
An SMT-based Accurate Algorithm for the K-Coverage Problem in Sensor Network

Weiqiang Kong, Ming Li, Long Han, and Akira Fukuda
Graduate School of IS&EE, Kyushu University, Japan.

weiqiang@qito.kyushu-u.ac.jp, {ziqiangliming, l-han}@f.ait.kyushu-u.ac.jp,
fukuda@ait.kyushu-u.ac.jp

Abstract—In the context of wireless sensor network (WSN),
the K-Coverage problem denotes that each point in a certain
network area is covered by at least K sensors at the same time
so as to guarantee the quality of services provided by the WSN.
In this paper, we first propose a bottom-up modeling method
for the K-coverage problem. Based on this method, we inves-
tigate a set of iteratively-applicable simplification techniques
for simplifying the problem. Furthermore, we propose a satis-
fiability modulo theory (SMT) based algorithm for computing
an accurate solution to the K-coverage problem. Experimental
results have shown that our proposed simplification techniques
and algorithm provide sufficiently satisfiable performance with
respect to both computing speed and problem size.

Keywords-K-coverage; wireless sensor network; satisfiability
modulo theory; accurate algorithm;

I. INTRODUCTION

Wireless sensor network (WSN) is an infrastructure com-
prised of sensing (measuring), computing, and communi-
cation elements that gives an administrator the ability to
instrument, observe, and react to events and phenomena in
a specified environment [1].

WSN has been developing rapidly in recent years and
been applied to many fields including military, business,
and agriculture, etc. Coverage problems are one of the
most active research topics related to WSN. It is generally
necessary to deploy multiple sensors to cover an entire WSN
area so as to provide services within the area. Each sensor
used in WSN has a limited sensing radius range. A point in a
WSN area is said to be covered if it is within the radius range
of a sensor. If a point is covered by only one sensor, then it
is said to be 1-covered. Consequentially, a WSN area is said
to be K-covered if every point in the area is covered by at
least K sensors at the same time. Such a restriction is called
the K-coverage problem. Due to costs and/or interference
among multiple sensors, it is often not practically feasible
to deploy an arbitrarily large number of sensors to simply
fulfill the K-coverage restriction. How to deploy sensors in
a reasonable way so as to decrease the number of sensors
while fulfilling the K-coverage restriction, is the research
topic of this paper.

The K-coverage problem is a typical combinatorial opti-
mization problem. As the size increase of the target WSN
area, the scale of solution space grows exponentially. In a
large-scale K-coverage problem, it is generally difficult to
compute optimal solutions. Therefore, existing algorithms

usually circumvent this problem by sacrificing coverage rate
or solution accuracy to improve algorithms’ performance
[2], [3], [4]. In the case of sacrificing coverage rate, a
compromised coverage rate is used to replace the strict 100%
rate; in the case of sacrificing solution accuracy, it is allowed
to deploy redundant sensors.

In this paper, we investigate high performance algorithms
for the K-coverage problem, which should not sacrifice
coverage rate (i.e., fulfill strictly 100% rate) and should find
the minimum number of sensors. Our contributions made in
this paper are as follows: (1) we proposed a bottom-up mod-
eling method for the K-coverage problem; (2) we proposed
a set of iteratively-applicable simplification techniques for
simplifying the K-coverage problem; (3) furthermore, we
proposed an SMT-based efficient algorithm for computing
accurate solutions to the K-coverage problem. As shown by
our preliminary experiments, the simplification techniques
as well as the algorithms provide sufficiently satisfiable
performance.

The paper is organized as follows. Section II introduces
the modeling method of K-coverage problem; Section III
investigates a set of methods for simplifying the K-coverage
problem; Section IV describes our proposed SMT-based
accurate algorithms and experiment evaluation of the algo-
rithms; Section V concludes the paper.

II. MODELING OF THE K-COVERAGE PROBLEM

Candidate-Points. In a practical environment, positions
in which sensors are allowed to be deployed are usually
limited. For example, in an indoor environment, they are
often deployed on walls or pillars. Therefore, we abstract
the positions in which sensors can be deployed and call
them as “candidate points for sensor deployment” (called
“candidate-points” for simplicity).

For each candidate-point, we can only deploy one
sensor (or not deploy). The number and location of
candidate-points depend on the physical environment of
the target area. As one of the most important input-data
of K-coverage algorithms, the number of candidate-points
determines directly the complexity and solution space of the
problem. For each candidate-point, we can make a choice
to deploy a sensor there or not. Therefore, the number of
choices is equal to 2N , where N denotes the number of
candidate-points.

240Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Observation-Points. In addition to “candidate-points”,
to represent the target area under consideration, we define
another type of points, which are called as “observation-
points”. An observation-point is said to be covered by a
sensor if and only if the point is within the radius range of
the sensor. With this definition, we say that an observation
point is K-covered if it is covered by K sensors. If all the
observation-points in the target area are covered by sensors,
we say that the area is covered by sensors. The distribution
of observation-points can be even, or the distribution can
be customized according to actual requirements.

The density of observation-points reflects the accuracy of
the model, and generally, the higher the density, the more
accurate the coverage by the sensors of the target area is.
However, as the increase of the number of observation-
points, the complexity of the problem also increases. The
K-coverage problem can be defined again based on the
above two definitions. That is, to find the minimum number
of sensors, the deployment of which can satisfy that all
observation-points in the target area is K-covered by sensors.

A. Basic Algorithms for Computing K-Coverage

We can easily come up with a simple exhaustive algorithm
to compute this problem. The pseudo-code of the algorithm
is shown in Algorithm 1. (Actually, this algorithm is also
mentioned in [5] and is called as the Original Combination
Algorithm). We assume there are a set O of observation-
points and a set N of candidate-points; We use C to denote
the set of all possible combination of sensor deployment; We
use function k-covered(c) to evaluate if a sensor deployment
c ∈ C satisfies K-coverage, which returns true when c
satisfies and false otherwise; We use function num(c) to
denote the number of sensors in c; We use min to hold the
minimum number of sensors that satisfies K-coverage; We
use outputDeploy to hold the sensor deployment that sat-
isfies K-coverage and has the minimum number of sensors.

Algorithm 1. A Simple Exhaustive Algorithm for K-Coverage

1. Input: The sets O, N , and C.
2. Output: The sensor deployment outputDeploy
3.
4. for each c ∈ C
5. if k-covered(c) == true then
6. if num(c) < min then
7. min = num(c);
8. outputDeploy = c;
9. end if
10. end if
11. end for
12. return outputDeploy

However, we can notice that there are a lot of performance
deficiencies in Algorithm 1: let us assume that there are
N candidate-points, the time complexity of the algorithm
is O(2N) since the number of all possible combination of

sensor-deployment is 2N , and in the worst case, we need to
check every combination of them. Even if there are some
ways of improving the performance of this algorithm, e.g.,
by checking combinations in an ascending order of the
number of sensors, it is still difficult to change the time
complexity essentially. The time complexity is still O(2N).

Therefore such kind of simple exhaustive algorithms,
which are based on the combinations of sensor deployment,
is not practically feasible. As the increase of the number
of candidate-points, the complexity of such algorithms will
grow exponentially.

In addition, there is one more reason for the low perfor-
mance of Algorithm 1. In the step of computing whether a
sensor deployment c satisfies K-coverage (namely the func-
tion k-covered(c)), there are a lot of unnecessary (and thus
avoidable) repeated calculation. We explain this computation
repetition in more detail below.

We use sets to denote the combination of sensor deploy-
ment, where the elements of each set are (sensor) candidate-
points. As shown in Figures 1 and 2, let us assume that there
are two combinations of sensor deployment C1 and C2,
where C1 = {s1, s2, s3, s4} and C2 = {s1, s2, s3, s5};
also assume that there are two observation-points o1 and
o2 in the target area, and the objective coverage considered
is 2-coverage. The difference of C1 and C2 only lies on
s4 and s5, and s4 and s5 are in positions far away from
the observation-point o1. In Algorithm 1, we need to check
whether C1 and C2 can make observation-points o1 and o2
satisfy 2-coverage. Although C1 and C2 can both satisfy
the 2-coverage for o1 and o2. But it should be noted that,
compared to the sensors observable by o2, the sensors that
can be observed by o1 are the same in the two deployments
C1 and C2. Consequentially, if deployment C1 could satisfy
the 2-coverage for o1, then C2 could as well. Therefore,
it is actually not necessary to check the coverage for o1
twice. We can imagine that the performance loss here due
to unnecessary repeated computation is huge.

o1

o2

s1

s3

s2

s4

s5

Figure 1. A Sample Combination of Sensor Deployment C1

In order to reduce this kind of performance loss analyzed
above, we could, instead of directly computing the combi-
nation of desired sensor deployment, compute in advance
the sets of (sensor deployment) candidate-points for each
observation-point, which make the observation point satisfy
K-coverage. We can see that the sets of candidate-points for

241Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

o1

o2

s1

s3

s2

s5

s4

Figure 2. A Sample Combination of Sensor Deployment C2

o1 is S11 = {s1, s2}, S12 = {s1, s3}, S13 = {s2, s3}; for
o2, there are two such sets S21 = {s2, s4}, S22 = {s2, s5}.
Because our goal is to find a minimum-sized number of
sensors, we can easily make an assertion that the final result
(for our goal of a combination of candidate-points for 2-
coverage) must contain and only need to contain one set of
S11, S12, or S13, and must contain and only need to contain
one subset of S21 or S22. That is, the final result for the
best 2-coverage combination must be one of the follows:
S11 ∪ S21 = {s1, s2, s4}, S12 ∪ S21 = {s1, s2, s3, s4},
S13∪S21 = {s2, s3, s4}, S11∪S22 = {s1, s2, s5}, S12∪
S22 = {s1, s2, s3, s5}, S13 ∪ S22 = {s2, s3, s5}. Among
of them, the combinations with minimum number of sensors
are {s1, s2, s4}, {s2, s3, s4}, {s1, s2, s5}, {s2, s3, s5}. The
four sets of sensors are all optimal solutions. As can be
seen, we have used here the bottom-up method (by focusing
on observation-points) to replace the top-down method (by
focusing on candidate-points), and this could avoid the
repeated-checking problem mentioned above.

Another advantage of such bottom-up method is that it
makes simplification of the K-coverage problem easier.

III. SIMPLIFICATION

We have proposed a set of simplification techniques that
can be used as premises of the SMT-based algorithm (to
be introduced in Section IV) for simplifying the K-coverage
computation problem. These techniques can be applied it-
eratively for the simplification purpose. In this section, due
to space limitation, we only mention the basic ideas of two
such techniques. For each observation-point, we can find sets
of candidate-points that satisfy the K-coverage restriction.
We called such sets as “satisfiable sets” of the observation-
point. One observation-point may usually have more than
one “satisfiable set”. We denote a single “satisfiable set” as
S, and the set of all “satisfiable (sub)sets” as SS.

A. Eliminating Certain Observation-Points

Consider two observation-points o1 and o2, the sets of sat-
isfiable set of o1 is SS1 = {S11={s1, s2}, S12={s1, s3}}
and the sets of satisfiable set of o2 is SS2 = {S21 =
{s1}, S22 = {s2}, S23 = {s3}}. Note here that, under the
restriction of K-coverage, the element number of satisfiable
sets of o1 is 2, but the element number of o2 is 1. Although

seemingly strange, this is possible as an intermediate result
of simplification, which will be shown in the next subsection.

For the above example, we can see that S11 is the parent
set of S21 and S22 (namely S21, S22 ⊆ S11); S12 is the
parent set of S23. We can assert that if o1 is satisfied for
K-coverage, then o2 must be satisfied as well. We can see
that o2 can be eliminated since its satisfiability is contained
by that of o1 and the existence of o2 does not have any
effect on the final result. We call o2 as a similar-point of
o1, and similar-points have transitivity but does not have
commutativity.

B. Must-Be-Chosen Candidate-Points

Let us assume an observation-point o1, which has a unique
satisfiable set S1. It can be asserted that every element
s ∈ S1 must be contained in the final optimal result
outputDeploy (See Algorithm 1), because, otherwise, o1
will never be satisfied for K-coverage. We call the candidate-
points contained in this unique satisfiable set as “must-be-
chosen candidate-points”. Generally, when the distribution
of observation-points is sparse, such kind of observation-
points often exist. Eliminating such observation-points can
reduce the number of candidate-points, and consequentially,
reduce the complexity of the problem directly.

Consider an example: there are three observation-points
o1, o2, and o3; the set of satisfiable sets of o1 is SS1 =
{S11={s1, s2}, S12={s1, s3}}, the set of satisfiable sets
of o2 is SS2 = {S21= {s1, s2}, S22= {s3, s4}}, and the
set of satisfiable sets of o3 is SS3 = {S31={s4, s5}}. We
can see that there is only one satisfiable set S31 for o3, so
all the elements in S31 should be in the final result. We
thus mark s4 and s5 as Must-Be-Chosen candidate points
by assigning s4 = 1 and s5 = 1 (we use 1 to denote that
a point is chosen and 0 otherwise); remove o3 from the
model, and further simplify SS1 and SS2. We use SS1′

and SS2′ to denote the simplified results of SS1 and SS2,
respectively. SS1′ = {S11={s1, s2}, S12={s1, s3}} and
SS2′ = {S21={s1, s2}, S22={s3}}.

We can see that the element numbers of satisfiable sets
of SS2′ are inconsistent (two for S21 and one for S22).
As mentioned before, such situation is possible during
simplification. Furthermore, observation-point o2 has now
become a similar-point of o1. As introduced in Section III.A,
o2 can be removed. Such kind of iterative simplification
can greatly decrease the complexity of the problem. It is
necessary to emphasize that multiple simplification may
not need to be carried out in a fixed order. In the final
computation algorithm for K-coverage, we will form these
simplification techniques in a set and try repeatedly these
techniques until no further simplification could be done.

IV. AN SMT-BASED ACCURATE ALGORITHM

In general, SAT/SMT solving [6] is a technique to find
variable-assignments to all the Boolean variables contained

242Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

in a logical formula so as to make the formula true, or to
determine that there is not such variable-assignments.

In a SAT problem, the formula is a Boolean expression
written using only logical operators of ∧, ∨, ¬, together with
Boolean variables and parentheses. Therefore, the problem
here is to, through assigning true or false to each of the
Boolean variables, try to find an assignment that makes the
entire formula have the value true. If all possible variable-
assignments have been tried and no such assignment exists,
then the problem here is said to be unsatisfiable.

SMT solving is an extension of SAT solving technique. In
SMT problems, the formulas can contain variables of other
types such as Integers and Reals etc., rather than merely
Boolean variables as in SAT problems. An example of SMT
problem is given as follows. The formula here is (x+1) <
2 ∧ (y ∨ z), where x is an Integer, y and z are Boolean
variables. The formula is satisfiable since there exists at least
one variable assignment, for example, x = 0, y = true,
z = false. Another formula (x + 1) = 2 ∧ (x ̸= 1) is
obviously unsatisfiable. There are a lot of well-known SMT
solvers such as Z3 [7], Yices [8], and CVC3 [9]. In this
paper, we use the Z3 solver since it generally performs best.

A. A SMT-based Algorithm with Z3

To utilize the Z3 SMT solver to compute the K-coverage
problem, we need in the first place to encode a K-coverage
problem into the input language of Z3 (namely a set of
Z3-recognizable formulas). Note that we do not directly
encode the original K-coverage problem, but instead, we
only encode the intermediate problem after simplification,
into a set of formulas written in Z3 input language.

The general idea of encoding the problem (after simplifi-
cation) is as follows: (Step 1) Declare an Integer variable for
each of the candidate-points and define their values as either
0 or 1, where 0 denotes false and 1 denotes true ; (Step
2) Define a set of logical formulas using these variables,
which restricts the conditions that are necessary to fulfill the
K-coverage restriction; (Step 3) Define a logical formula,
which restricts the condition that the sum (of the values)
of all the candidate-points should be smaller or equal to
the minimum value (of the sum of the candidate-points)
computed so far.

To make it easier to understand, we use a concrete
example to explain the idea of encoding. In the example: we
consider a 2-coverage problem; there are two observation-
points; after applying the simplification technique introduced
in section III, the sets of satisfiable sets of these two
observation-points are SS1 = {S11 = {s1, s2}, S12 =
{s3, s4}} and SS2 = {S21 = {s1, s4}, S22 = {s2, s3}}.
We encode the problem into the following Z3 language (es-
sentially, we use the SMT-LIB 2.0 language [10], a standard
language, formulas written in which can be accepted by most
state-of-the-art SMT Solvers including Z3):

1. (declare-const s1 Int)
2. (declare-const s2 Int)
3. (declare-const s3 Int)
4. (declare-const s4 Int)

5. (assert (or (= s1 0) (= s1 1)))
6. (assert (or (= s2 0) (= s2 1)))
7. (assert (or (= s3 0) (= s3 1)))
8. (assert (or (= s4 0) (= s4 1)))

9. (assert (or (and (= s1 1) (= s2 1))
(and (= s3 1) (= s4 1))))

10. (assert (or (and (= s1 1) (= s4 1))
(and (= s2 1) (= s3 1))))

11. (assert (< (+ s1 s2 s3 s4) min))

12. (check-sat)
13. (get-model)

The first 4 lines are to declare four Integer variables with
the names s1, s2, s3, and s4 by using the Z3 keyword
declare-const. Lines from 5 to 9 are to define the possi-
ble values of these Integer variables. These lines correspond
to (Step 1) mentioned above. Note that assert is a Z3
keyword to define a logical formula. For example, (assert
(or (= s1 0) (= s1 1))) is the same as the logical
formula (s1 = 0) ∨ (s1 = 1). Multiple formulas defined
using the keyword assert are logically and-conjuncted.
For example, the logical formula defined through lines 5 and
6 is same as ((s1 = 0)∨ (s1 = 1))∧ ((s2 = 0)∨ (s2 = 1)).

Lines from 9 to 10 define the conditions that restricts the
candidate-points to satisfy the 2-coverage of the problem.
Essentially, the conditions are those defined in SS1 and
SS2. These lines correspond to (Step 2) mentioned above.

Line 11 is to define that the sum of the values of the four
candidate-points should be smaller or equal to a minimum
value denoted by min. This line is the same as the logical
formula (s1 + s2 + s3 + s4) < min. Note that we did not
declare the value of min in Z3 language before using it. As
will be explained below, this value is not known in advance,
so we try different values to find the minimum value.

The last line 12 with (check-sat) is simply a com-
mand to let the Z3 SMT solver to determine the satisfiability
of the formulas defined above. Line 13 demands Z3 to output
a variable-assignment if the formulas are satisfiable.

We save the above text into a file, input the file into Z3,
and wait for Z3 to return a result. As mentioned above, since
initially we do not know the exact value of min, so we
circumvent this by generating multiple files, which have the
same textual contents as above except the value of min. We
then input these files one by one, in an ascending order of
min’s values, into Z3. If, for a file, a variable-assignment is
found which satisfies the 2-coverage problem, we stop there
and get the final optimal solution (namely an optimal sensor
deployment that satisfies 2-coverage for all the observation-
points); if not, we input the next file with the plus-1 value

243Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

for min, and so on.
For this example, we initially use 1 as the value for min,

and Z3 returns unsatisfiable for it; we then input the file with
min=2 and input the file, again Z3 returns unsatisfiable. At
last, if we set min = 4, Z3 returns that these formulas are
satisfiable with an assignment s1 = 1, s2 = 1, s3 = 0, and
s4 = 1. This shows an optimal result with the minimum
sensor values of 3.

V. EXPERIMENTS AND EVALUATION

We have conducted a series of experiments to evaluate the
effectiveness and efficiency of the simplification techniques
and the SMT-based algorithm. Our experiment environment
is as follows: Windows PC running on a Intel-Core i7-
2620M (@2.70GHz, 2.70GHz) CPU with 8.0GB Ram.

In our experiments, we consider 3-coverage problem of
four target (rectangle) areas of different sizes, and of 50 ×
50, 90 × 90, 140 × 140, and 190 × 190 units; we consider
two kinds of distribution of candidate-points, one is even
distribution and another is random distribution.

For candidate-points, in the case of even distribution, the
candidate-points are located in a target area evenly with 14-
unit intervals by considering the target area as a grid; in the
case of random distribution, the candidate-points are located
randomly but with the premise of satisfaction of 3-coverage
(In other words, we only consider random distribution that
satisfies 3-coverage, and do not taken other cases into
account. This is a reasonable premise since our purpose is to
examine the effectiveness of simplification). The number of
candidate-points increases as with the size increase of target
areas. In our experiments, the correspondence between the
number of candidate-points and target areas are shown in
Table I.

Table I
CORRESPONDENCE BETWEEN THE NUMBER OF CANDIDATE-POINTS

AND THE TARGET AREAS

Case No. Target Area Candidate-Point Number
Case 1 50×50 36
Case 2 90×90 100
Case 3 140×140 225
Case 4 190×190 400

For observation-points, no matter whether the distribution
of candidate-points is even or random, observation-points
are located evenly in a target area with 1-unit intervals by
considering the target area as a grid. For the above target
areas, since an observation-point will be deployed at the
border (e.g., 0 position) of the area, the numbers of the
observation-points are 51 × 51 = 2601, 91 × 91 = 8281,
141× 141 = 19881, and 191× 191 = 36481.

A. Evaluation of the Simplification Techniques
Through simplification, we can decrease the numbers

of observation-points (or candidate-points), and consequen-
tially, simplify the complexity of the target problem. We

analyze the effectiveness of the simplification techniques
partially mentioned in section III. Note that we do not
experiment and analyze the effectiveness of each simplifi-
cation technique separately since: the set of simplification
techniques that we proposed can be iteratively applied; one
simplification technique, which could not be applied at a
time, may become applicable later after some other sim-
plification techniques have been applied. Therefore, in the
following experiments and analysis, the set of simplification
techniques will be evaluated as a whole.

First, we evaluate, when the candidate-points are dis-
tributed evenly, how the observation-points can be decreased
by applying our proposed simplification techniques. The
comparison table, before and after applying simplification,
is shown in Table II:

Table II
DECREASE OF OBSERVATION-POINTS WITH EVEN DISTRIBUTION OF

CANDIDATE-POINTS

Case No. Before Simplification After Simplification
Case 1 (50× 50) 2601 0
Case 2 (90× 90) 8281 64
Case 3 (140× 140) 19881 288
Case 4 (190× 190) 36481 924

Note that the cases are characterized by the size of target
areas (shown in Table I). We can observe that the number of
observation-points is decrease extremely. Note also that in
Case 1, after simplification the number of observation-points
is 0, which seems to be strange. 0 here simply means that
an optimal solution to the 3-coverage problem has already
been found after simplification.

Next, we evaluate, when the candidate-points are dis-
tributed randomly, how the observation-points can be de-
creased by applying our proposed simplification techniques.
The comparison table, before and after applying simplifica-
tion, is shown as follows (Table III):

Table III
DECREASE OF OBSERVATION-POINT WITH RANDOM DISTRIBUTION OF

CANDIDATE-POINTS

Case No. Before Simplification After Simplification
Case 1 (50× 50) 2601 10
Case 2 (90× 90) 8281 26
Case 3 (140× 140) 19881 276
Case 4 (190× 190) 36481 448

Similarly, we can observe that our proposed simplification
techniques are quite effective for decreasing the number
of observation-points, which can consequentially reduce the
complexity of the coverage problem.

B. Evaluation of the SMT-based Algorithms

We report our experiment results on evaluation of the per-
formance of (1) Algorithm 1 (tuned by following an ascend-
ing order of the number of sensors) vs. SMT-based algorithm

244Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

both with simplification, and (3) SMT-based algorithm with
and without simplification. In the experiments, to enlarge
the scope of experiment, we consider 9 cases, in which the
sizes of the target areas are from 20× 20, . . . , 190× 190.

1) Algorithm 1 without and with Simplification: The
experiment data for the nine cases are listed in Table IV.
Note that we removed the cases of 20 × 20, 30 × 30, and
40 × 40 since computation time for them is simply 0. We
set 9000 seconds as time out.

Table IV
ALGORITHM 1 AND SMT-BASED ALGORITHM BOTH WITH

SIMPLIFICATION (TIME IN SECONDS)

Case No. Algorithm 1 SMT-based Algorithm
Case 4 (50× 50) 0.182 0
Case 5 (90× 90) 1.045 0
Case 6 (100× 100) 14.353 0.96
Case 7 (110× 110) 1095.346 1.58
Case 8 (140× 140) 9000 14.82
Case 8 (190× 190) 9000 186.77

From the results, we can find that, by using the SMT-
based algorithm (particularly Z3 in our experiments), the
coverage problem for large target areas such as those more
than 140× 140 can be computed as well.

2) SMT-based Algorithm with and without Simplification:
The next question is that: how about if we directly use
SMT solving techniques for the problem without simpli-
fication? Many optimization techniques have already been
implemented in SMT solvers (such as Z3), and it may be
possible that those optimization techniques are sufficient for
processing the coverage problems, and thus, our proposed
simplification techniques may not be actually necessary. To
check this possibility, we conducted experiments by using
the SMT-based algorithm without and with our proposed
simplification techniques. The results are shown in Table V.
Note again that we removed the cases of 20× 20, 30× 30,
40 × 40, and 50 × 50 since computation time for them is
simply 0.

Table V
SMT-BASED ALGORITHM WITH AND WITHOUT SIMPLIFICATION (TIME

IN SECONDS)

Case No. With Simplification Without Simplification
Case 5 (90× 90) 0 0
Case 6 (100× 100) 0.96 117.45
Case 7 (110× 110) 1.58 169.83
Case 8 (140× 140) 14.82 736.11
Case 8 (190× 190) 186.77 5452

From the above comparison, we can observe that our
proposed simplification techniques do provide help to de-
crease the complexity of the coverage problems, which are
necessary even if we use the efficient SMT-based algorithms.

VI. CONCLUSIONS AND FUTURE WORK

We have described our proposed modeling, simplification,
and SMT-based computation algorithm for the K-coverage
problem in the context of wireless sensor network. Ex-
perimental results have shown the efficiency of both the
simplification and the SMT-based algorithm. There are much
to be done as future work. In addition to conducting more
experiments on real problems to further investigate the
usability of our proposed approaches, our concrete work un-
dergoing at this moment is to further improve the generality
of our modeling and computing methods/algorithms, e.g., to
consider user-specified restriction condition in our model.

ACKNOWLEDGMENT

This research is partially supported by “Project for Fos-
tering Value-Creation Advanced ICT Frontier Human Re-
sources by Fused Industry-University Cooperation” sup-
ported by MEXT, Japan.

REFERENCES

[1] K. Sohraby, D. Minoli, and T. Znati. “Wireless Sensor
Networks: Technology, Protocols, and Applications”. Wiley-
Interscience, 2007.

[2] Z. Zhou, S. Das, and H. Gupta. “Connected K-Coverage
Problem in Sensor Networks”. Proceedings of the 13rd In-
ternational Conference on Computer Communications and
Networks (ICCCN2004), IEEE press, October 2004, pp.373–
378.

[3] M. Hefeeda and M. Bagheri. “Randomized K-coverage Al-
gorithms for Dense Sensor Networks”. Proceedings of IEEE
INFO-COM 2007 Minisymposium, IEEE press, May 2007,
pp.2376–2380.

[4] H. M. Ammari. “On the Connected K-Coverage Prob-
lem in Heterogeneous Sensor Nets: The curse of random-
ness and heterogeneity”. Proceedings of the 29th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS2009), June 2009, pp.265–272, IEEE press.

[5] X.-Y. Li, P.-J. Wan, and O. Frieder. “Coverage in Wireless
Ad-hoc Sensor Networks”. IEEE Transactions on Computers,
Vol. 52, No. 6, June 2003, pp.753–763.

[6] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. “Hand-
book of Satisfiability”. IOS Press, 2009, Vol. 185, Chapters
25, 26, pp. 781–885.

[7] L. de Moura and N. Bjorner. “Z3: An Efficient SMT Solver”.
Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS2008), March 2008, pp. 337–340, LNCS 4963.

[8] B. Dutertre and L. de Moura. “A Fast Linear-Arithmetic
Solver for DPLL(T)”. Proceedings of the 18th International
Conference on Computer Aided Verification (CAV2006), Au-
gust 2006, pp. 81–94, LNCS 4144.

[9] C. Barrett and C. Tinelli. “CVC3”. Proceedings of the 19th
International Conference on Computer Aided Verification
(CAV2007), LNCS 4590, July 2007, pp. 298–302.

[10] C. Barrett, A. Stump, and C. Tinelli. “The SMT-LIB Standard:
Version 2.0”. Latest official release of Version 2.0 of the SMT-
LIB standard. Online: http://www.smtlib.org/ [retrieved: June
2014]

245Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

