
Bringing Context to Apache Hadoop

Guilherme W. Cassales
and Andrea S. Charão

Laboratório de Sistemas de Computação
Universidade Federal de Santa Maria

Santa Maria, RS, Brazil
{cassales,andrea}@inf.ufsm.br

Manuele Kirsch-Pinheiro
and Carine Souveyet

Centre de Recherche en Informatique
Université de Paris 1 - Panthéon Sorbonne

Paris, France
{manuele.kirsch-pinheiro,

carine.souveyet}@univ-paris1.fr

Luiz Angelo Steffenel
Laboratoire CReSTIC - Équipe SysCom

Université de Reims Champagne-Ardenne
Reims, France

luiz-angelo.steffenel@univ-reims.fr

Abstract—One of the first challenges when deploying MapReduce
over pervasive grids is that Apache Hadoop, the most known
MapReduce distribution, requires a highly structured environ-
ment such as a dedicated cluster or a cloud infrastructure. In
pervasive environments, context-awareness becomes essential to
coordinate the resources (task scheduling, data placement, etc.)
and to adapt them to the environment variable behavior. In
this paper, we present our first efforts to improve Hadoop by
introducing context-awareness on its scheduling algorithms. The
experiments demonstrate that context-awareness allows Hadoop
to better scale based on actual resource availability, therefore
improving the task allocation pattern and rationalizing resource
usage in a heterogeneous dynamic network.

Keywords–Context-awareness; MapReduce; Apache Hadoop; job
scheduling.

I. INTRODUCTION

Given today’s high volume of available data, new methods
of processing this huge volume are being researched. Recently
one of these new methods, MapReduce [1] and its most known
implementation Apache Hadoop [2], is gaining space among
both users and developers. MapReduce [1] is a programming
model for parallel data processing, while Hadoop is a software
platform implementing MapReduce. Thanks to Hadoop, it is
possible to easily process large data sets in a computer cluster.

Designed to work with homogeneous cluster environments,
Apache Hadoop is currently used not only on dedicated
clusters, but also over cloud computing infrastructures. Despite
its design, Hadoop has some liabilities that negatively affect
its performance. One of those drawbacks is the assumption
that every node has the same resource capacity, and that this
capacity is set in a default XML file. As the cluster size scales,
this task becomes very time consuming and error-prone and
ill-configured nodes will harm the overall performance.

Besides, this assumption of a homogeneous environment
limits the deployment of Hadoop over desktop and perva-
sive grids. Pervasive grids [3][4] are characterized by their
heterogeneity, integrating nodes with quite different capabili-
ties. Such heterogeneous environments represent an interest-
ing alternative to cloud computing infrastructures. Indeed, as
underlined by Schadt et al. [5], cloud computing solutions
present important drawbacks when considering data transfer
(transferring gigabytes of data across the network can be
costly) and data security/privacy (putting sensitive data on the
cloud may represent an important issue for some application).

In order to extract the best performance from Apache
Hadoop on heterogeneous environments, it is necessary to
reconsider how tasks are scheduled on the cluster. Indeed,
MapReduce performance in Hadoop is tightly tied to the
scheduler [6] and to its capability of observing the environment
characteristics. Currently, Hadoop scheduler considers only
information from the XML configuration file, ignoring the
actual state of the nodes. For instance, when running Hadoop
in homogeneous environments, the configuration files represent
indeed an easy way to configure a cluster, since one needs only
to discover the capacity of a node and to replicate the files to
every other node in the environment. However, when using
a heterogeneous environment, one will have to discover and
edit XML files for each node in a cluster. This behavior often
limits the Hadoop scalability in heterogeneous clusters, since
the configuration files will not follow real nodes characteristics,
and consequently, nodes will be limited to default values.

In order to overcome this drawback, we propose to improve
Hadoop scheduling through a context-aware approach. Context
can be defined as any information that can be used to char-
acterize the situation of an entity (a person, place or object)
that is considered relevant to the interaction between a user
and an application [7]. Context information has been used
for adapting application behavior during execution time [8][9],
adapting content [10] or components deployment [11][12], for
instance. We advocate that being aware of context in which a
job is executed may contribute to a better use of resources in
heterogeneous environments. In this paper, we propose to open
Hadoop scheduler to the job execution context, observing real
node conditions instead of a static (potentially mismatching)
configuration file. By collecting the job execution context, we
allow a better utilization of cluster’s resources and also a better
adaptation to heterogeneous environments.

Our proposal of context-awareness focuses therefore on
discovering the real node capacity and providing a scheduler
based on true observed information. In this paper, we
conducted experiments with a basic set of context information
(CPU, memory), which in our tests proved to be significantly
different from default values. The experiments demonstrate
that the applications performance can be widely improved
through the use of context information, which encourages
us to develop further the context-aware scheduling with
additional parameters such as data locality, CPU speed and
even task re-splitting to better explore idle resources and
speculative execution.

252Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The rest of the paper is organized as follows: Section II
introduces MapReduce model and the basis of Apache Hadoop
framework. Section III discusses related works, focusing on
context-awareness and on other improved Hadoop schedulers.
Section IV analyzes and evaluates Hadoop scheduling mech-
anism. Section V presents our proposal of context-aware
scheduling, while Section VI presents experiments and first
results. We conclude in Section VII.

II. ABOUT HADOOP

The Apache Hadoop is a framework that has the purpose
of facilitating distributed processing through the MapReduce
model. MapReduce [1] divides computation into two phases:
map and reduce. During map, input data is split into smaller
slices of data, whose analysis is distributed over the partici-
pating nodes. Each participant computes one (or more) slice
of data, generating intermediary key/values results. During
reduce phase, intermediary values concerning a given key
are put together and analyzed, generating final key/values
results. Hadoop framework is in charge of distributing data
and map/reduce tasks over the available nodes. As a result,
programmers need only to focus on map and reduce functions,
since data and task distribution becomes transparent.

Apache Hadoop has two main components (see Fig. 1),
which are Hadoop Distributed FileSystem (HDFS) and Yet
Another Resource Negotiator (YARN). These components
are respectively responsible for the data management on a
distributed file system and for MapReduce tasks and job
processing. YARN manages tasks and jobs distribution over the
available nodes and it is in charge of scheduling jobs according
to nodes capacity. Each node information is controlled by an
individual NodeManager, while overall cluster information is
centralized by the ResourceManager.

YARN integrates a scheduler that is responsible for dis-
tributing tasks over the available nodes. Current YARN struc-
ture (Fig. 1) aims at acquiring and using each NodeMan-
ager resource information to improve the performance of
its default scheduler, the CapacityScheduler. Basically, each
NodeManager consults configuration files, in order to discover
node declared capacity, and inform ResourceManager about
its existence. This information is transferred to the scheduler
that uses it for deciding an appropriate job scheduling. The
CapacityScheduler has the role of centralizing the information
about NodeManager’s capacities on the "master" node, keeping
track of them in a global pool of resources and distributing
them according to the ApplicationMasters requests.

In order to deploy Hadoop on a cluster, every node must
have some XML configuration files available in their local
Hadoop installation. In fact, given Hadoop huge dependence
on XML files, even the nodes resources are set by these files.
This peculiarity makes a more adaptive environment something
hard to achieve with the default Hadoop distribution.

III. RELATED WORK

Because Hadoop performance is tightly dependent on the
computing environment, but also on the application char-
acteristics, several researchers focused on bringing context-
awareness to Hadoop. Their works can be roughly classified

Client

ResourceManager
NameNode

NodeManager
ApplicationMaster

Client

DataNode

NodeManager
Container
DataNode

NodeManager

DataNode

NodeManager

DataNode

NodeManager
Container

DataNode

NodeManager

DataNode
Container

ApplicationMaster

Container Container

YARN / App
HDFS

YARN

Hadoop 2.x
daemon

architecture

Figure 1: General Hadoop 2.x (YARN) Architecture.

as: (i) job or task schedulers, whose purpose is changing the
Hadoop scheduling, and (ii) resource placement facilitators.

In the first case, we find works like Kumar et al. [6],
Tian et al. [13] or Rasooli [14]. Those assume that most
jobs are periodic and demand similar CPU, network and disk
usage characteristics. As a consequence, these works propose
classification mechanisms that first analyze both jobs and
nodes with respect to its CPU or I/O potential, allowing an
optimized matching of applications and resources when a job
is submitted. For instance, Kumar et al. [6] and Tian et al.
[13] classified both jobs and nodes in a scale of I/O and
CPU potential, while Rasooli et al. [14] go beyond I/O and
CPU potential and propose a full classification of jobs in
order to match these jobs with nodes belonging to the same
classification. Similarly, Isard et al. [15] proposes a capacity-
demand graph that helps in the calculation of the optimum
scheduling from a global cost function.

While the previous works focus on the improvement of
the overall cluster performance through an offline knowledge
about the applications and the resources, other works focus
on individual tasks in order to ensure a smooth operation. For
instance, works like Zaharia et al. [16] and Chen et al. [17]
focus on improving tasks deployment inside a job, as a way
to reduce the response time in large clusters, executing many
jobs of short duration. These works rely on heuristics to infer
the job estimated progress and decide whether to launch a
speculative task on another possibly faster machine. Similarly,
Chen et al. [17] propose using historical execution traces to
improve its predictions. They propose a re-balancing of data
across the nodes, leaving more data to faster nodes and less
data on slower nodes.

Finally, works like Xie et al. [18] aim at providing better
performance on jobs through better data placement, using
mainly the data locality as decision making information. The
performance gain is achieved by the data re-balancing in nodes,
feeding faster nodes with more data. This lowers the cost
of speculative tasks and also of data transfers through the
network.

We may observe that most of these works rely on the cate-
gorization of jobs and nodes, which is hard in a dynamic envi-
ronment like pervasive grids. Even when runtime parameters
such as elapsed time or data placement are considered, they
assume a controlled and well-known environment. Because

253Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

of these assumptions, these works fail on responding to the
requirements of pervasive grids. Indeed, previous works focus
on the reduction of response time or improvement of overall
performance, which is a goal slightly different from ours,
which is to adapt Hadoop to heterogeneous environments.

IV. HADOOP SCHEDULING

In order to improve Hadoop, it is important to understand
current mechanisms that would be influenced and whose
behavior should be altered. Thus, before presenting how we
extend current Hadoop behavior with context information, we
shall introduce the Hadoop resource allocation pattern.

A. Understanding Hadoop Allocation Pattern

Apache Hadoop operates in a master/slave hierarchy on
both components (YARN and HDFS), each component being
subdivided in numerous sub-components. On the top of YARN
daemons, as shown in Fig. 1, we found the ResourceManager
(RM), which is in charge of managing the resources from the
entire cluster and of assigning applications to the underlying
computing resources. These resources belong to the NodeM-
anagers (NM), and each NM will inform the RM the amount
of available resources upon start.

When a new job is submitted to the cluster, the Resource-
Manager registers the start of the job and then delegates
the supervision to an ApplicationMaster (AM). The Appli-
cationMaster is the manager of the application, which asks
for resources for the CapacityScheduler (a component of Re-
sourceManager). The CapacityScheduler tracks the free/used
resources on the cluster and grants them to the AM based on
the global (cluster) and local (application) limits. The granted
resources are presented as Containers, a processing instance in
which all the processing takes place.

Resource allocation is based on a set of parameters defined
in the XML configuration files. These parameters concern both
memory and number of cores for applications and containers,
and are composed by the minimum and maximum limit. If no
value is given for a precise node or application, default values
from the XML files are assumed, which can substantially differ
from real node characteristics.

With an experiment running on nodes with the same con-
figuration, it would be easy to discover the true capacity of
a node, change the values on a XML file and replicate it to
all other nodes inside the environment. The problem becomes
evident once the environment is not homogeneous, as it would
require the discovery of the true capacity of each node and
the creation of separated XML files for each node. Indeed,
quite often a cluster configuration does not follow real nodes
characteristics, being limited to default values.

B. Experimenting Resource Allocation

To better understand the impact of configuration parameters
on the resource allocation mechanism, we present in this
section an experiment where we compare different memory
requests against the minimum and maximum memory pa-
rameters. We considered four different scenarios: (i) default
allocation, (ii) request higher than maximum allowed, (iii)
request smaller than minimum allowed and (iv) request inside
the range.

Table I: RESULTS FOR RM MEMORY ALLOCATION EXPERI-
MENT.

Default Higher Smaller In Range

Minimum Memory (MB) 1024 512 2048 512

Maximum Memory (MB) 8192 768 8192 8192

Map Memory Request (MB) 1024 1024 1024 3456

Reduce Memory Request (MB) 1024 1024 1024 3712

Allocated Map Memory (MB) 1024 ERROR 2048 3584

Allocated Reduce Memory (MB) 1024 ERROR 2048 4096

The results from these scenarios can be seen in Table
I. The columns represent each scenario, while the first two
lines (Minimum/Maximum Memory) refer to configuration
parameters. The third and fourth lines (Map/Reduce Memory
Request) refer to the application request parameters. Finally,
the last two rows (Allocated Map/Reduce Memory) present the
resources effectively allocated to the job based on the other
parameters.

From these scenarios, we observe that a request with a value
higher than the maximum will cause an error that aborts the
job. For a request of a value smaller than the minimum, the
cluster grants the minimum allowed. The fourth scenario shows
a request inside the valid range. Although the requests were
similar, the resources granted were different. Indeed, when the
request is in the minimum-maximum range, Hadoop performs
a small set of calculations to determine how much memory will
be granted. Whenever the minimum allocation does not satisfy
the request, the granted value is incremented by the minimum
allocation until it matches one of the following cases: (a) the
value is equal to the request; (b) the value is higher than the
request and lower than the maximum allocation; or (c) the
value exceeds maximum allocation.

This experiment demonstrates that the default scheduling
is closely related to the resource availability. Having a wrong
information could ruin the performance of the algorithm. Since
there is no mechanism to automatically detect and modify re-
source parameters, dealing with a heterogeneous environment,
such as a pervasive grid, quickly becomes a challenging task.
It appears then clear that, in order to support heterogeneous
environments, Hadoop must be aware of its real (and not
supposed) execution environment.

V. CONTEXT-AWARE SCHEDULING

In order to detect the node real capacity, we chose to
integrate a context collector into Hadoop. This collector is
charged of observing the execution environment, allowing
an automatic detection of each node capacity. Thanks to
this context collector, context information representing real
memory and CPU conditions of each node can be observed,
allowing the proposal of improved scheduling mechanisms.

A. Collecting Context Information

Context information corresponds to a large concept, often
related to the observation of a user, a device or the execution
environment. Commonly, it is defined as any information that
may characterize the situation of an entity. This entity can be
a user, a device or the environment itself [7]. Quite often, con-
text information is used for adaptation purposes [9]. Context

254Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

awareness can then be seen as the capability a system has of
observing and reacting to the environment in order to adapt
its own behavior to context changes [8][9]. Different context
information can be observed for adaptation purposes, varying
from user’s profile, location and activities till characteristics
of the used device and execution environment [9][10][19].
Indeed, several works in the literature [11][12][20][21] propose
observing device execution conditions (including available
memory, CPU, network connection, battery consumption, etc.)
in order to adapt application execution to them, by selecting
or deploying appropriate components. In our case, we are
interested on the execution context of a job, which is composed
by the nodes executing it. We believe that Hadoop must be
aware of this execution context in order to schedule appropri-
ately submitted jobs. Among such information, we can include
CPU and memory capacities, node’s current charge, but also
network speed and data locality (related to HDFS replication)
to improve task allocation.

Nonetheless, in order to be useful, context information
should be acquired and modeled appropriately, with a minimal
impact to the overall performance of the running applications.
This is particularly true for Hadoop, whose goal is precisely
to improve performance of MapReduce applications [22]. A
lightweight mechanism, in the opposite to traditional context
management systems [8][9], is then needed.

Thus, to include context information on Hadoop, we inte-
grated a lightweight collector module, using the Java Monitor-
ing API (Application Programming Interface) [23], which al-
lows to easily access the real characteristics of a node, with no
additional libraries required. The collector module, illustrated
by Fig. 2, allows observing different context information, such
as the number of processors (cores) and the system memory,
using a set of interface and abstract classes that generalize the
collecting process. Due to its design, it is easy to integrate
new collectors and improve available context information for
the scheduling process, providing data about the CPU load or
disk usage, for example.

Context information is described by using a predefined name
and a description. Such name corresponds to a concept iden-
tified in a context ontology. This model, inspired from Kirsch
et al. [19], considers each context information as a context
element, for which multiple values can be observed. Context
ontology allows then to semantically describe each element,
while the description gives a human readable definition for it.

This collector module was integrated to the NodeManager,
since it is in charge of processing tasks and managing node
definition. In this first prototype, we collect node capacity
(available memory and number of cores), and this information
is then sent to the ResourceManager. As a consequence, the
information from the context collector module allowed us to
improve the Hadoop scheduler operation without having to
modify its implementation. This is especially interesting as
further works will be able to compare other schedulers from
the literature without having to modify their implementation.

B. Integrating Context Information

Context information detected using the context collector is
transferred to Hadoop scheduler, which can scale the allocation
limits to the real cluster resource availability. This scaling
affects the containers allocation as a function of the available

+getCollectorName() : String
+getCollectorDescription() : String

<<Property>> -bean : OperatingSystemMXBean
<<Property>> -name : String
<<Property>> -description : String

AbstractOSCollector

+collect() : List
+getCollectorName() : String
+getCollectorDescription() : String

AvailableDiskSpaceCollector

+CPUAverageLoadCollector()
+getNbObservation() : int
+setNbObservation(nbObs : int) : void
+collect() : List
#average(obs : double []- : Double

+DEFAULT_NB_OBSERVATIONS : int = 5
+DEFAULT_INTERVAL = int 500
<<Property>> -interval : int
-nbObs : int

CPUAverageLoadCollector +collect() : List <Double>
+CPULoadCollector()

CPULoadCollector

+collect() : List <Float>
+PhysicalMemoryCollector()

PhysicalMemoryCollector

+collect() : List <Double>
+FreeMemoryCollector()

FreeMemoryCollector

+collect() : List <Double>
+TotalProcessorsCollector()

TotalProcessorsCollector

+collect() : List<T>

<<Property>> +collectorName: String
<<Property>> +collectorDescription:String

<<interface>>
Collector

T

Figure 2: Elements of the context collector for Hadoop.

:Collector :Config
File

:Node
Manager

:Capacity
Scheduler

:Ressource
Manager

Alt

addNode

register

getResources

getResources

runTask
Figure 3: Simplified sequence diagram for resource registering
and granting.

memory and computing cores, impacting therefore on the
choice of tasks placement and how speculative task are started.
As a result, we could obtain a better usage of the resources,
minimizing the need for speculative tasks too. By adapting
the capacity to the cluster real resource, no resource would
be wasted or left inactive while the scheduler is making tasks
wait due to wrong information being received.

In order to integrate the collector, we identified the Node-
Manager (NM) as the best entry point, since this is the service
responsible for processing tasks. Collected context information
about available memory and number of cores is sent to the
ResourceManager (RM). When each NM registers to the RM,
it tries to obtain this information from the context collector,
which supplies NM with observed values. This information
is sent and provided to the CapacityScheduler that uses it
to dispatch tasks. Fig. 3 illustrates this process. It is worth
noting that, if the collector is unavailable, NM will keep using
traditional configuration files.

255Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Information from the context collector module allows us to
improve the behavior of the Hadoop scheduler without having
to modify its implementation. This is especially interesting as
further works will be able to compare other schedulers from
the literature without having to modify their implementation.

VI. EXPERIMENTS AND RESULTS

This section provides information about the experiments
we conducted to improve the Hadoop scheduling behavior,
as well as the results achieved. These experiments consisted
in deploying Hadoop services in a cluster with original Ca-
pacityScheduler and comparing it against a context-aware
CapacityScheduler. Theses experiments focus on two basic
parameters, available memory and number of cores, whose
injection in the CapacityScheduler is straightforward and re-
quire no modifications to the CapacityScheduler algorithm.
Additional context information can be included through the
collector module, as described in the Section V-A.

The experiments were performed in a cluster from the
Grid’5000 [24] computing environment. We used five nodes (a
master and 4 slaves), each having the following configuration:
2 AMD CPUs 1.7GHz, 12 cores/CPU and 48 GB of RAM.
All nodes run Ubuntu-x64-12.04, with JDK 1.7 installed, and
the Hadoop distribution was the 2.2.0 YARN version. As The
TeraSort benchmark was used as application subject.

A. Results and interpretation

With an experiment running on nodes with the same con-
figuration, it would be easy to discover the true capacity of
a node, change the values on a XML file and replicate it to
all other nodes inside the environment. The problem becomes
evident once the environment is not homogeneous, as it would
require the discovery of the true capacity of each node and
the creation of separated XML files for each node. Indeed,
quite often a cluster configuration does not follow real nodes
characteristics, being limited to default values.

Our first experiment compares the allocated node memory
when using the default implementation or our context collector.
Thanks to the context collector, we could be able to detect real
node characteristics, which are significantly different from the
default values, as one can see in Table II. This discrepancy
in capacity collected/used is due the utilization of default
XML parameters by the default scheduler. As stated before,
the Hadoop configuration is heavily dependent on XML files,
making it hard to extract the full potential of the cluster without
a delicate and time-consuming configuration. The default XML
files have the node memory set to 8 GB and the node number
of cores set to 8, that are reasonable numbers when using a
cluster of personal computers, but when deployed in a larger
cluster these values will, more often than not, waste potential.

Table II: RESOURCES AVAILABLE ON ORIGINAL AND
CONTEXT-AWARE CAPACITYSCHEDULER.

Original CapacityScheduler Context-aware CapacityScheduler

Node Memory 8 GB 48 GB

Node Vcores 8 24

The second experiment compares the behavior of the orig-
inal CapacityScheduler with our own context-aware Capac-
ityScheduler. This experiment used the same configuration

from the previous experiment. We launched a TeraSort job
with 5 GB data to sort, therefore requesting enough containers
and providing enough data to stress the cluster. The original
CapacityScheduler uses the default configuration, with a min-
imum allocation of 1 GB and 1 core, maximum allocation of
8 GB and 32 cores per node for a total resource summing
up 32 GB and 32 cores for the cluster. For the context-aware
CapacityScheduler, the collector detects all 192 GB and 96
cores on the cluster (48 GB and 24 cores from each node),
with a minimum allocation of 4 GB and 2 cores and maximum
allocation of 24 GB and 12 cores per node.

Figs. 4 and 5 present a chart with tasks execution (actually
the containers) and the nodes they are tied to. The different
segments indicate the tasks that have been allocated to a given
NodeManager, and the numbers inside the segment indicates
which containers are running at that moment. When a segment
ends, it means that at least one task has finished or a new task
has been started on that NodeManager. If a number was on a
segment and disappears on the next, that task has finished. If
a number wasn’t on the first segment and suddenly appears on
the next, that task has started. Because the default configuration
uses one single Reduce task, we simplify the diagram by
representing only the Map tasks.

Fig. 4 portraits the execution of the TeraSort algorithm
with the original CapacityScheduler. One can notice that some
containers had to wait for the completion of others in order to
start processing their tasks. Indeed, Hadoop splits the work in
38 Map tasks (numbered 2-39), which are distributed to the
nodes according to the known resource capabilities. When the
first tasks are completed, new tasks are provided to the nodes,
if any available (as illustrated in Fig. 4, where tasks 32-39
represent the second execution wave).

Fig. 5 portraits the execution of the TeraSort algorithm
with context-aware CapacityScheduler. In this case, the overall
completion time was reduced due to the fact that all containers
could be started right after the arrival of the request, thanks to
the higher resource availability.

After an analysis and comparison of both charts, it is
possible to notice that the default chart has containers 41-
43 started on node stremi-5 and container 44 started on node
stremi-42, while the context-aware chart has only the standard
containers, which are numbered 2-39. These extra tasks are
what Hadoop calls speculative tasks, when one or more tasks
are advancing slower than the rest, Hadoop creates new copy
tasks in order to prevent bigger losses in throughput. This
means that if the original tasks were indeed experiencing
issues, in the event they fail to complete, another task is already
processing the faulty task data, otherwise, if the task eventually
finishes its processing before the speculative, the copies will
be disregarded.

B. Heterogeneity Simulation

A third experiment was performed to simulate a
heterogeneous environment and test how well the context-
aware would adapt. Once again, the experiment consisted
in executing the TeraSort algorithm in the cluster with the
simulated heterogeneous environment using context-aware
CapacityScheduler.

256Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 4: Container assignment with the original CapacityScheduler.

Figure 5: Container assignment with the context-aware CapacityScheduler.

Figure 6: Container assignment in the simulated heterogeneous environment.

This experiment used the same configuration from the
previous experiment. The only difference is that the nodes are
purposely given false capacities when being added to the RM,
simulating the following heterogeneous cluster:

• stremi-17: 28 GB of memory and 14 cores.
• stremi-22: 32 GB of memory and 18 cores.
• stremi-33: 48 GB of memory and 24 cores.
• stremi-35: 24 GB of memory and 12 cores.

Fig. 6 portraits the execution of TeraSort within the sim-
ulated heterogeneous environment, also using context-aware
CapacityScheduler. Compared to the default case, the hetero-
geneous execution shows an improvement, but due to lower
cluster capacity, it is slightly worse than the context-aware
scheduler on homogeneous environment.

On this experiment a speculative task was launched, the
container 41. It is also noteworthy that the scheduler did not
change nodes to launch the speculative task, because the node
had spare capacity when the request for the speculative arrived.

This experiment shows that it is possible to use this context-
aware scheduler in a heterogeneous environment. Indeed, the
allocations were adapted to a slightly smaller cluster if com-
pared to the real environment. As a future work, it is possible
to set the allocation limits in function not only of total cluster
resources but also of each individual node resource capacity.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to improve Apache Hadoop
behavior with context information, thanks to a new context-
aware scheduler. These changes allowed Hadoop to be aware
of its execution context, and particularly of the real capacity
of the nodes composing the cluster. The context-aware Ca-
pacityScheduler we have proposed here is capable of receiv-
ing the real capacity from each NodeManager, thanks to a
lightweight context collector plugged on NodeManager. This
provides the cluster a better scaling potential while also using
every node’s full capacity. Experimental results demonstrate
that the context-aware CapacityScheduler could better scale
up improving containers management, and consequently the
overall Hadoop scheduling behavior.

This context-aware scheduling represents a first step of a
further vision, proposed by the PER-MARE project [25][26].
Indeed, we intend to go further in this direction, considering
not only nodes capabilities, but also current state (current avail-
able memory, CPU load or network bandwidth, for instance).
We strongly believe that such a context-aware behavior is
essential for supporting MapReduce application over pervasive
grids.

257Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

ACKNOWLEDGMENT

The authors would like to thank their partners in the PER-
MARE project [26] and acknowledge the financial support
given to this research by the CAPES/MAEE/ANII STIC-
AmSud collaboration program (project number 13STIC07).
Experiments presented in this paper were carried out on
Grid’5000 [24] experimental testbed.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, 2008, pp. 107–113.

[2] The Apache Software Foundation, “Apache hadoop,” 2014, [retrieved:
Mar. 2014]. [Online]. Available: http://hadoop.apache.org/

[3] M. Parashar and J.-M. Pierson, “Pervasive grids: Challenges and oppor-
tunities,” in Handbook of Research on Scalable Computing Technolo-
gies, K.-C. Li, C.-H. Hsu, L. T. Yang, J. Dongarra, and H. Zima, Eds.
IGI Global, 2010, pp. 14–30.

[4] V. Hingne, A. Joshi, T. Finin, H. Kargupta, and E. Houstis, “Towards
a pervasive grid,” in Proceedings of the International Parallel and
Distributed Processing Symposium, ser. IPDPS’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 207.2–, [retrieved: Mar.
2014]. [Online]. Available: http://ebiquity.umbc.edu/_file_directory_
/papers/623.pdf

[5] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan,
“Computational solutions to large-scale data management and analysis,”
Nature Reviews Genetics, vol. 11, no. 9, Sept 2010, pp. 647–657.

[6] K. A. Kumar, V. K. Konishetty, K. Voruganti, and G. V. P. Rao, “Cash:
context aware scheduler for hadoop,” in International Conference on
Advances in Computing, Communications and Informatics, ser. ICACCI
’12. New York, NY, USA: ACM, 2012, pp. 52–61.

[7] A. Dey, “Understanding and using context,” Personal and Ubiquitous
Computing, vol. 5, no. 1, 2001, pp. 4–7.

[8] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, 2007, pp. 263–277.

[9] D. Preuveneers, K. Victor, Y. Vanrompay, P. Rigole, M. Kirsch-Pinheiro,
and Y. Berbers, Context-Aware Mobile and Ubiquitous Computing for
Enhanced Usability: Adaptive Technologies and Applications. IGI
Global, 2009, ch. Context-Aware Adaptation in an Ecology of Appli-
cations, pp. 1–25.

[10] M. Kirsch-Pinheiro, M. Villanova-Oliver, J. Gensel, Y. Berbers, and
H. Martin, “Personalizing web-based information systems through
context-aware user profiles,” International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies (UBICOMM
2008), 2008, pp. 231–238.

[11] D. Preuveneers and Y. Berbers, “Context-driven migration and diffusion
of pervasive services on the osgi framework,” International Journal of
Autonomous and Adaptive Communications Systems (IJAACS), vol. 3,
no. 1, Dec. 2010, pp. 3–22.

[12] C. Louberry, P. Roose, and M. Dalmau, “Kalimucho: Contextual de-
ployment for qos management,” in Distributed Applications and Inter-
operable Systems, ser. Lecture Notes in Computer Science, P. Felber
and R. Rouvoy, Eds. Springer, 2011, vol. 6723, pp. 43–56.

[13] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic mapreduce scheduler
for heterogeneous workloads,” in 8th International Conference on Grid
and Cooperative Computing, ser. GCC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 218–224.

[14] A. Rasooli and D. G. Down, “Coshh: A classification and optimization
based scheduler for heterogeneous hadoop systems,” in Proceedings of
the 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, ser. SCC ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 1284–1291.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
ACM SIGOPS 22nd Symposium on Operating Systems Principles, ser.
SOSP ’09. ACM, 2009, pp. 261–276.

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”

in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 29–42.

[17] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “Samr: A self-
adaptive mapreduce scheduling algorithm in heterogeneous environ-
ment,” in Proceedings of the 2010 10th IEEE International Conference
on Computer and Information Technology, ser. CIT ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 2736–2743.

[18] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, “Improving mapreduce performance through data placement in
heterogeneous hadoop clusters,” in Parallel and Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pp. 1–9.

[19] M. Kirsch-Pinheiro, J. Gensel, and H. Martin, “Representing context
for an adaptative awareness mechanism,” in Groupware: Design, Im-
plementation, and Use, ser. LNCS, G.-J. Vreede, L. Guerrero, and
G. Marín Raventós, Eds., vol. 3198. Springer, 2004, pp. 339–348.

[20] M. Baldauf and P. Musialski, “A device-aware spatial 3d
visualization platform for mobile urban exploration,” Fourth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2010), 2010, pp. 47–
52. [Online]. Available: http://www.thinkmind.org/index.php?view=
article&articleid=ubicomm_2010_3_20_10127

[21] J. Floch, C. Frà, R. Fricke, K. Geihs, M. Wagner, J. L. Gallardo,
E. S. Cantero, S. Mehlhase, N. Paspallis, H. Rahnama, P. A. Ruiz, and
U. Scholz, “Playing music - building context-aware and self-adaptive
mobile applications,” Software: Practice and Experience, vol. 43, no. 3,
2013, pp. 359–388.

[22] M. Kirsch-Pinheiro, “Requirements for context-aware mapreduce
on pervasive grids,” PER-MARE Deliverable D3.1, Deliverable
D3.1, 2013, [retrieved: Mar. 2014]. [Online]. Available: http:
//hal.archives-ouvertes.fr/hal-00858310

[23] Oracle, “Monitoring and management for the java platform,” 2014,
[retrieved: Mar. 2014]. [Online]. Available: http://docs.oracle.com/
javase/7/docs/technotes/guides/management/

[24] Grid’5000, “Grid’5000,” 2014, [retrieved: Mar. 2014]. [Online].
Available: https://www.grid5000.fr

[25] L. Steffenel, O. Flauzac, A. S. Charao, P. P. Barcelos, B. Stein,
S. Nesmachnow, M. K. Pinheiro, and D. Diaz, “PER-MARE: Adaptive
deployment of mapreduce over pervasive grids,” in 8th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), Oct 2013, pp. 17–24.

[26] STIC-AmSud, “PER-MARE project,” 2014, [retrieved: Mar. 2014].
[Online]. Available: http://cosy.univ-reims.fr/PER-MARE

258Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

