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Abstract—Monitoring of road surface conditions is a critical
activity in transport infrastructure management. Many research
solutions have been proposed in order to automatically control
and check the quality of road surfaces. Most of them make
use of expensive sensors embedded in vehicles or mainly focus
on detection of specific anomalies during monitoring activity.In
this paper, we describe the design of a system for collaborative
monitoring of road surface quality. The overall architecture
encompasses the integration of a custom mobile application, a
georeferenced database system and a visualization front-end.
Road surface condition is summarized through a roughness
parameter computed using signal processing algorithms running
on mobile devices. The roughness values computed are sub-
sequently transmitted and stored into a back-end geographic
information system enabling processing of aggregated traces
and visualization of road conditions. The proposed approach
introduces a thoroughly integrated system suitable for monitoring
applications in a scalable, crowdsourcing collaborative setting.

Keywords–Roughness; Accelerometer; Smartphone; Monitor-
ing; Cloud.

I. INTRODUCTION

Nowadays, all consumer-level mobile devices (e.g., smart-
phones) feature a rich set of embedded instruments. The
presence of triaxial accelerometers and Global Positioning
System (GPS) sensors allow the device to track its position
and motion states with high degree precision.

Additionally, mobile devices also enable the development
of applications that can acquire data from such instruments.
Thus, it is possible to access sensor data in real time, store it
in memory, handle it using the processing power of the device
itself and transmit the data to remote servers using the device’s
connectivity features.

These features, combined with the ubiquitous and pervasive
nature of smartphones and to the inherent scalability of cloud
based computing, make possible the design of systems aimed
at fine-grained, massive distributed sensing.

In this paper, we propose and describe a system, called
“SmartRoadSense”, aimed at supporting collaborative moni-
toring of road surface roughness using mobile smart devices.
To this purpose, we designed a three-tiered architecture en-
compassing: i) a mobile application at user level that processes
raw data from the embedded accelerometers and transmits the
result of the computation (i.e., a roughness index) together
with geographic localization data from GPS to a server; ii)
a back-end server running a geographic information system
where georeferenced data are properly aggregated, organized
and stored; iii) a graphical front-end based on a cloud platform
service for visualization.

In order to use data from the accelerometer to study
the condition of the road surface, we propose to use Linear
Predictive Coding (LPC) [1]. LPC is a method that allows us
to predict a particular value in an analog signal by means of a
linear combination of the past values of the signal itself. This
signal processing technique is used to compute the redundant
information contained in the signal. In our case, it can be used
to remove accelerations not attributable to irregularities in the
road surface.

The mobile application designed in the SmartRoadSense
architecture exploits LPC for deriving an estimate of the
roughness of a road from sampled points. The values collected
by this parameter are computed on board by a smartphone, and
transmitted in batch to a remote dedicated server. The back-end
server functionalities are in charge of collecting data, mapping
traces on the geospatial database and consistently aggregating
them for further processing and statistical analysis.

A. Previous Work

Starting in the late 1950s several studies of road surface
have proved that its quality is the most important criteria
for the evaluation of a road path and its drive comfort.
The deterioration of roads leads to added vehicle operating
costs, increased fuel consumption (with more emissions to
the environment) and increased pavement failures, due to the
added dynamic loads of the vehicle [2][3][4].

Several studies have tried to model the road elevation pro-
file, using sine waves, step functions, or triangular waves [5],
or as the sum of randomly generated sinusoidal functions
with different amplitudes and phases [6]. More recently, it
was shown that the spatial Power Spectral Density (PSD) of
a typical road surface has a low-pass characteristic, which
decreases at the increase of the spatial frequency (measured
in cycles/m) [6][7]. In these studies, the road surface profile
is modeled as a white Gaussian noise filtered by a first order
low-pass filter. It was also shown, that the vertical acceleration
of a point following the road profile depends on the horizontal
velocity, i.e., the vertical acceleration is related to the car
velocity.

A consolidated approach for estimating road surface con-
dition entails the adoption of costly and sophisticated hard-
ware equipment such, for instance, laser profilers [8], specific
accelerometers and data acquisition systems [9] whose cost
(also taking into account calibration and installation) can be
significant.

Another trend of studies explored the feasibility of ex-
ploiting low-cost sensors, for instance those embedded in
mobile devices such as smartphones. A first work towards this
direction have been proposed by Eriksson et al. [10] that built
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a system (termed the “Pothole Patrol”) targeted at monitoring
road anomalies. They used a set of accelerometers and GPS
devices deployed in embedded computers in cars. The sampled
signals, processed by a given set of filters to remove artifacts
and noise, are given as input to machine learning algorithms
for detection of potholes and road anomalies. Mohan et al.
introduced “Nericell”, a road and traffic monitoring system
based on smartphones [11]. Sensing devices embedded in
smartphones (namely microphones, accelerometer and GPS)
are exploited for detecting potholes, bumps and also other
traffic related events such as braking and honking.

Our work shares some features with these approaches
while we believe it, differs in several aspects. First, while
previous works mostly focus on given events for monitoring
road quality such, for instance, pothole detection, we aimed
at building a continuous monitoring system by assigning a
numerical value to each of the samples of the sensed signals by
means of LPC algorithms, resulting into a roughness index for
potentially each point the monitored road. Second, we integrate
the information gathered from several different users into a
single consistent aggregated stream thus opening the way to
statistical analysis and data fusion techniques for possible error
compensation. Third, we take advantage of scaling capabilities
provided by cloud computing facilities providing a suitable
interface of our system to cloud based platforms, an example
of which is given by SmartRoadSense visualization engine,
therefore making it possible collaborative crowd-sensing.

B. Contribution and Organization

This paper introduces a system for measuring road quality
based on low-cost sensors, a mathematical model to extract
a quality index from sensor data, and a software architecture
system which allows measurements to be collected and aggre-
gated in an average estimate of road roughness.

The mathematical model upon which we developed our sig-
nal processing algorithm is described in section II. The design
choices and system-level features of adopted and implemented
software components are introduced in section III. Finally,
preliminary experiments based on the current implementation
are shown in section IV. Concluding remarks, open issues and
future work are discussed in section V.

II. MATHEMATICAL MODEL

In this section, we describe the mathematical model used
to extract information of the road surface conditions.

According to [6], the road surface profile w(x) can be
modeled as white Gaussian noise filtered by a first order
low-pass filter. The white Gaussian noise has the following
autocorrelation function ρww = qδ(x), where q is the PSD
magnitude and δ(x) the Dirac delta function. PSD is given by
Sww(Λ) = q, where Λ is the spatial frequency measured in
cycles.

The first order low-pass filter has frequency response

H(Λ) =
1

p+ j2πΛ
. (1)

Thus, the PSD of the road elevation profile Srr(Λ) is given
by

Srr(Λ) = Sww(Λ) |H(Λ)|2 = q

∣∣∣∣ 1

p+ j2πΛ

∣∣∣∣2 . (2)

In this model, the statistical properties of the road profile
are completely characterized by parameters q and p.

Let us consider an ideal point closely following the road
profile and moving with constant horizontal velocity v. From
equation (2), it can be proved that the vertical acceleration has
a continuous time Fourier transform given by

Ay(f) =
(j2πf)2

p+ j2πf 1
v

W (f), (3)

and has the following temporal PSD

SAyAy
(f) = qv

∣∣∣∣ (j2πf)2

pv + j2πf

∣∣∣∣2 . (4)

Thus, road parameters q and p of (2) can also be obtained
by analyzing the PSD of the vertical acceleration.

The scenario of an accelerometer embedded in a mobile
device, rigidly anchored inside the car cabin, is very different
from that of an ideal point following the road profile. The
accelerometer senses the road through tires, suspensions, and
the mechanical coupling with the car cabin. In real applica-
tions, the PSD in (4) is sensed by the accelerometer filtered
by an unknown transfer function modeling the effect of tires,
suspensions, and mechanical coupling. The waveform detected
by the accelerometer originated by the road profile is a noise
signal with a large spectral content that depends on the road
parameters q and p. The accelerometer samples the waveform
at a given sample frequency Fs and outputs a discrete time
vector signal composed by the triaxial components ax(n),
ay(n), and az(n), according to some internal axial reference.
Figure 1 shows an example of the three components recorded
by a Motorola G smartphone on a car following a straight road
at 40 km/hour. The broadband noise behavior is apparent from
the figure.

Other undesired contributions add to this waveform. In-
deed, the accelerometer also senses the gravity acceleration,
vehicle accelerations, centrifugal accelerations at curves, roll,
pitch, and yaw accelerations due to road trend, and vibrations
due to the engine. These contributions to the signal have a
significant magnitude that can entirely mask the acceleration
fluctuations due to the road profile. Nevertheless, some of these
accelerations vary slowly and have a low spectral content, oth-
ers have a periodic spectral content (e.g., vibrations caused by
the engine). Thus, the undesired contributions can be removed
with a prediction filter, that estimates the accelerometer current
sample a(n) (with a(n) = ax(n), ay(n), or az(n)) from past
samples, i.e., with an LPC analysis [12], [13]

e(n) = a(n) +

N∑
i=1

λi a(n− i), (5)
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Figure 1. Triaxial accelerations components measured with a Motorola Moto
G smartphone on a car at 40 km/h.

where λi, with i = 1, . . . , N , are the LPC coefficients, N
represents the prediction filter memory length, and e(n) the
residual prediction error.

In order to compute the prediction filter and the prediction
error, a block based approach is applied: the signal a(n) is
split in segments of length M , with M sufficiently large
to have an accurate estimate of the prediction filter and, at
the same time, sufficiently small to be able to consider the
signal stationary. The prediction filter is computed with the
Levinson-Durbin recursion [14][15] summarized in Table I
(using the Matlab notation). R(0), R(1), . . . , R(N) is the
autocorrelation sequence on a(n) estimated over a segment;
λ = [λ1, λ2, . . . , λN ]T is the prediction filter coefficient vector.

TABLE I. PSEUDO-CODE FOR LEVINSON-DURBIN RECURSION.
k = R(2)/R(1);
λ = k;
E = (1 − k∧2) ∗ R(1);
for i = 2 : N

k = (R(i+ 1) − λ ∗ R(2 : i))/E;
λ = [k, λ− k ∗ λ(i− 1 : −1 : 1)];
E = (1 − k∧2) ∗ E;

end

The prediction error e(n) maintains the information on the
road parameter q (which is a proportionality parameter in the
PSD) while the information on the parameter p is lost in the
signal whitening produced by the prediction filter. Thus, a
parameter proportional to q can be obtained estimating the
power of the prediction error PPE

on each segment

PPE
=

1

M

M−1∑
n=1

e(n)2. (6)

An index of the road roughness, RI , is eventually obtained
by averaging the power of the prediction error for the three
axial components

RI =
1

3

(
PPEX

+ PPEY
+ PPEZ

)
. (7)

Figure 2 shows the behavior of the roughness index RI
and the smoothed roughness index as a function of time on
a car following a straight road at 40 km/h. The smoothed
roughness index has been obtained by averaging RI with a
sliding window of 11 samples.
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Figure 2. RI (black curve) and smoothed roughness index (red curve) on a
car at 40 km/h.

While this parameter is sensitive to the specific car, the
mobile device, and guide style of the driver, the compact
information contained in this single parameter can be easily
collected and stored. Data from different vehicles, different
devices and different drivers on the same road can be combined
to achieve a meaningful metric of the road quality.

III. SYSTEM ARCHITECTURE

The mathematical process described above was provision-
ally implemented using Matlab. After testing on tracks of data
collected using real devices, the algorithm was ported to the
Java programming language.

In order to perform experiments on real data and to aggre-
gate information collected about road conditions, the following
system architecture has been devised: the Java algorithm is
embedded in an Android application which runs on an Android
mobile device. The application gathers accelerometer data,
thus computing and storing PPE

results annotated with GPS
data about the device’s position. Data is periodically sent to
a remote server, which uses a geolocalized database to link
each data point to specific roads. Results are aggregated and
provided to the user as a geographical map whose roads are
enriched with data about their estimated roughness.

The software architecture, graphically displayed in Fig-
ure 3, is described in more detail in the following sections.

A. Android application

The SmartRoadSense project is built around an Android
Application, displaying a user-friendly interface and relying
on a background service that gathers data from the device’s
sensor and processes it to compute PPE

values in real-time.
Results are stored in memory along with GPS data, bearing,
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Figure 3. Software architecture of SmartRoadSense.

velocity, timestamp and other metadata. Each recording session
is identified by a unique “track ID” (identifying both the device
and the session).

Both sensors, triaxial accelerometers and GPS, are run
at their highest possible frequency. The resulting data rate
depends on the device used: usually accelerometers provide
data with a frequency of 100 Hz (or higher) and GPS works
at 1 Hz once fixed.

Data gathering is limited by the lower frequency (i.e., the
GPS sensor), thus the application records a sample of data
once per second on average. As described before, to allow
real-time computation, the algorithm operates on windows of
data: currently a single PPE

result is extracted from a total of
100 samples, of which 25 are taken from the previous window
and 25 from the next window (giving a total overlap of 50
samples). Thus, each result is computed from a total of 100
samples, extracted from an average of 100 seconds of data
gathering.

The collected results are periodically transmitted to a
remote server (each 15 minutes on average, when a data
connection is available).

B. Data collection and aggregation

Data collection server is implemented using the ASP.NET
platform on a Linux machine running Mono. A PostgreSQL
database with PostGIS extensions acts as the storage back-end
for all collected data.

The server application exposes a set of RESTful HTTP
APIs that can be used by registered users in order to submit
data. As described before, raw roughness data computed by the
devices is gathered together with accessory GPS information
and track ID metadata. Data points are indexed by geographical
position for fast access.

A background process collects all new data points recorded
and uses the new data to update information about road
roughness. This process is executed periodically (at the time
it runs once a day). This process works as follows: the set
Pnew = {P1, P2, · · · , Pn} of new data points registered by the
server is collected; each point in Pnew is mapped to the closest
road, using a geographical database (in our implementation,
we use the open road data available from OpenStreetMap).

Roads are represented by a geometric path, thus the mapping
of points will yield a set Rnew = {R1, R2, · · · , Rm} of paths,
representing all roads for which the database has new data
points; each road in Rnew is updated by extracting points
at regular distance intervals from one end to the other (see
Figure 4). Thus, each road contributes with one or more
averaging points for which the roughness will be estimated;
for each averaging point (shown as black dots in Figure 4)
all existing data points in a given range are extracted from the
database and contribute to the final average roughness value. At
the moment, these values are computed as the average between
all values.

Figure 4. From single data points to average roughness points.

After this process has completed, the database has a new
set of average roughness points for each road for which new
raw data was sampled.

C. Data visualization

Once the average roughness data has been extracted from
the raw dataset and mapped to a road, the final data is pushed
to an external CartoDB server: CartoDB is an online service
allowing easy visualization and handling of maps with rich
data overlays. It is well suited to represent geographic maps
with a great amount of data points, while allowing the user to
filter and manipulate the data.

An example of the CartoDB interface (using Google Maps
cartography) with the average roughness points overlay is
shown in Figure 5: the road is filled with equidistant points,
colored ranging from green to red. Red points mark positions
where the average PPE

value was relatively high, indicating a
bumpy road. Green points, on the contrary, indicate low PPE

values, which means that the vehicle was traveling smoothly.

On the left of Figure 5 a sample screenshot of the Android
application is shown, indicating the last PPE

value computed.

IV. PRELIMINARY EXPERIMENTS

Two Motorola Moto G smartphones have been equipped
with the SmartRoadSense application and have been setup in
order to automatically record track data when in movement
and to transfer the collected data to the central server every
15 minutes.
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Figure 5. Application screenshot and sample data projection on the map.

The devices have been installed inside two public busses,
owned by a local transportation company, using a mobile
device rigidly anchored inside the bus cabin. Both busses run
twice daily between the cities of Fano, Marotta and Pergola
(Marche, Italy). Data was collected over the course of two
weeks, from April 1st 2014 to April 16th 2014, totalling ca.
215300 data points. Those points match a total of 744 roads,
according to the OpenStreetMap database used (which includes
various segments of roads, crossings, etc.), which account for
275089 meters of coverage. On average, data points collected
were associated to a road at 5.19 m of distance during the road
matching phase of the aggregation algorithm. This gives an
estimation the raw GPS data precision. Data occupation of all
the collected data amounts to approximately 95 MB (including
the overhead given by the PostgreSQL database and indexes).

Figure 6. Map of data collected from the experiment.

The resulting data, processed by the server and averaged
over equidistant aggregation points, is shown in Figure 6 as
an overlay to a geographical map provided by Google Maps.
Each shown point represents an aggregated roughness point,
whose color varies from red to green as previously described
in III-C.

V. CONCLUSIONS

In this paper, we have shown how a standard mobile device,
running a custom-built application while being anchored to a
vehicle in movement, is able to collect data that can be used
to detect the quality and irregularities of the road surface.

Such data, collected from the triaxial accelerometer and the
GPS sensor, can be appropriately processed by the computa-
tional power of a mobile device. Moreover, the dependence of
the measurements on vehicle’s velocity can be appropriately
compensated.

As shown in section III, a data acquisition system has been
built that post-processes the data collected by mobile devices
and is able to compute a compound roughness index, which is
reliably applied to roads marked on a geographical map. Raw
data collected by inexpensive devices on personal vehicles,
thus transformed into a clear overview of road quality, can
be used for the benefit of institutions or drivers. For instance,
it may be used by local authorities to detect the presence of
critical road surface segments, thus focusing expenditure on
roads showing higher maintenance needs.

A. Future work

The mathematical model described in section II could be
improved, for example giving the possibility to analyze the
characteristics of the road surface without the constraint of
having the mobile device rigidly anchored to the vehicle.

Moreover, the interface of the central data server will be
improved in order to expose a well documented Application
Programming Interface (API), allowing client applications to
submit data, manipulate it and handle registered tracks.

Future work also includes improvements to the SmartRoad-
Sense mobile application, possibly polishing the experience for
end-users and providing means of user registration, in order
to enable the distribution of the application via “Google Play
Store” and make it possible to collect road data from virtually
any user willing to contribute to the project.

Finally, we plan further testing and improvements to the
aggregation method used by the server to compute final rough-
ness values: at the time of writing, all data points contribute to
an unweighted arithmetic average. However, we can envision
averaging methods which weigh contributes (for instance based
on age) and/or an evaluation of the data point’s source quality.
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