelligence so
that we enable the prediction of context. Also, we consider to
add a component responsible for quality of service issues.

REFERENCES

[1] G. D.Abowd, et al. ”Towards a better understanding of context and
context-awareness.” International Symposium on Handheld and Ubiq-
uitous Computing. Springer Berlin Heidelberg, pp. 304-307, 1999.

[2] D. Salber, A. K. Dey, and G. D. Abowd, ”Ubiquitous computing:
Defining an hci research agenda for an emerging interaction paradigm.”,
GVU Technical Report;GIT-GVU-98-01, 1998.

[3] X. Li, M. Eckert, J.-F. Martinez, and G. Rubio, Context aware middle-
ware architectures: Survey and challenges, Sensors, vol. 15, no. 8, pp.
20 57020 607, 2015.

[4] U. Alegre, J. C. Augusto, and T. Clark, Engineering context-aware
systems and applications: a survey, Journal of Systems and Software,
vol. 117, pp. 5583, 2016.

[5] S. Sukode, S. Gite, and H. Agrawal, Context aware framework in iot: A
survey, International Journal of Advanced Trends in Computer Science
and Engineering, vol. 4, no. 1, pp. 01-09, 2015.

[6] W. Lepuschitz, A. Zoitl, M. Vallee, and M. Merdan, Toward selfrecon-
figuration of manufacturing systems using automation agents, Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, vol. 41, no. 1, pp. 5269, 2011.

[7] A. Forkan, I. Khalil, and Z. Tari, Cocamaal: A cloud-oriented con-
textaware middleware in ambient assisted living, Future Generation
Computer Systems, vol. 35, pp. 114127, 2014.

[8] A. Forkan, I. Khalil, A. Ibaida, and Z. Tari, Bdcam: Big data for context-
aware monitoring-a personalized knowledge discovery framework for
assisted healthcare, 2015.

[9] H. Mcheick, H. Sbeity, H. Hazimeh, J. Naim, and M. Alameh, Context
aware mobile application architecture (camaa) for health care systems,
in Humanitarian Technology Conference-(IHTC), 2014 IEEE Canada
International, pp. 15, 2014.

[10] E. J. Wei and A. T. Chan, Campus: A middleware for automated
context-aware adaptation decision making at run time, Pervasive and
Mobile Computing, vol. 9, no. 1, pp. 3556, 2013.

[11] L. Tang, Z. Yu, H. Wang, X. Zhou, and Z. Duan, Methodology and
tools for pervasive application development, International Journal of
Distributed Sensor Networks, vol. 10 no. 4 516432, 2014.

[12] B. Bertran, et. al Diasuite: A tool suite to develop sense/compute/control
applications, Science of Computer Programming, vol. 79, pp. 3951, 2014.

[13] S. Liu and L. Cheng, A context-aware reflective middleware framework
for distributed real-time and embedded systems, Journal of Systems And
Software, vol. 84, no. 2, pp. 205218, 2011.

[14] E. Papadopoulou, S. Gallacher, N. K. Taylor, and M. H. Williams, A
personal smart space approach to realising ambient ecologies, Pervasive
and Mobile Computing, vol. 8, no. 4, pp. 485499, 2012.

[15] J. Lehoczky, L. Sha, and Y. Ding, The rate monotonic scheduling
algorithm: Exact characterization and average case behavior, in Real
Time Systems Symposium, 1989., Proceedings. IEEE, pp. 166 171, 198.

[16] N. C. Audsley, A. Burns, and A. J. Wellings, Deadline monotonic
scheduling theory and application, in Control Engineering Practice, vol.
1, no. 1, pp. 7178, 1993.

[17] M. Spuri and G. C. Buttazzo, Efficient aperiodic service under earliest
deadline scheduling, in Real-Time Systems Symposium, 1994., Proceed-
ings. IEEE, pp. 211, 1994.

[18] J. Hildebrandt, F. Golatowski, and D. Timmermann, Scheduling co-
processor for enhanced least-laxity-first scheduling in hard real-time
systems, in Real-Time Systems, 1999. Proceedings of the 11th Euromicro
Conference on. IEEE, pp. 208215, 1999.

[19] B. Sprunt, L. Sha, and J. Lehoczky, Aperiodic task scheduling for hard-
real-time systems, Real-Time Systems, vol. 1, no. 1, pp. 2760, 1989.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky, Priority inheritance protocols:
An approach to real-time synchronization, Computers, IEEE Transactions
on, vol. 39, no. 9, pp. 11751185, 1990.

[21] http://www.aut.uni-saarland.de/mitarbeiter/frey/publications/

119Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

