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Abstract—Sensor networks are envisioned to have the capability
to detect the presence of an event or target in a monitored
region. Sensors can collect measurements about the target and
make local decisions about the presence or absence of the target.
To reduce probability of false alarms, collaborative detection is
usually exploited, where the local decisions are fused to arrive at a
consensus about the target presence. In general, the performance
of a sensor network can be evaluated in terms of detection
probability and false alarm probability. This paper adopts the
Constant False Alarm Rate (CFAR) detector for sensors to make
local decisions. The distributions of the target signal and noise
are assumed unknown a priori. Simple and effective methods are
proposed to estimate the distributions of sensor measurements.
The AND and OR fusion methods are exploited in making the
final decisions. Simulations are conducted to verify the analytic
results to the simulated results. The best selection of sensors to
participate the fusion in order to protect a particular location in
the monitored region is also shown by experiments. Essentially,
the paper analyzes the approximated detection probability and
false alarm probability based on the estimated distributions of
the unknown target signal and noise. Through simulations, it is
shown that those approximated results could be close to the true
values.

Keywords—Sensor networks; Target Detection; Data Fusion;
Constant False Alarm Rate.

I. INTRODUCTION

The advances of technologies in sensor networks have
made it possible to improve the capability of human to monitor
a region of interest. One potential application of sensor net-
works is to detect the presence of abnormal events or targets in
the monitored region. For instance, sensor networks have been
used in battlefield monitoring in order to detect unauthorized
intrusions[1], [2], or in wildfire detection to protect forests[3].
In such networks, sensors deployed in the monitored region
can sample the environment, exchange information with other
sensors, and make decisions about the presence or absence
of the events or targets. In many cases, the targets may be
dangerous or malicious. Consequently, to design effective and
reliable detection methods is an important issue for such
applications in sensor networks.

Many studies use data fusion to improve detection per-
formance in sensor networks[4], [5], [6], [7]. In most of the
studies, sensors are usually used to detect certain signals for
which the probabilistic distributions are assumed to be known.
However, in practice, the distributions of the target signal
and noise might not be known in advance. Furthermore, the
distributions could change from time to time caused by the
unpredictable and variant physical environment conditions.

Copyright (c) IARIA, 2015.  ISBN: 978-1-61208-418-3

This paper considers the problem of detecting a target with
unknown signal distribution in sensor networks. Basically, sen-
sors take samples of the target signal and measure the average
signal energy periodically. In each period, a local decision
about the presence or absence of the target is made by each
sensor using Constant False Alarm Rate (CFAR) detector. If
the measurements is greater than a carefully selected threshold,
it decides that a target is present. Otherwise, it decides that
no target is present. An appropriate threshold depends on
the distributions of the measurements in both cases when the
target is present and absent. A simple and effective method
is proposed to estimate the probabilistic distributions of the
target signal and the noise. Without complicated calculations,
approximate distributions of the measurements are estimated.
Moreover, data fusion is also used to further improve the
performance of the network. A consensus decision is arrived
at a fusion center periodically based on the local decisions
reported from sensors. Two fusion methods, namely AND-
fusion and OR-fusion, are investigated for data fusion in the
network. In particular, the global detection performance in
terms of detection probability subject to a fixed false alarm
probability is derived analytically based on the estimated
distributions.

Simulations are conducted to verify the correctness of
the analytic derivations of the detection performance. The
comparisons show that the analytic results are very close to
the simulation results. The discrepancy between the analytic
results and simulation results is mainly caused by the approxi-
mations of the signal distributions. In addition, it can be found
that not all sensors need to participate in the fusion. In fact, the
detection performance may decrease as the number of sensors
increases in the fusion. However, if too few sensors in the
fusion, it is not beneficial to target detection, either. The best
set of sensors to participate in the fusion for a certain target
location is also selected by simulations for both AND and OR
fusion. The selection can be the basis to generate an efficient
and high-performance surveillance sensor network.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III addresses the detection
mechanism and the analytic derivations of the detection per-
formance. Section IV shows the simulation results. The paper
concludes in Section V.

II. RELATED WORK

Target detection using sensor networks has been exten-
sively studied in the literature. A variety of detection methods
have been proposed for target detection in sensor networks[8],
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[9]. Some studies in the literature assume that the sensing range
of a sensor is a disc[10]. A sensor will report a positive deci-
sion if the target is present within its sensing range. However,
this model may not conform to real situations since it does not
capture the stochastic nature of sensing data. Detection errors
like false alarm and missing of target’s presence may occur
from time to time in real detection operations. Some other
studies use different probabilistic models to catch the uncertain
characteristics of detection operations in sensor networks[11],
[12]. In general, the detection probability is usually assumed
to be degraded with the distance from the target to the sensor.
Based on the assumption, in [11], the coverage of a location in
the monitored region is defined as the probability that at least
one sensor detects the target if it is present at the monitored
location. A sensor deployment strategy is proposed to achieve
that the minimal coverage over the region is greater than a
threshold. In [12], the detection probability of a mobile target
is analytically evaluated when a group of sensors deployed in
the monitored region. A probabilistic detection model where
each sensor can have heterogeneous sensing area is developed.

In order to improve detection performance, data fusion
is usually used to reduce the probability of false alarm or
missing[4], [5], [6], [7]. In [4], the monitored region is divided
into a grid and two data fusion methods applying to the grid are
investigated. One uses data reported from an individual cell and
the other uses data from adjacent cells. The latter is shown to
be able to generate better performance for the coverage. In [5],
the lower and upper bounds of fusion threshold is analytically
derived to ensure that a higher detection probability and lower
false alarm probability can be obtained compared to those
derived from the weighted averages of individual sensors. In
[6], the paper investigates collaborative target detection based
on data fusion. The optimal detector, which is proven to be
uniformly most powerful, is derived. In [7] and [13], the
latency of detecting a target based on data fusion in sensor
networks is also analyzed. Detection latency is an important
issue for real time detection. Recently, there is also work on
the problem of target detection in mobile sensor networks [14],
[15]. All of the above studies use data fusion, but derives
the detection mechanism based on known signal or noise
distributions. Our work is different from those previous studies
in that the distributions of the target signal and noise are not
necessary to be known in advance, which could be much closer
to real situations.

III. DETECTION
A. Sensing Model

Suppose that a target at location r emits a signal S; at
time ¢. The distribution of S; is unknown, but the mean and
variance of S; are easy to evaluate. Let j5 and o2 denote the
mean and variance of S;. Let S} be the signal sensed by sensor
i at location ;. The signal strength is assumed to be degraded
with distance. Thus, Sti can be modeled as follows:

S — (1)

|r — 7]
where |r — r;| is the Euclidean distance from the target to
sensor 7 and « is the decay factor. Note that since |r — r;|” is
a constant, the mean and variance of Sf are given as follows:
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where d; = |r — r;|“. Usually, the signal sensed by a sensor
is corrupted by noise. Let X/ denote the noise signal at sensor
7, and is modeled as a random variable with mean u, ; and
variance o2 ;. Noise can follow a variety of distributions in
different environment conditions. In this paper, the distribution
of X} is also assumed to be unknown. The final signal sensed
by sensor i is yi = S; + X;.

Generally, each sensor in the network measures the average
signal energy over a sampling period. The measurement of a
sensor can be expressed as

1 < a2 1 d i 2
Mi= 3> [uil =D Isi+ XiT', 3)
t=1 t=1

where T is the number of samples in one period.

B. Approximation of Measurement Distributions

In each sampling period, each sensor would make a local
decision based on its measurements. Assume that the sampling
result at each time instant is independent. The distribution of
the measurement M; can be approximated by Central Limit
Theorem (CLT). When the target is absent, the measurement
contains only noise, i.e.,

1 r 12
Mi =z > | X 4)
t=1

Suppose X} is an independent identically distributed (i.i.d.)
random variable. First, the distribution of XZQ is determined.

In order to apply CLT, the mean and variance of XZQ need
to be determined. It is easy to get E[|X/]*] = pZ,; + o2 ;.
However, there is no closed form expression for the variance of
|X,f|2. To solve the problem, “Delta Method”, which finds the
approximation of a function of a random variable is exploited.
Delta Method is described as follows.

Proposition 1: Let x be a random variable with mean p
and variance o2. The variance of a function f(z) can be
approximated by

Var(f(x)) = [f'(w)]* x o*.
Proof: The Taylor series expansion of a function f(-) at value

a is given by

(x — a)?

(@) = fla) + f(a)(z = a) + f7(a)—;
Take the first two terms as an approximation and let a = p,

f(@) = f(u) + £ (p)(x — ).

Take the variance of both sides, one can have

Var(f(z)) ~ [f (W)]* x Var(z).

Let f(X}) = Xi*. From Proposition 1, the variance of X}
can be approximated by 4/@71-03 ;- Using the approximation as

the variance and the mean of X}~ obtained previously, by CLT,
when T is large, M; converges in distribution to a Gaussian
distribution N (p;0,02), where

Hi,0 = Mi,i + Ui,z‘ and 01'2,0 = 4#3:,1“73,1'/T- (%)
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Note that the mean ;o is accurate, but the variance 01-2’0 is
approximated based on Proposition 1.

The approximated distribution of M; when the target is
present can also be derived in a similar way. If the target is
present, sensor measurements are mixed by target signal and
noise as in (3), which can be rewritten as follows:

1 & a2 1 a 2 2 d .
M= 7 30 IS+ 5 SO+ 5 Y[ sixd|
t=1 t=1 t=1

Similar to the target absence case, using CLT and Proposition
1, the distributions of the first two terms in (6) can be
approximated by the following two Gaussian distributions.

(6)

1 2 4
T Z ‘SH N (Mgz + Uiz‘v Tuiiaii) @)
t=1
1 < 12 9 5 4 9
T Z ‘Xtt‘ N (:uz,z + Uz,i’ T:u’z,z z,i) (8)
t=1

For the third term, assume that target signal and noise are
independent, one can also get the mean and variance of .S} X/
as follows:

E [StLXg] =F [Sﬂ E [th = Ms,ilz,i

Var (S{X}) = E|(SiX] ~ poittes)’] ©)

E [S"'Q} E [Xﬂ — 22, (10)
ILL&L ;C’L+NJ,L 6’L+0-5LO—EL (11)

Again, by CTL, when T is large, the distribution of the third
term in (6) can be approximated by a Gaussian distribution as
follows.

2
+Us zaxz
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t=1

(12)
Obviously, the distribution of measurement M,; when the
target is present can be approximated by adding the three
Gaussian distribution in (7), (8) and (12). Therefore, when the
target is present, M; can also be approximated by a Gaussian

distribution M; ~ N(p;1,07,), where

it = 02, + 00+ (Bsi + pai)” (13)
and
2 4 2 2 2
Uz = T (Ms 7 + /’[/J, L) (Us,i + Ua;,i) + Us ’LUJ, ' (14)
Again, the mean p;; is accurate, but the variance 01-2’1 is

approximated based on Proposition 1.

C. Local Detection

With the distributions of sensor measurements, it is possi-
ble to control the performance of the detection operations. By
the detection procedure, sensors would collect measurements
and make a local decision about the presence or absence
of the target. A potential method to make the decision is
the CFAR detector as shown in Figure 1. Essentially, the
detector compares the signal energy measurement, M;, to a
threshold, ;. If the measurement is greater than the threshold,
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Figure 1. Constant false alarm rate detection

the detector reports a positive detection. Otherwise, it reports
a negative detection. The false alarm probability is defined as
the probability that the detector makes a positive decision (i.e.,
the target is present) when the target is actually absent.

From the previous derivations, the approximate distribu-
tions of measurements when the target is present and when
the target is absent are known. The detection threshold 7; can
be determined subject to a false alarm probability constraint.
Specifically, let Hy be the null hypothesis for the condition
that the target is absent and H; be the alternative hypoth-
esis for the condition that the target is present. When the
target is actually absent since M; conforms to a Gaussian
N(u2 ;4 02, 712 ;02 ;). the false alarm probability is given
by

Pfﬂ' = P(M‘>'I7i|HO) (15)
- Q<m ““)>, (16)
04,0

where p;0 and o, are from (5), and Q(x) is the tail
probability of a standard normal distribution, i.e.,

2= [Ton (L)

Thus, given a tolerable false alarm probability, one can deter-
mine the threshold 7; for the detection operation.

Furthermore, given the target is present, M; conforms to
N(p4,1,0:,1). Detection probability is defined as the probabil-
ity that the detector decides a target is present while there is
a target present. Therefore, the detection probability can be
derived as

_ Q(m—um)’ (18)
0i,1

where (1; 1 and o1 are from (13) and (14).

D. Fusion

To further reduce potential false alarms, local decisions of
sensors are sent to a fusion center where a consensus decision
about the presence or absence of the target is made. Two
common used fusion methods are AND fusion and OR fusion.
For the AND fusion, the fusion center decides that a target
is present if all sensors participating the fusion report positive
local decisions. Otherwise, it decides that no target is present.
Therefore, the false alarm probability of the final consensus is
the probability that all sensors report positive local decisions
when there is no target present, i.e.,

Py =] P
=1

19)

116



UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

5000 F
* % "
4000 . * * .
¥ * *
3000(" -, R
o 5 *
2000} L e
ot T *
10000« o,
* . * * sensor
* o * o target

O0 1000 2000 3000 4000 5000

Figure 2. Sensor deployment

In contrast, the detection probability of the final consensus is
the probability that all sensors report positive local decisions
when a target is present indeed, i.e.,

Py =[] Pas.
=1

Similarly, for the OR fusion, the fusion center decides that
a target is present if at least one sensor participating the fusion
reports a positive local decision. Otherwise, it decides that no
target is present. Therefore, the final false alarm probability
and detection probability can be derived as in (21) and (22),
respectively.

(20)

n

Pr=1-]]0-Pi) (21)
=1

Pa=1-]]0 - Pus) (22)
=1

IV. SIMULATIONS

In the simulations, a sensor network is deployed in a 5000
meter X 5000 meter field. There are 50 sensors deployed in
the field randomly as shown in Figure 2. The target is assumed
to be at location (2000, 2500) if it is present. The signal of the
target is assumed to be a random variable with mean 50000
and variance 3. The signal decays with distance and the decay
factor is @ = 2. Without loss of generality, a Gaussian random
process is used to generate the target signal. It is noted that
any other random process can be used without affecting the
correctness of the proposed method. The noise process at each
individual sensor is also assumed to be Gaussian with mean
between 1 to 3 and variance between O to 1.

The distribution of the measurement M; is first evaluated.
Sensor measurement M; is the average of signal energy taken
during a sampling period as shown in (3). The mean and
variance of M, when the target is absent are derived in (5)
and when the target is present in (13) and (14), respectively.
The mean in (5) and (13) are accurate, but the variance in (5)
and (14) are estimated by Proposition 1. However, since the
target signal and noise signal are assumed to be Gaussian, the
true variance of M; can also be derived as follows. Let x be
a Gaussian random variable with mean p, and variance o?2.

Assume that
y=\——1-
Oy
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TABLE 1. Measurement statistic characteristics of a node at (1031.713,

2778.091)

Hy Mean Variance

T Simulation True Simulation Estimation True

30 1.313263 1.317921 0.015507 0.014908 0.015462
300 1.318351 1.317921 0.001414 0.001491 0.001546
800 1.317386 1.317921 0.000546 0.000559 0.000580
H, Mean Variance

T Simulation True Simulation Estimation True

30 1.424624 1.429481 0.016872 0.014938 0.016818
300 1.429922 1.429481 0.001537 0.001494 0.001682
800 1.428929 1.429481 0.000595 0.000560 0.000631

Taking the square of both sides of the equality, one can have
o2y’ = a® = 2 + 112
Therefore,
Var(z?) = Var(o2y?) + Var(2u.x).

Note that y is a standard Gaussian random variable and 3?2
is a Chi-square random variable with one degree of freedom.
Thus, y2 has mean 1 and variance 2. Then,

Var(z?) = 20t + 4u202.

Finally, the variance of & >/ 22 is

% (203 + 4p2ol) .
Consequently, let = be the random variable for noise, the
variance of measurement M; when the target is absent can be
derived. Analogously, let = be the random variable for target
signal plus noise, the variance of measurements when target
is present can be obtained.

One sensor located at (1031.713, 2778.091) is chosen to
investigate the statistics of its measurements. The target signal
at the sensor is a Gaussian random variable with mean 0.05
and standard deviation 0.000003, and the noise is assumed to
be Gaussian with mean 1.1 and standard deviation 0.3. The
true mean and variance of the measurement are derived and
shown in Table I. The approximated variance estimated based
on Proposition 1 is also shown in the table. The results of
the estimated variance are pretty close to the true variance.
The histograms of the measurements are shown in Figure 3.
From the figures, when the number of samples 7" is small,
the measurement distributions for target absence and target
presence overlap in quite a lot area. It implies that it would be
more difficult for the sensor to tell whether the target is present
or absent. In contrast, when 7' is large, the distributions are
more concentrated and separated in two groups. Obviously, it
is easier for the sensor to tell whether the target is present.
Therefore, based on a fixed local false alarm probability, the
local detection probability would be higher if T is large.

Figures 4 and 5 show the Receiver Operating Character-
istic (ROC) curves for the AND fusion and OR fusion. In
each figure, the figure shows global false alarm probability
versus global detection probability. In order to get a proper
threshold for each sensor such that the fixed global false alarm
probability is sustained, the local false alarm probability for
AND fusion and OR fusion is choosen as in (23) and (24),

respectively.
Pri= 3/F; 23)
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Figure 4. The ROC curves of the AND fusion

Pri—1- 1P

Note that local false alarm probability for different sensors
can be different for a fixed global false alarm probability.
For the sake of simplicity, local false alarm probability of
all the sensors are set to be identical. Given the false alarm
probability, the detection threshold 7; for each sensor can be
determined.

(24)

For the AND fusion shown in Figure 4, the analytic results
are pretty close to the simulated results. The discrepancy
between the simulated and analytic results primarily because
the approximations made by CLT and the evaluations of the
variance based on Delta method. In general, the system has
higher detection probability if it can tolerate higher false alarm
probability. In addition, when the number of samples 7' is
large, the detection probability is higher. This is because local
detection probability is higher if T is larger, and, thus, from
(20), the global detection probability would be higher.

Similar results can be found in the OR fusion shown in
Figure 5. Comparing the results of the AND fusion and OR
fusion, the detection probability is higher for the OR fusion
based on a fixed global false alarm probability. Obviously, the
AND fusion requires all the sensors to report a positive detect
decision in order to arrive at a positive consensus, while the
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Figure 5. The ROC curves of the OR fusion

OR fusion only requires at least one sensor reports a positive
decision. The performance of the AND fusion may be degraded
by the strict detection rule.

Figure 6 shows the number of sensors participating in
the fusion versus the global detection probability using AND
fusion. The sensors are ordered by signal to noise ratio, which
is defined as the mean of the target signal over the mean of
noise signal, i.e., SNR = ps;/p,;. The sensors are added
to the fusion from the one with the highest SNR. In general,
the sensors are added to the fusion roughly in the order of
distance from the target location. From the result, it is obvious
to see that using all sensors in the fusion is not the best choice.
In fact, the detection probability decreases as the number of
sensors increases after using three sensors in the fusion. On the
other hand, if less than three sensors participate in the fusion,
the detection performance also decreases. Consequently, from
the simulations, the best choice for data fusion for the specified
target location shown in Figure 2 is to choose the three sensors
with the highest SNR. Similarly, for the other locations,
one can also find the best sets of sensors to monitor the
corresponding locations. The results could generate an efficient
and high-performance strategy for monitoring the region of
interest.

Figure 7 shows the results of similar experiments for
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Figure 6. The impact of number of cooperative sensors for AND fusion

the number of participating sensors except using OR fusion.
As shown in the figure, the system has highest detection
performance when the three sensors with the highest SNR
participates in the fusion. Either too many sensors or too
few sensors participating in the fusion are not beneficial to
the detection performance. It is consistent with the results in
AND fusion. Although, in OR fusion, getting more sensors in
the fusion would not hurt the performance much, using fewer
sensors to monitor the region is always desired.

V. CONCLUSION

This paper investigates collaborative detection for a target
in sensor networks when the distributions of the target sig-
nal and noise are unknown. A simple method is proposed
to evaluate the approximations of the distributions of the
sensor measurements. Using the approximated distributions,
local detection decision thresholds can be derived for sensors
based on CFAR detection. The global consensus decisions are
made by the AND fusion and OR fusion rules. The detection
performance in terms of the detection probability subject to
a fixed false alarm probability is derived. The performance
of both the fusion methods is verified by simulations. From
the results, the analytic results are very close to the simulated
results. In addition, the best set of sensors to participate in
the fusion for monitoring a particular target location is also
obtained by simulations. Selecting the best sets of sensors to
monitor potential target locations in the region of interest can
generate an efficient and high-performance surveillance sensor
network.

This paper only investigates the AND and OR fusion rules.
From the results, the OR fusion out performs the AND fusion
in terms of detection probability subject to a fixed false alarm
probability. However, these fusion methods may not be optimal
in certain circumstances. For the future work, developing better
fusion methods is worth to be explored.
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