
Designing a Low-Cost Web-Controlled Mobile Robot for Home Monitoring

David Espes, Yvon Autret, Jean Vareille and Philippe Le Parc
Université Européenne de Bretagne, France

Université de Brest
Laboratoire en Sciences et Techniques de l’Information (LabSticc UMR CNRS 6285)

20 av. Victor Le Gorgeu, BP 809, F-29285 Brest
E-mail: {david.espes, yvon.autret, jean.vareille, philippe.le-parc}@univ-brest.fr

Abstract—In this paper, we focus on a web-controlled mobile
robot for home monitoring. The key point is low-cost. The robot
is built from standard components to reduce the cost of the
hardware. A large part of the system is deported to the cloud
to minimize the required software on the robot. A minimal
positioning system is provided to make the robot usable. The
result is a small robot wich can be used from the outside or the
inside the house.

Keywords–Mobile robot; Home monitoring; Web control; Web-
Socket.

I. INTRODUCTION

Web-controlled mobile devices are more and more used in
ubiquitous environments [1][2][3][4]. Small monitoring robots
such as the Rovio WowWee can be used [5]. Web control is not
really new, but recent improvements of network performance
has led to the emergence of Service Robotics [6]. Services
Oriented Architectures (SOA) [7] start to be used to control
physical devices [8].

Our aim is to use these approaches to control mobile home
robots designed for Human Ambient Living (HAL) environ-
ments. For us, a typical application is helping elderly people
who live in their houses and sometimes have difficulties to
move. A mobile home robot carrying a camera could help them
monitoring their house either indoors or outdoors, for example
to watch the dog or to see what is going on. The mobile home
robot could also be used by care helpers or relatives, as a
moving phone to communicate with the inhabitants of a house
from the outside.

In such an HAL environment, the total cost of the mobile
home robot is the first key point. It must be kept as low as pos-
sible especially if it is a HAL environment for elderly people
who often have tight budgets. This means that the mobile home
robot must be built by using low-cost commercial components.
Moreover, we always keep in mind that mechanical failures
are unavoidable and reliability is a major key point as much
as ease to repair. The basic mobile home robot is nothing but
than a mobile robot which carries a camera. More sophisticated
sensors such as positioning sensors are optional.

The second main key point is software and network con-
figurations. The mobile home robot should be plug an play.
This means that software and network configurations should
be reduced as much as possible. Deporting a part of the system
to the cloud can be a solution if it helps to get a reliable plug
and play system.

The third key point is security and access control. A Web-
controlled mobile home robot can be used from anywhere
in the world, but the interior of a house must not be seen
by unauthorized users. It is necessary to avoid any intrusive
access. In case of network failure, the mobile home robot
should also be able to properly stop its current action and
wait for a new order.

The fourth key point is the autonomy of the battery. The
robot should have an autonomy close to one hour when
moving, and automatically come back to a charging dock when
the battery is low.

In this paper, the second part presents a mobile home robot
solution based on a commercial low-cost robot and we discuss
the advantages and the disadvantages. This lead us to the
design of a mobile home robot built from commercial com-
ponents such as a low-cost robotic platform and a smartphone
to control it. In the third part, we present the cloud control
system and its performance. In the fourth part, we add video
monitoring capabilities to the robot, and in the last part, we
present a low-cost positioning system.

II. DESIGNING A HOME ROBOT

A. Commercial home robots
Several commercial robots such as Miabot [9] are available.

The Miabot robot is rather small (about 10cm long) and fast
(3.5 m/s). It has a built-in bluetooth connection and must be
connected to a local central computer to be web-controlled.
Even if it was not really designed for that, it can carry a small
camera or other sensors.

A better robot from our point of view is the WoWee Rovio
[5]. It includes a mobile base, a mobile camera and a Wi-Fi
connection. Its size is 30 x 35 x 33 cm. It can be remotely
controlled from anywhere in the world. When the battery is
low, it automatically comes back to its charging dock. The
almost 300 euros cost is acceptable.

The WoWee Rovio is an interesting robot for a HAL
environment, but a weak point is the reliability and the ease to
repair [10]. The WoWee Rovio can not be considered reliable.
For example, sunlight may interfere with the infrared bean of
the WoWee Rovio and prevent it returning to its charging dock.
In case of failure, the WoWee Rovio is difficult to repair. We
have used several WoWee Rovio. One of them had and infrared
led problem and all of them had battery problems after one
year use. This was a real problem because we had no easy
solution to replace the failing components.

178Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

B. Using a Smartphone, an Arduino, and a basic robotic
platform

Using a smartphone may help simplifying the building of
a home robot because it usually includes a webcam, Wi-Fi
and Bluetooth. When connected to an Arduino micro-controller
[11], a smartphone can also be used to control the motors of
a mobile home robot.

We use an open robotic platform which includes two tracks.
It is a 4WD Rover 5 from RobotBase. The size is close to that
of the WoWee Rovio. When powered, it can move forward or
backward and turn. The maximum speed is 1km/h. The Rover
5 is strong enough to carry up to two kilograms.

Figure 1. Components of the Web-controlled home robot.

The robot is controlled by the Arduino. Several Arduino
shields are available to monitor the working speed and direc-
tion of the motors. We can use either a relay shield including
four relays, or a motor shield based on a voltage regulator
such as 78M05. An additional Arduino shield is required to
allow Bluetooth communication between the Arduino and the
smartphone.

The main advantage our solution is its simplicity. The home
robot only includes six commercial components (Fig. 1 and
Fig. 2):
• A mobile Rover 5 robot used as robotic platform (60

euros)
• An Android Smartphone (less than 80 euros)
• An Arduino UNO (20 euros)
• A Bluetooth shield (20 euros)
• A motor command shield (20 euros)
• Two batteries (one for the Arduino, one for the motors)
The total cost, smartphone included, is comparable to that of

a WoWee Rovio. We can also use an old smartphone which has
became useless. When used as a mobile home robot controller,
a recycled smartphone significantly reduces the total cost.

The reliability of our mobile home robot is significantly
higher than that of a Rovio. In case of failure, we only need
to replace one component. Moreover, the diagnosis is very easy
because each component can be individually tested.

When using 2000mAh lithium batteries, we have a 30mn
autonomy when the robot is continuously moving. We have
several hours of battery life when the robot is waiting for
commands. Automatic battery charging is not available on our
prototype.

Additional sensors can be added on the robot, but as it is a
non autonomous Web-controlled robot, they are not essential.
Moreover, it would increase the total cost.

III. A CONTROL SYSTEM IN THE CLOUD

We propose to deport a large part of the robot control system
to the Cloud to reduce home configurations and installations.
A user interface running on a standard Web Browser should
make the robot usable without any special installation.

Using HTTP (Hypertext Transfer Protocol) is a solution
to communicate with a distant server in the Cloud. Efficient
HTTP Web servers such as Apache or Apache Tomcat are
available. If the standard HTTP protocol lets easily handle
problems such as client identification, it has severe limits when
used for real-time monitoring.

A. The HTTP limitations
The HTTP protocol is a stateless protocol which was orig-

inally designed to get access to static HTML pages. Later,
some web applications have implemented server-side sessions
by using HTTP cookies. A Web server implementing sessions
receives an HTTP request, establishes a connection with the
server, executes the request, sends an HTTP response back,
may keep a track of the HTTP request, and finally, releases
the connection.

If a Web server is running on the robot, an identification
sequence which gives the right to monitor the robot through
the Web server can be easily implemented. The communication
can be secured by using the HTTPS protocol. The main
problem is the execution time of a command sent to the robot.
Let us take the example of an HTTP request which should
make the robot move for several seconds. As soon as the HTTP
request is received on the server, the robot starts moving. If the
robot moves for more than a few seconds, the HTTP response
must be sent back before the robot has finished moving. In
this case, the robot can get out of control.

Figure 2. The Arduino command module.

This is a major problem because we must monitor a robot
by using commands which execution lasts about one second. A
one meter trip would require sending at least three commands
to a Rover 5 moving at 1km/h. Touring a house would require
hundreds of commands. When a command is sent to a distant
robot, a permanent connection is required. A moving robot left

179Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

unsupervised just a few seconds can be dangerous. Presence
and obstacle detectors working on the robot are never 100%
reliable. This means that anyone who is monitoring from
the outside or inside the house must have a permanent full
control of the robot through the network. Moreover, the robot
should be able to detect the smallest network failure, and to
automatically adapt its behaviour, for example by reducing its
speed.

This means that sending HTTP requests to a Web server run-
ning on the robot is not a good solution. We must continuously
send HTTP requests to the robot to be able to detect network
failures. That is a misuse of HTTP. Second, establishing a new
connection from outside can be time consuming and sometimes
takes several seconds. That is a risk we can not take. That is
why we have chosen the WebSocket solution.

B. Using a WebSocket server
The WebSocket protocol was standardized in 2011 [12].

The communications are established by HTTP servers, and
the communications may use TCP port 80 (or 443 when using
secured communications). The client is responsible for making
the connection by using an URL, consisting of a protocol, host,
port, path, and optionally one or more additional parameters.

Figure 3. The WebSocket servlet.

The main advantage of WebSockets for our purpose is the
fast responses coming from the server. That is due to the
single connection that is established at the beginning of the
communication. As soon as a connection is set, a bi-directional
communication remains available. Full duplex communication
over a single socket allows true real-time communication.

A standard Web browser can be used to monitor a robot
through WebSockets. Most Web browsers now support Web-
Sockets. Both the client and the robot send and receive
information to and from the Web server through WebSockets.
When a command is sent from the client to the Web server by
using WebSocket, as soon as it is received on the server, it can
be forwarded to the robot and executed. During the execution
of the command on the robot, WebSockets are still used to
send periodic aknowledges from the robot to the client, and
from the client to the robot.

Thus, if the robot does not receive any acknowledge, or
receive them too late, it can modify its state. For example, it
can reduce its speed if the network is too slow. If the network
is no more working, the robot can stop properly, and remain
waiting until the network is working again.

C. A WebSocket server in the cloud
A WebSocket server in the clould greatly simplifies the

installation of a Web-controlled home robot. The home robot
just have to connect to the WebSocket server (Fig. 3). This
does not require any special home configuration. An ordinary
Wi-Fi connection can be used.

The well known Apache Tomcat Webserver now implements
WebSockets. This means that we can use both the advantages
of a standard Web server and those of WebSockets. A standard
Tomcat application manages client and robot identification.
The client uses an HTML form to ask for a robot. As soon
as identification is successful on the server, a WebSocket
communication becomes available between the client and the
robot.

On the Tomcat server, we have a servlet to manage identifi-
cation and robot allocation. We have also a WebSocketServlet
to manage communication between the client and the robot.

The main elements of the WebSocket Servlet are shown in
Fig. 4.

Figure 4. The WebSocket Servlet.

The ”manager” object is instantiated by the WebSocket
server. From the robot point of view, it contains information
about the client which is using the robot. From the client point
of view, it contains information about the robot to control.
The manager is stored as a Tomcat session object. It is a
persistant object whose life duration is that of a session. A
”manager” object is instantiated during the identification phase,
when the client asks for a robot. Another ”manager” object is
instantiated when the robot connects to the WebSocket server
When the WebSocket communications are set, the ”manager”
objects can be retrieved and modified to help clients and robots
communicate. One client is allowed to send messages to one
robot, and one robot is allowed to send messages to one client.

Both the client and the robot exchange messages by sending
lines of text. For example, the client sends a line containing
”forward” to make the robot move forward. Parameters can

180Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

also be added in the line, for example to make the robot move
forward for n seconds.

D. WebSockets on the robot

As seen above, the robot is controlled by the Arduino
and the Arduino is controlled by an Android smartphone
using a Bluetooth communication. We use the Tyrus API to
connect the smartphone to the WebSocket server. The main
Java elements of the Android WebSocket connection are shown
in Fig. 5.

Figure 5. The Android WebSocket.

We use the Tyrus ”ClientManager” class to set a connection
between the robot and the WebSocket server. When messages
come from the client, the ”onMessage” method is triggered.
The message is decoded and forwarded to the Arduino. During
the execution of the command by the Arduino, the client and
the smartphone periodically exchange messages to stop or slow
down the robot in case of network failure. This program has
been tested on Android 2.3 and Android 4.

Figure 6. The Web-controlled home robot.

E. WebSockets on the client
A WebSocket connection from the client to the server is

only possible if the identification phase and robot selection
has been successful. This is taken into account by the standard
Apache Tomcat Webserver. As soon as a client is successfully
registered on the distant Web server, a WebSocket connection
is established. The client uses a Web page as user interface.
The only thing required to use the user interface is a Web-
Socket compatible Browser. The user interface is managed by
the distant Web server. The main JavaScript elements of the
WebSocket connection are shown in Fig. 7.

Figure 7. The client WebSocket.

The Javascript ”onmessage” function is triggered when a
message comes from the WebSocket server. A widget such as
a button in the user interface can trigger the ”sendMessage”
function and send commands to the robot.

F. Performance
In this section, we present some experiments that illustrate

the capabilities of our system. The server is connected to the
local network of the laboratory, i.e., gigabit Ethernet network.
It is hosted to a public address so any user are able to access it
from anywhere using just a web browser. Beside the server, one
robot is available. The robot is equipped with an arduino board,
a bluetooth shield and a smartphone. The bluetooth shield is
fully qualified to respect the Bluetooth version 2.0. Hence, the
data rate is up to 2Mbps. The smartphone is connected to the
local network through a WiFi connection. The wifi card on the
smartphone is compliant to the IEEE 802.11g standard. Hence,
the data rate is up to 54Mbps.

In order to show the performance of the system, we define
the following performance metrics:
• the Round-trip time between components is the time to

receive a response after sending a request without count-
ing the delay due to other components. By example, if
the arduino board sends a request to the smartphone, the
round-trip time between these both components is the
delay to receive a response without counting the delays
imposed by smartphone-server connection and server-
user connection.

• the End-to-end round-trip time is the time that the user
receives a response after sending a response, i.e., it
is the sum of the round-trip time between the whole
components of the system. The increase of the end-to-
end round-trip time degrades significantly the QoS of
applications.

In order to test different scenarios, the user accesses to
the robot from two different locations: our laboratory and

181Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE I. ROUND-TRIP TIME RELATED TO ENTITY CONNEC-
TIONS

Round-trip time

Entity connection Local (inside lab-
oratory)

Distant (Romania)

User - Server 15 ms (±5 ms) 40 ms (±15 ms)

Server - Phone 35 ms (±10 ms) 35 ms (±10 ms)

Phone - Robot 125 ms (±40 ms) 125 ms (±40 ms)

the Military Technical Academy of Bucharest in Romania
(about 2500 km from the laboratory). The user accesses to
the robot through the LAN or Internet into the laboratory or
the Academy of Bucharest respectively. In all the scenarios
considered the server is inside our laboratory. However, due
to the flexibility of our architecture, the server could be hosted
in the cloud.

In Table I, we present the round-trip time related to compo-
nent connections when the user accesses to the robot from
different locations (laboratory and Romania). All times are
expressed once the websocket connection is established.

It is interesting to see that the most important delay is added
by the bluetooth connection between the arduino board and
the smartphone. Indeed, the data rate of the bluetooth shield
is quite low (2Mbps). The time to transmit the data from the
robot to the phone, or inversely, is proportional to the data rate.
This is the principal factor to this delay. Moreover, bluetooth
system is a contention based system. Bluetooth systems are
based on a combination of frequency-hopping and CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance) [13]
methods to access to the medium. The medium is shared
between all the nodes belonging to the same user and other
systems such as WiFi. The delay to access to a free medium
or the retransmissions due to collisions increase the round-trip
time significantly. However, it is interesting to use a bluetooth
connection between the smartphone and the robot due to
its low consumption. The mobile robot’s operational time is
limited before exhausting its battery power. Indeed, Bluetooth
is much more power efficient than WiFi. As mentioned by
Pering et al. [14], the power consumption of Bluetooth is 10
times lower than WiFi.

The round-trip time between the smartphone and the server
is quite low. Unlike Bluetooth systems, WiFi systems have
a high throughput. The transmission time is significantly
reduced. The round-trip time induced by WiFi is roughly 4
times lower than the one obtained with Bluetooth.

The Internet delay, i.e., when the user is located in Romania,
is almost negligible as compared with local access. The
university of Brest, respectively Academy of Bucharest, has
a guaranteed bandwidth of 3Gbps, respectively 1Gbps, on its
national network. Hence, the difference in time is particularly
due to the propagation time. Let us assume a propagation speed
of 200,000 km/s, the round-trip propagation time is about 25
ms.

In Table II, the end-to-end round-trip time is analyzed under

TABLE II. END-TO-END ROUND-TRIP TIME

End-to-end round-trip time

Protocol Local (inside labora-
tory)

Distant (Romania)

HTTP 600 ms (±120 ms) 730 ms (±100 ms)

Web Sockets 205 ms (±75 ms) 250 ms (±50 ms)

two different locations (local and Romania) and two protocols
(HTTP and websocket). The end-to-end round-trip time is an
important parameter because it is the main criteria to determine
if real-time control is possible. To control a distant robot with
an acceptable quality of experience, it is commonly accepted
that the delay never exceeds 400 milliseconds. We can see the
HTTP protocol cannot guarantee the delay bound. Indeed, the
time to establish the connection, to send a request and receive
a response significantly exceeds the delay bound. In case a
system requires the establishment of a TCP connection for each
transaction, the real-time control of the mobile robot is not
possible. The websocket protocol is more suitable for real-time
control. Being designed to work well in the Web infrastructure,
the protocol specifies that the websocket connection starts its
life as a HTTP connection, offering backwards compatibility
with no-websocket systems. The handshake of the websocket
protocol has slightly the same time than the HTTP protocol.
Once the connection is established, control frames are peri-
odically sent to maintain the connection. Hence, the time is
significantly reduced as compared with the HTTP protocol. For
all scenarios, the end-to-end round-trip time does not exceed
300 milliseconds which is quite acceptable to transmit QoS
traffic.

IV. VIDEO MONITORING

If a video stream is sent from the robot to the client, the loss
of some images is not critical. Thus, videos can be obtained
from a standard video Web server running on the smartphone.
We have used the IP Webcam application which works on
Android 1.6 and up and broadcasts video and sound. The
smarphone is placed on top of the robot (Fig. 6). It also
communicate with the Arduino and the cloud server as seen
above.

If security is required, videos can be sent to a distant Web
server through a securized channel, and forwarded to the client.

V. TOWARD A LOW-COST POSITIONING SYSTEM

We also design a low-cost localization platform for 2D-
positioning. Even if the robot is not an autonomous one, as it is
web-controlled, information on the position of the robot is very
useful to the user of the robot. Let us assume the robot only
has to monitor flat floor, i.e., the relative z-coordinate is always
equal to 0. In cases where different floors have to be monitored,
a robot may be on each floor. They can communicate between
them in order to extend the control in the whole habitation.

The positioning system involves 4 TelosB wireless devices.
The 3 auxiliary sensors have a fixed position, being place in

182Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

strategic places of the room, in the corners for example. The
places must be chosen in such way that the robot which will
have the Main Sensor attached to be in permanent Line of
Sight with this sensors. This way, the communication would
be done with very little interference.

Fig. 8 shows the whole system and the interaction be-
tween the components. The auxiliary sensors send a message
periodically. The main sensors do not know their position.
After receiving a message from an auxiliary sensor, they
gather information, such as receiver’s Received Signal Strength
Indicator (RSSI) and the identity of the sender. In order to
optimize the energy consumption, the processing of the RSSI
values is skipped in this moment, being the duty of the server
application to make the necessary computations from which
will result the distance approximation. Once the Main Sensor
acquires a message from each of the 3 fixed sensors, it will
create a data packet which contains the 3 pairs of ID - RSSI
value for each sender, and will sent it through the USB
interface to the arduino board. The arduino board forwards
this message to the server that converts the raw values into
physical distance, measured in meters. At this point, the server
knows the distance between the main sensor and each auxiliary
sensor.

In two-dimensional geometry, the trilateration technique
uses three reference nodes to calculate the position of the
target node. To be localized the target node should locate at
the intersection of three spheres centered at each reference
position. When the signal received from the reference nodes
is noisy, the system is non-linear and cannot be solved. An
estimation method has to be used. To get a satisfying ap-
proximation position of the mobile robot, we use the Newton-
Raphson method [15]. This method attempts to find a solution
in the non-linear least squares sense. The Newton-Raphson’
main idea is to use multiple iterations to find a final position
based on an initial guess (by example the center of the room),
that would fit into a specific margin of error.

The first results show that RSSI values are not constant
due to multipath components. Hence, the precision of our
system is about 2 meters. Such a precision is sufficient to
know approximately where the robot is. The localization will
reduce the complexity of the control interface dedicated to the
distant user. The web interface will contain the cartography of

Figure 8. The positioning system.

the house, and the robot will be able to reach a destination,
only by clicking on the map.

VI. CONCLUSION

The smartphone and the Arduino micro-controller are the
two main devices of the proposed home robot. The smartphone
includes several important features such as network connection
and webcam. It reduces the total cost and increases global
reliability. By combining a standard Web server and WebSock-
ets, we can deport a large part of the system to the cloud,
and installing the home robot in a HAL environment becomes
simple and cheap. The lack of sensors on the robot is not very
important because it is not an autonomous robot. Moreover,
it helps keep the price down. The positioning system is the
weakest point of the system. The lack of accuracy make the
robot more difficult to use. It is an important element which
must be improved in the near future without increasing the
total cost.

REFERENCES

[1] A. Chibani, Y. Amirat, S. Mohammed, E. Matson, N. Hagita and M.
Barreto, “Ubiquitous robotics: Recent challenges and future trends”,
Robotics and Autonomous Systems, Volume 61, Issue 11, November
2013, pp. 1162-1172, ISSN: 0921-8890.

[2] S. Nurmaini, “Robotics Current Issues and Trends”, Computer Engineer-
ing and Applications”, Vol. 2, No. 1, March 2013, pp. 119-122, ISSN:
2252-4274.

[3] A. Touil, J. Vareille, F. L’Herminier and P. Le Parc. “Modeling and
Analysing Ubiquitous Systems Using MDE Approach”. The Fourth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies. Florence, Italy. October 2010.

[4] P. Le Parc, J. Vareille and L. Marce. “Web remote control of machine-
tools the whole world within less than one half-second”. ISR 2004:
International Symposium on Robotics, Paris, France, March 2004.

[5] WoWee Rovio, a Wi-Fi enabled mobile webcam.
http://www.wowwee.com/en/products/tech/telepresence/rovio/rovio.
Online; accessed Apr. 15, 2014.

[6] Robots With Their Heads in the Clouds. IEEE Spectrum. Mars 2011.
[7] Service-Oriented Architecture (SOA) and Cloud Computing.

http://www.service-architecture.com/articles/cloud-computing/service-
oriented architecture soa and cloud computing.html. Online; accessed
Apr. 15, 2014.

[8] Y. Chen, Z. Du and M. Garcia-Acosta Robot as a Service in Cloud
Computing. Fifth IEEE International Symposium on Service Oriented
System Engineering. Nanjing, China, June 2010, pp. 151-158.

[9] Introduction to the Miabots & Robot Soccer, URL: http:
//eprints2.utem.edu.my/5831/1/Merlin Miabot Pro Robot Soccer
%282 Wheels%29 24 Pages.pdf. Online; accessed Apr. 15, 2014.

[10] 2009-01-Rovio-insecurity - Insufficient Access Controls - Covert Au-
dio/Video Snooping Possible. http://www.simplicity.net/vuln/2009-01-
Rovio-insecurity.html. Online; accessed Apr. 15, 2014.

[11] The Arduino micro-controller. http://arduino.cc/. Online; accessed Apr.
15, 2014.

[12] The WebSocket Protocol. Internet Engineering Task Force (IETF).
http://tools.ietf.org/html/rfc6455. Online; accessed Apr. 15, 2014.

[13] M. Oliver and A. Escudero, “Study of different CSMA/CA IEEE 802.11-
based implementations”. In EUNICE, 1999, pp. 1-3.

[14] T. Pering, Y. Agarwal, R. Gupta and C. Power, “Coolspots: Reducing
the power consumption of wireless mobile devices with multiple radio
interfaces”. In Proc. ACM MobiSys, 2006, pp. 220-232.

[15] The Newton-Raphson Method. http://www.math.ubc.ca/ anstee/math104/
newtonmethod.pdf. Online; accessed Apr. 15, 2014.

183Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

