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Abstract—The goal of this work is to recognize human actions 
only using depth maps without additional joints information. 
As a practical solution, we present a novel volumetric 
representation of global shape of depth motion, Depth Motion 
Appearance (DMA). The proposed framework also extracts 
dynamic information of the body movements called Depth 
Motion History (DMH), an extended version of motion history 
image. In the framework, a huge amount of data of an action 
video is summarized into concise action representation maps 
observed from multi-view. A histogram of oriented gradients 
then describes local appearances and shapes of the DMAs and 
DMHs, which results in more compact and discriminative 
action representation. The presented method has been 
compared with the state-of-the-art approaches on a public 
dataset. The experimental result demonstrates that our 
approach achieves a better and more stable performance with 
a relatively smaller feature maps and lower complexity. 

Keywords-Action recognition; Depth maps; Depth motion 
appearance; Depth motion history; Histogram of oriented 
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I.  INTRODUCTION 
Despite numerous research efforts and advances in the 

last decade, traditional human action recognition with the 
sequence of 2D color images is still a challenging problem. 
Human actions are in essential continuous evolution of 
dynamic motion of three-dimensional body parts and 
articulated joints. In addition, same action can be performed 
in various ways of body movements by each individual and 
two different actions having a similar trajectory of motion 
make it more difficult to distinguish correctly. So, the 
absence of depth information could lead to significant 
degradation of discriminating capability of an action 
recognizer and consequently limit its performance. 

In recent years, the technology of action recognition has 
entered a new phase with the release of the low-cost depth 
cameras like Microsoft Kinect [1]. These depth cameras 
provide 3D depth data as well as color image sequences in 
real time, which makes it possible to explore the fundamental 
solution for traditional problems in human action 
classification. Recent studies taking advantage of 3D 
information have been showing advanced results compared 
to the traditional 2D video-based researches [2][3][5].  

As it is well known, the human actions could be modeled 
by the motion of a set of three-dimensional articulated joints 

[4]. So, if we can obtain 3D positions of key joints in real 
time with reasonable accuracy, action recognition can be 
successfully accomplished. However, estimating 3D joint 
positions is still a challenging task. Although some consumer 
depth cameras provide body joints information, the estimated 
joint positions are coarse and sometimes have significant 
errors particularly when body parts are self-occluded like 
two hands crossing. Moreover, most depth sensors only 
provide a sequence of depth maps. For these practical 
reasons, the work presented here has focused on recognizing 
human actions only using depth maps without additional 
information of the joints of the skeleton. 

The main contributions of this work include two aspects. 
First, we propose the Depth Motion Appearance as a new 

way of describing the global 3D shape of a body movement. 
It is a 3D depth map which represents a region of forward 
depth motion stacked through all of the depth images of an 
action. Our method can be differentiated from the prior depth 
map-based studies. The work by Li et al. [5] only uses 2D 
projects of key poses instead of direct utilization of the 3D 
information, which could essentially lead to sub-optimal 
feature representations. While our method makes full use of 
3D information of all depth maps in the sequence, which 
results in the improved discriminating power. Xiaodong et al. 
[6] generate a binary map of motion energy by computing 
and thresholding the difference between consecutive depth 
maps. But, their method crucially does not consider dynamic 
information of the body movements. On the contrary, our 
framework effectively combines the appearance feature with 
the temporal feature extracted by an extended framework of 
motion history image [7]. 

Second, the proposed approach yields the best accuracy 
when compared with many previous state-of-the-art action 
recognition methods based on 3D silhouettes or joints. 
Moreover, the result is achieved with relatively small feature 
sets. An entire sequence of depth maps can be encoded just 
to a 4096 dimensional HOG (Histogram of Oriented 
Gradients) descriptor [8]. This fact indicates that our action 
representation method is highly discriminative as well as 
computationally efficient. 

This paper is organized as follows. In Section 2, the 
overview of the proposed framework is described. The 
detailed description of the proposed features is given in 
Section 3. An evaluation model and the experimental results 
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are shown in Section 4. Finally, Section 5 concludes this 
paper. 

II. FRAMEWORK OVERVIEW 
The proposed framework of the feature extraction and 

action classification is shown in figure 1. When the sequence 
of front-viewed depth maps is fed into the framework, it first 
generates a side-viewed depth map from the input depth map 
in order to acquire additional evidences. The framework then 
accumulates global activities through entire sequence of the 
depth images from each view and creates action 
representation maps called Depth Motion Appearance 
(DMA) and Depth Motion History (DMH). The DMA is an 
accumulated form of 3D depth information. It has no 
temporal information about the sequence of the motion, 
which can be complemented by the DMH that includes 
dynamic information of the entire motion region. In total 

four representation maps, two maps from each view, are 
generated for one action video. The system then calculates 
Histogram of Oriented Gradients (HOG) feature descriptors 
[7] for size-normalized DMAs and DMHs. The descriptors 
are concatenated into one single HOG descriptor which is 
fed into a linear Support Vector Machine (SVM) [9]. The 
linear SVM classifies the HOG descriptor and finally yields 
the action label of the query sequence. 

 

III. ACTION REPRESENTATION 

A. View generation 
The side-viewed depth map provides an additional body 

shape and motion information different from that extracted 
from the frontal depth image. As shown in Figure 2, similar 
actions which are difficult to be distinguished from the front 
view might be easily discriminable in a lateral view and the 
opposite is true as well. Therefore, taking advantage of 
observations from various views can be an efficient and 
effective approach for 3D action classification. In order to 
capture full body actions, actors are commonly located at a 
long distance from depth sensors, which leads to a low depth 
resolution for the body region. So, interpolation methods are 
basically needed to estimate and produce new depth points 
when creating side-viewed depth images. 

B. Depth Motion Appearance 
The DMA is a volumetric representation of depth motion 

which describes the overall shape and appearance of a body 
movement forming an action. As for each view, we can 

 
Figure 1.  Overview of the feature extraction and action classification framework proposed in this paper. 

 
 (a)                         (b)                                  (c) 

Figure 2.  Original front-viewed depth maps (top row) and newly 
created side-viewed depth maps (bottom row): (a) and (b) depth maps 

with similar frontal shape but discriminable profile shape, (c) the 
opposite case of (a) and (b). 
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obtain the DMA by accumulating all depth maps of an action 
video from start to end. 
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where v denotes the view, Dv(i,j,t) is a depth value at a pixel 
position i, j of the t th input depth map under the view v, and 
DMAv(i,j,t) is a depth value at a pixel position i, j of the 
DMAv generated from t input depth maps. The depth values 
of foreground region of an input depth map are only 
calculated for creating the DMA. 

Figure 3 shows several action sequences and their DMAs 
respectively. For each action, the DMA represents its own 
distinctive appearance of body movement, which means it 
can be a strong feature for action classification. In addition, 
the DMA has an advantage in practical terms because it does 
not require any threshold values at all. 

C. Depth Motion History 
Although the DMA is a good method to represent 

appearance of a body movement, it does not include 
temporal information at all. Human actions are in essential 
continuous evolution of dynamic motion of body parts and 
articulated joints. Therefore, the absence of dynamic 
information on a sequence of movements can be a 
tremendous loss for an action recognizer. For extraction of 
temporal features, we present a method called the DMH, 
which is an extended form of Motion History Image (MHI) 
[8]. Traditional MHI can only cover the motion history 
occurred on the 2D image plane. With the depth information 
we can now encode the history of the motion along the depth 
changing directions. 
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where DMHv(i,j,t) denotes a history value of depth motion at 
a pixel position i, j of the DMHv created from t input depth 

map under the view v. τ is a time window for history and δ is 
a threshold value for depth difference between consecutive 
depth maps. The generated DMH is a two-dimensional 
image template where pixel intensity is a function of the 
recency of depth motion in a sequence. 

D. Histogram of Oriented Gradients 
The presented action representation method summarizes 

a great amount of depth data of the entire video into just four 
maps. We exploit the HOG method to describe local 
appearance and shape of the DMAs and DMHs. The HOG 
technique figures out the distribution of intensity gradients or 
edge directions in localized portions of an image [7]. Since 
the descriptor operates on localized cells, the method 
upholds invariance to geometric and photometric 
transformations. 

For all the DMAs and DMHs, foreground regions are 
cropped and then normalized to a fixed size. Despite the 
same action, it can be variously performed by different actors. 
The size normalization can reduce intra-class variations 
including a human body type, a motion scale, and a distance 
between an actor and a sensor. We then achieve HOG 
descriptors by dividing each map into 8×16 non-overlapping 
cells and for each cell compiling a histogram of 8 gradient 
directions for the pixels within the cell. The local histograms 
are contrast-normalized using L2-norm measure. Each 
feature map is described as a HOG descriptor with the 
dimension of 8×16×8=1024 and we finally obtain a 4096 
dimensional HOG descriptor from the entire action video. 
The HOG descriptor is fed into a multi-class linear SVM 
classifier that is implemented by using an open source library, 
LIBSVM [9]. 

 

IV. EXPERIMENTAL RESULTS 

A. MSR Action3D dataset 
The MSR Action3D dataset [5][10] is a public dataset on 

which a large number of methods have been experimented. 
The dataset provides sequences of depth maps captured by a 
depth sensor similar to the Kinect device. It contains 20 
actions: high arm wave, horizontal arm wave, hammer, hand 
catch, forward punch, high throw, draw x, draw tick, draw 
circle, hand clap, two hand wave, side boxing, bend, forward 
kick, side kick, jogging, tennis swing, tennis serve, golf swing, 
pick up & throw. The actions were chosen in the context of 
using the actions to interact with game consoles. They 
reasonably capture the various movements of arms, legs, 
torso and their combinations. In total, 567 depth map 
sequences are available. The resolution of the depth maps is 
320×240. The dataset also provides the 3D joint positions 
extracted by the skeleton tracker [11]. Although the 
background of the dataset is clean, this dataset is still 
challenging due to the small inter-class variations among 
actions. Some actions of the dataset are shown in figure 3. 

B. Evaluation of the proposed method 
We evaluate our method with cross subject test setting 

[5][19], where the samples of the first five subjects are used 

 
                     (a)                                                     (b) 

Figure 3.  DMAs generated from different human actions: (a) 
sequences of input depth maps, (b) DMAs (side boxing, two hand 

wave, and tennis swing from top to bottom). 
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in training and the rest of the samples for testing. The cross 
subject test is more challenging and closer to the real world 
situation because the subjects used for training are different 
from those used for testing, which results in the considerable 
variations in the same action. 

Table 1 shows the result of a comparative analysis of the 
proposed feature descriptors on each view and their 
combinations. Both the DMA and DMH show the 
competitive accuracy of 79.50% and 85.95%, respectively, 
just for the front view. It basically proves that our feature 
descriptors are appropriate to discriminate 3D human actions. 
We also achieved significant improvement on the 
recognition accuracy through combination of the 
observations from multiple views, 89.61% for the DMA and 
87.64% for the DMH. This result means that reproducing 
new evidence from diverse views is an effective and 
practical approach to increase the discriminating power. We 
could finally obtain the outstanding recognition rate of 
90.45% by combining the HOG descriptors of the multi-view 
DMA and DMH. 

TABLE I.  COMPARISON OF RECOGNITIONS RATES (%) FOR THE 
PROPOSED FEATURE DESCRIPTORS ON EACH VIEW AND THEIR 

COMBINATIONS ON THE MSR ACTION3D DATASET. 

Feature 
Descriptors 

Front 
view 

Side 
view 

Multi- 
view 

DMA+HOG 79.50 69.66 89.61 
DMH+HOG 85.95 70.78 87.64 

DMA+DMH+HOG 85.95 71.07 90.45 
 
The confusion matrices of the proposed method are 

illustrated in Figure 4. The recognition rates on Action Set1, 
Action Set2, and Action Set3 under the cross subject test 
setting were 92.37%, 82.35%, and 95.63%, respectively. The 
accuracy on Action Set2 containing many similar actions is 
relatively lower than those on the other two sets. The 
accuracies for hammer in Action Set1 and hand catch in 
Action Set2 are quite low compared to the other actions. This 
is because the way of performing these two actions varies 
depending on the subjects. In Action Set2, we observed that 
draw x, draw tick, and draw circle are mutually confused 

because they all have very similar trajectories of hand 
motion. For actions in Action Set3 in which body 
movements are quite different from one another, our method 
works very well. 

C. Comparison with the state-of-the-art methods 
We compared our approach with several previous 

methods. In terms of used primitives, previous 3D action 
recognition solutions could be categorized as 1) skeleton-
based approaches that model the pose of the human body 
using motion of a set of 3D articulated joints [12][13][14], 2) 
depth map-based approaches that represent actions with 
volumetric and temporal features extracted from the entire 
depth maps in a sequence [6][15][16][17][18], and 3) hybrid 
solutions which combine information extracted from both the 
joints of the skeleton and the depth maps [19][20].  

TABLE II.  PERFORMANCE OF THE PROPOSED METHOD ON THE MSR 
ACTION3D DATASET COMPARED WITH THE PREVIOUS STATE-OF-THE-ART 

RESULTS. 

Methods Accuracy (%) 
HOJ3D [12] 78.97 
EigenJoint [13] 82.33 
STOP [16] 78.20 
DMM+HOG [6] 85.52 
Random Occupancy Patterns [17] 86.50 
Actionlet Ensemble [19] 88.20 
HON4D+Ddisc [18] 88.89 
JAS+MaxMin+ HOG2 [20] 94.84 
DMA+DMH+HOG (ours) 90.45 

 
As shown in Table 2, the proposed method clearly 

outperforms many well-known state-of-the-art approaches 
utilizing diverse primitives. It is also observed that the 
accuracy of our method is lower than that of one hybrid 
method [20] that exploits both joints and depth map 
information. Here, it is important to note that the goal of this 
work is to classify actions only using raw depth maps 
without additional joints information. Considering cost-
effectiveness and extensibility, we believe our method has 
highly competitive performance. 

      
                     (a) Action Set1                                                       (b) Action Set2                                                         (c) Action Set3 

Figure 4.  Confusion matrices of the proposed method under the cross subject test setting on the MSR Action3D dataset 
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V. CONCLUSION AND FUTURE WORK 
In this paper, we presented a practical and effective 

solution to three-dimensional human action recognition 
especially only using a sequence of depth maps. The method 
extracted a compact and discriminative HOG descriptor of 
the Depth Motion Appearances and Depth Motion Histories 
from multi-view. The experimental results on the public 
dataset showed that the proposed approach significantly 
outperformed the previous action classification methods. 

As future work, we plan to investigate other descriptors 
based on both depth and skeleton information to manage the 
problem of human-object interaction and develop a dynamic 
classifier to reduce inter-class variations. 
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