
Standardized Scalable Relocatable Context-Aware
Middleware for Mobile aPplications (SCAMMP)

Fatima Abdallah

Faculty of Sciences
Lebanese University

Beirut, Lebanon
Email: f.3abdallah@gmail.com

Hassan Sbeity and Ahmad Fadlallah

Faculty of Computer Studies
Arab Open University

Beirut, Lebanon
Email: {hsbeity,afadlallah}@aou.edu.lb

Abstract—The penetration of handheld devices (especially smart-
phones) is predicted to be over one billion in the next five
years. These devices are increasingly equipped with new sensors
offering a great potential for developing context-aware mobile
applications that can enhance user experience. Unfortunately, the
data provided by these sensors are of low-level (raw data) and
diverse, ranging from physical to virtual. This makes embedding
contextual information into mobile applications a difficult task.
Presenting these raw sensors’ data in a unified format, augment-
ing them into useful high-level context information and offering
them through a well formalized standard middleware service can
make this task easier. In this work, we present the architecture of
a middleware platform that provides an open standard interface
offering high-level information to the application layer. This
platform maintains user context information in a finite state
machine through state engines. State engines that represent user
states can be added and removed any time and hence the openness
of the platform originates. The platform uses layered approach
and is composed of two relocatable layers: data acquisition-
augmentation (pre-processing) layer and decision layer. A case
study was performed to validate the functionality of the platform.

Keywords–Context Awareness; Middleware; Mobile Applica-
tions.

I. INTRODUCTION

Most today smart devices have built-in sensors that mea-
sure motion, orientation, and various environmental conditions.
These sensors are capable of providing raw data with high pre-
cision and accuracy. Every smartphone nowadays is equipped
with a set of small sensors. These sensors can be hardware-
based embedded in the smartphone (e.g., acceleration sensor)
or software-based that derives their data from one or more
hardware-based sensors (e.g., linear acceleration sensor). A
third category of sensors could be introduced, which is the
logical sensors (e.g., calendar events).

Providing mobile applications with high level sensor infor-
mation can enhance the efficiency of these applications toward
power saving and user experience. Examples are many. For
instance when the user is traveling, application that needs
synchronization with cloud services (data upload/download
through mobile network), can postpone these jobs until the user
is at home or at work in order to save battery power even if
the mobile network provides a high bandwidth data connection
over LTE (Long Term Evolution) for instance. Because once
the battery of the mobile is drained, recharging the phone

is difficult while traveling. Another example is making the
phone silent when the user is sleeping, which enhances the
user experience. A power friendly operating system process
scheduler can swap processes from memory to persistent stor-
age while taking into consideration the user state. A reminder
application can notify the user events not only based on time
and dates but also based on his location and according to
what he/she is doing. For instance, an alarm can be set based
on date time and user states; one can choose ringing when
sleeping only, awake only, or both. Traditionally, applications
have input from the user, persistent storage, and recently from
the network via Remote Procedure Calls (RPC) for message
passing. But offering meaningful user context information
originally gathered from different physical and virtual sensors,
provides a new input source that, if standardized, will provide
a new brand of applications. Furthermore, the history of these
high-level user context information can be used as a user
signature to authenticate the user to his/her device.

In this work, we present the architecture of a middleware
platform that provides an open standard interface offering
high-level information to the application layer. This platform
maintains user context information in a finite state machine
through state engines. State engines, that represent user states,
can be added and removed any time, and hence the openness
of the platform originates. The platform uses layered approach
and is composed of two relocatable layers: data acquisition-
augmentation (pre-processing) layer and decision layer. We
also present a case study that decides about the current user
location, its purpose is to test the validity of the middleware
by mapping the different components of the application to the
different SCAMMP modules.

The rest of this document is organized as follows: Section
II presents the architecture of the middleware platform. Section
III describes the different blocks of the decision layer. Section
IV explains the modules of the Data Acquisition-augmentation
Layer. Section VI explores a set of related work and compares
them with our work. Section V presents a case study as an
evaluation of the functionalities of the different SCAMMP
components. Finally, Section VII concludes the paper and
presents the future work.

II. ARCHITECTURE

Fig. 1 depicts the general architecture of the middleware
platform. The application layer represents any mobile ap-

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

plication that might embed context-aware information. The
Decision Layer located at the top of the middleware platform
(SCAMMP) provides the application layer with an Application
Programming Interface (API) to access high-level context-
aware information. This information is stored in a finite state
machine and represents in a real time fashion the different user
states. Hence, any application can easily integrate user context
information. At the bottom is the Acquisition Layer, its main
role is to represent the data captured from different sensors in
a unified XML format.

SCAMMP Platform

Decision Layer

Data Acquisition Layer

Application Layer

Sensor
1

Sensor
3

Sensor
2

Figure 1. SCAMMP Architecture.

Each layer provides services to the layer above through
a well-defined set of commands (protocol). At each layer,
modules can be added and removed dynamically, hence guar-
anteeing the openness and the scalability of the platform. The
communication between the different layers is accomplished
as follows: The lower layer sends notification (using push
mechanism) to the upper layer each time a sensor notification
is received signaling the availability of valid data. If the upper
layer is interested, it issues a request asking for the new
update using a predefined protocol. Moreover, at any time the
upper layer can issue a command to the lower layer asking
for data updates. The separation of the system into different
layers offers a great flexibility for layer hosting and hence the
relocatabilty of the platform is originating.

III. DECISION LAYER

The main task of the decision layer is to maintain a finite
state machine that reflects the different user states in a soft real
time. Fig. 2 depicts the different components that build up this
layer. All components should reside in the same address space
and hence, intra-communication can be done through shared
variables.

The API component represents the interface to the applica-
tion layer and the controller component provides an interface
to the lower layer, namely the data acquisition layer. All
remaining components have no direct access outside this layer.
This layer can be hosted on the mobile device or on the cloud;
it can be relocated depending on the available bandwidth. The
history of the user states can also be uploaded on the cloud.

Controller

Decision Engine

Finite state
repository

State
Engine

1

State
Engine

2

State
Engine

3

API

Figure 2. The Architecture of the Decision Layer.

A. API

The API component is the only interface provided to the
application layer to communicate with SCAMMP. A set of
pre-defined commands (protocol) are used as a communication
mean between the application layer and the SCAMMP. In
fact, the current and the history of the different user states
will be made available to the application layer. For instance,
currently the user is at home (state) and is sleeping (attribute).
The API component has access to the state repository where
the current and the history of the different user states can be
found. The communication protocol can be simple, such as the
HTTP, where any application at the application layer can send
a request and receive response. There are two types of requests
that can be sent to the API component, one that requests a
list of the available user states and their attributes (names and
descriptions) and one that requests the current or the history
of the different user states for a specific period of time.

B. Decision engine

The decision engine is responsible for updating the dif-
ferent user states (along with the corresponding attributes).
The kernel of the decision engine is based on a mathematical
model that decides about the current user state. The decision
is based on input from the different state engines. Each time a
state engine makes an update, the decision engine is informed
in order to recheck the user state and eventually update it.
The outcome of this engine will be made available to the
application layer through the API component.

C. Finite state repository

The finite state repository is a storage system. It contains
three types of data, two of them are available to the application
layer through the API component and the third one is only for
internal use.

The first data is an XML entry list that contains an entry of
every registered state engine. The second data is an XML entry
list that stores the current and the history of the different user
states. The third data is also an XML entry list that contains
the output of every state engine. It is only for internal use and
is available for the decision engine. Because the history of the
user state could be huge after a while, it can be archived and

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

uploaded to the cloud, while still be available to the application
layer.

D. State engine

Every user state can have many attributes, for instance,
home is a user state and sleeping is its attribute. Every state
engine is attached to one or more sensor agents of the lower
layer. The finite state engines take input from the sensor agents
through the controller, and produce output in the finite state
repository. The data produced by the finite state engine are
only for internal use, namely the decision engine use them as
input. The main task of the state engine is to calculate the
certainty of a certain user state and it is left to the decision
layer to decide which is the current state of the user.

Each time a sensor agent sends a notification to announce
the availability of new sensor data, the corresponding finite
state engine will be informed via the controller. It is up to the
state engine to decide whether to request or not the data. A
new finite state engine should be introduced to the controller
in order to be registered. During the registration of a new state
engine, a list of the corresponding sensor engines of the lower
layer needs to be specified.

E. Controller

The controller’s main role is to maintain the communica-
tion with the lower layer and hence isolating the decision layer
form the data acquisition layer. It receives notifications form
the sensor agents of the lower layer and forwards them to the
corresponding state engines. It sends requests to the lower layer
on behalf of the different finite state engines and forwards the
response to the corresponding finite state engines. The second
role is to maintain a list of the active finite state engines. Each
time a new state engine is introduced, it has to be registered
at the controller.

IV. DATA ACQUISITION-AUGMENTATION LAYER

The main role of the Data Acquisition-augmentation layer
(see Figure 3) is to provide a unified format of the data
collected from different sensors.

Sensor
Data

Repository

Agent1

Sensor
1

Agent2

Sensor
2

Agent3

Sensor
3

Controller

Figure 3. Architecture of the Acquisition layer.

Every sensor whether physical or virtual will be attached
to a single dedicated agent. Once a sensor has produced a
new data, the corresponding engine will decide according to a
certain threshold whether to forward a notification to the upper
layer or not; if yes, the agent will collect the data and store
it in the data repository in a unified XML schema (see Figure
4).

Figure 4. Unified Agent Data XML schema.

These data will be made available to the upper layer
through the controller.

A. Sensors

Most smartphones nowadays are equipped with many small
sensors. As previously mentioned, some of these sensors are
hardware-based and some are software-based. Hardware-based
sensors are physical components built into handsets or tablet
devices. They derive their data by directly measuring specific
environmental properties, such as acceleration, geomagnetic
field strength, or angular change. Software-based sensors are
not physical devices, although they mimic hardware-based
sensors. Software-based sensors derive their data from one or
more of the hardware-based sensors and are sometimes called
virtual sensors or synthetic sensors. The linear acceleration
sensor and the gravity sensor are examples of software-based
sensors. Another category of sensors is logical sensors, such
as the tweets and the calendar events.

B. Agents

Most popular mobile operating system (OS) provides sen-
sor framework as an API. For instance, Android-powered
mobile devices provide raw sensor data by using the Android
sensor framework. The sensor framework is part of the android
hardware package and includes many classes and interfaces
(SensorManager, Sensor, SensorEvent, SensorEventListener,
etc.). The agents encapsulate the OS framework to provide
a homogeneous sensor data representation. A unified XML
schema is used by all agents to represent the captured sensor
data. The main role of the agent is to convert the raw sensor
data into a unified XML format (see Figure 4). Examples are
illustrated for the three categories of sensors (physical, virtual
and logical) in Figs. 5 (for the accelerometer sensor), 6 (for
the Battery sensor), and 7 (for the calendar sensor). This is
done using a threshold that is based on the difference of two
consecutive carried data. For every sensor (whether physical,
virtual, or logical) there will be a dedicated agent. The internal
implementation of the agent is sensor-dependent.

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 5. Agent captured data of the Accelerometer sensor.

Figure 6. Agent captured data of the Battery sensor.

Figure 7. Agent captured data of the Calendar sensor.

Each time a new agent is created, it has to be registered
in the controller repository using a unified XML format (see
Figure 8). Fig. 9 depicts the content of an agent’s registration
file containing three different agents.

Figure 8. Agent directory XML schema.

Figure 9. Agents registration file.

C. Controller

The controller is the interface of the data acquisition-
augmentation layer to the decision layer. The controller roles
are to:

• Maintain a repository that has an entry for every
registered agent using the unified XML format (see
Figure 8)

• Receive notifications from the agents and issue simple
commands to the agent, such as switch the sensor data
acquisitions on and off.

• Forward notifications to the upper layer once received
from the agents.

• Have read access to the repository that holds the data
stored using a unified format (see Figure 4) collected
from the different agents.

V. CASE STUDY

The main goal of SCAMMP is to provide an open standard
middleware that offers user context-aware information through
an API to the application layer. Hence, any application that
wishes to integrate context-aware information can use this
API . In order to evaluate SCAMMP, we consider one case
study that decides about the current user’s location. By design,
SCAMMP is intended to host decision logic . Thus, we decided
to integrate user-location logic in order to evaluate SCAMMP
by mapping the different components of the application in the
different SCAMMP modules. It is important to mention that
this mapping is done statically in order to evaluate the func-
tionality of SCAMMP; The intra- and inter- communication of
the different SCAMMP entities is simulated (done manually
since the system is not fully implemented yet).

A. Data Acquisition-augmentation layer mapping

We define three agents required to determine the user’s
location. These agents embody the following sensors: Location

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

(hardware/software sensor), network connection (software sen-
sor) and calendar (logical sensor) sensors. They are considered
as input for the ”Location State Engine”. These agents convert
the raw data generated by the embodied sensors into a unified
XML data as per the schema defined in Fig. 4.

Location Agent: Both Android and IOS operating systems
offer a location framework that determines the location of
the device. It is a software-based sensor that uses the GPS,
cell tower information, and connected Wifi network to detect
the user’s location. It returns the location using the attributes:
longitude, latitude, altitude, accuracy in meters, and time. Fig.
10 is a sample data produced by the Location Agent.

Figure 10. Location Agent Data.

Network Connection Agent: This agent determines the type
of network the user is currently connected to (e.g., WiFi and
Mobile Data network). This information can be obtained from
the ”Connectivity Manager” in the mobile operating system.
The agent’s role is to send a notification whenever the user
switches from one type of connection to another. The returned
data includes: connection type, connection SSID for Wifi
networks, and the set of cell towers the device is connected
to. Fig. 11 represents real sample data for a Wifi network
connection with SSID ’Alfa’.

Figure 11. Network Connection Agent Data.

Calendar Agent: This is a logical agent that can be either
local or hosted on the cloud. The information collected from
the embodied sensor can be used (at the decision layer) to raise
the certainty of the location obtained from other agents. Fig.
12 is a sample real data presenting a calendar event named
’Meet Manager’.

B. Decision layer mapping

The agents presented above are attached to a single engine
called ”Location State Engine” at the decision layer. This
engine’s kernel can determine user’s location (Home, Work, or
elsewhere) using Relational Markov Model [7], and K-Nearest
Neighbors (KNN) Algorithm [8].

Figure 12. Calendar Agent Data.

C. Simulation

The engine will remain for a period of time collecting
the locations that the user frequently visits (learning phase).
It associates for each location the active network connection
of the device and the time of identifying this location. After
collecting data, the location history is analyzed using a simple
heuristic to determine the user’s home and work locations. This
heuristic will work only for users with fixed work location,
since it is most likely that a user is at home at night time,
and at work in weekdays in the middle hours of the day.
To overcome this drawback many works have been done to
obtain personal significant places from raw location data using
Relational Markov Model, and K-Nearest Neighbors (KNN)
Algorithm. We choose to use KNN as a classification method,
for this sake we recorded the locations of a mobile holder for
3 days in a frequency of one hour. Each location is classified
by one of the labels {0,1,2} corresponding to {Home, Work,
Elsewhere} respectively. Table I presents a sample of the
collected data.

TABLE I. TRAINING DATA SAMPLE

Date Time Longitude Latitude Location
4-9-2014 10:06:45 35.5263591 33.8657569 1
4-9-2014 11:05:37 35.5181525 33.8368607 2
4-9-2014 12:45:07 35.5638238 33.8653605 1
4-9-2014 14:45:40 35.5291208 33.8660798 1
4-9-2014 15:03:26 35.528873 33.8662331 1
4-9-2014 16:19:06 35.5146795 33.8498035 0
4-9-2014 17:21:33 35.514577 33.849815 0

During the training phase the ”Location State Engine”
uses only the Location Agent, it transforms the training data
(longitude, latitude) into a matrix. This matrix is the input of
the processing phase where the KNN classifier is obtained. As
a simulation, we used Matlab [9] to create the classifier. The
produced classifier predicted incorrectly 3% of the training
data for k=3. The output of the state engine is an XML
file dedicated for internal use (see Figure 13), it is used by
the decision engine to aggregate outputs from different state
engines and provide the final users state through the API.

After setting the classifier, and in order to save battery
power, the ”Location State Engine” can use the active net-
work connection to decide the user’s location without using
the Location Agent. Since the device usually connects, the
accuracy of the decision is raised by the calendar events. So
if an event points that the user created a shopping checklist
or have a meeting at a specific hour, the engine could confirm
his location in the shop or at work according to the time.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 13. State Engine output sample.

VI. RELATED WORK

The multiplicity and diversity of sensors embedded within
mobile devices makes context aware applications difficult to
develop, so middleware solutions were proposed to provide an
abstraction layer between the operating system and applica-
tions. In this section, we review some of proposed middleware
solutions of the context-aware systems.

Baldauf et al.[1] in their survey over context aware sys-
tems, concluded that there is a common layered conceptual
framework for most systems: Starting from the low level
(Sensors Layer) passing through the Raw Data Retrieval Layer
and Preprocessing Layer that raise the level of abstraction of
context data. Then the Storage and Management Layer that
provides an interface for the Application Layer to obtain what
is needed from the collected data. Although most systems
have a common architecture, but they differ in the kind of
target applications they serve. Some of the architectures gather
information for general context-aware applications, such as
smart homes, intelligent vehicles, and context aware hospitals.
Other systems, including SCAMMP, are specialized for mobile
devices.

Henricksen et al. [2] proposed the PACE middleware that
supports heterogeneity, mobility, traceability and control, and
deployment and configuration of new components, which are
some of the requirements for context-aware middleware. On
the other hand, it doesn’t achieve the scalability requirement.
This middleware is developed for context-aware systems in
general rather than mobile devices. The middleware is divided
into 3 layers: Context Repositories Layer, Decision Support
Tools Layer, and Application Components Layer. Dey et al. [3]
presents a framework that supports the rapid development of
general context-aware applications. Using the Context Widget,
Interpreters, Aggregators, and Services, it separates the context
acquisition from the use of context in the application. The
Context Toolkit was implemented to instantiate the frame-
work, but it is limited in scalability and ease of deployment
and configuration. Another generic context-aware framework
is CMF [4]. It is a scalable context-aware framework that
enables processing and exchange of heterogeneous context
information. The Context Source uses reasoning techniques to
integrate data collected from different sensors, and offers them
to the Context Provider. The framework takes benefits from
user profiles stored in the User Management component. The
sentient object model is proposed by the CORTEX [5] project
for the development of context-aware applications in mobile
ad hoc environments. A sentient object is a mobile intelligent
software component that senses the surrounding environment
via sensors and other sentient objects. It consists of three parts:
Sensory Capture, Context Hierarchy, and Inference Engine.

The model was improved more in [6] by adding the reflection
capability and the Service Discovery component. It was also
tested by building an intelligent vehicle application.

All the referenced approaches are similar to SCAMMP
in the way they collect data from different sensors, raise its
abstraction level, and offer context information for applica-
tions. But SCAMMP is a standard, relocatable, and scalable
middleware for applications targeting handheld devices. Using
the layered approach allows any of the layers to be hosted on
cloud. In addition, the collected data can be stored on a remote
server to overcome the storage limitation. The scalability of
the middleware is obtained by using a unified XML schema to
register additional state engines and physical, virtual, or logical
sensors. The provided API feeds applications with high level
context information in a finite state model that represents the
user’s state (Home, Work, Traveling, etc.).

VII. CONCLUSION AND FUTURE WORK

The main goal of SCAMMP is to provide an open and
standard middleware, that offers user context-aware infor-
mation to the application layer through a well-defined API,
which can be accessible by any future application wishing to
integrate context-aware information. SCAMMP is open in a
way that new user state engines can be added dynamically. It
is relocatable allowing, for instance, the decision layer to be
hosted on the cloud. It uses standard protocol for inter-layer
communication and URI for name spacing. These different
aspects (standard, open, and relocatble) distinguish SCAMMP
from the currently proposed middlewares. Our current and
future works are the detailed design and implementation of
SCAMMP, and its evaluation through different case studies.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, 2007, pp. 263–277.

[2] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
“Middleware for distributed context-aware systems,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE.
Springer, 2005, pp. 846–863.

[3] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,” Human-computer interaction, vol. 16, no. 2, 2001, pp. 97–
166.

[4] H. Van Kranenburg, M. Bargh, S. Iacob, and A. Peddemors, “A context
management framework for supporting context-aware distributed appli-
cations,” Communications Magazine, IEEE, vol. 44, no. 8, 2006, pp.
67–74.

[5] G. Biegel and V. Cahill, “A framework for developing mobile, context-
aware applications,” in Pervasive Computing and Communications, 2004.
PerCom 2004. Proceedings of the Second IEEE Annual Conference on.
IEEE, 2004, pp. 361–365.

[6] C.-F. Sørensen et al., “A context-aware middleware for applications in
mobile ad hoc environments,” in Proceedings of the 2nd workshop on
Middleware for pervasive and ad-hoc computing. ACM, 2004, pp. 107–
110.

[7] C. Zhou, N. Bhatnagar, S. Shekhar, and L. Terveen, “Mining personally
important places from gps tracks,” in Data Engineering Workshop, 2007
IEEE 23rd International Conference on. IEEE, 2007, pp. 517–526.

[8] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Building personal maps
from gps data,” Annals of the New York Academy of Sciences, vol.
1093, no. 1, 2006, pp. 249–265.

[9] Matlab the language of technical computing. http://www.mathworks.com/
products/matlab/index.html. (2014 (accessed April 10, 2014))

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://www.mathworks.com/products/matlab/index.html
http://www.mathworks.com/products/matlab/index.html

	Introduction
	Architecture
	Decision layer
	API
	Decision engine
	Finite state repository
	 State engine
	Controller

	Data Acquisition-augmentation Layer
	Sensors
	Agents
	Controller

	Case Study
	Data Acquisition-augmentation layer mapping
	Decision layer mapping
	Simulation

	Related Work
	Conclusion and future work
	References

