
Spaces-Based Communication: an Extension to
Support Infinite Spatial Models

Diego Bernini, Francesco Fiamberti, Daniela Micucci, Francesco Tisato, Alessio Vertemati
Department of Informatics, Systems and Communication

University of Milano-Bicocca
Milano, Italy

Email: {diego.bernini, francesco.fiamberti, daniela.micucci, francesco.tisato, alessio.vertemati}@disco.unimib.it

Abstract—Space Integration Services (SIS) is a software com-
munication platform that enables the seamless integration of
sensors, actuators, and application-logic components through a
multi-space model and a spaces-based publish/subscribe mech-
anism. The underlying model is based on finite spaces only.
SIS has been extended in order to add support for spaces
with an infinite number of locations, (e.g., spaces described by
continuous coordinates, such as geodetic or Cartesian spaces). The
existing conceptual model, valid for finite spaces, is reviewed and
generalized to infinite spaces. The obtained model is tested using
a prototype implementation realized by means of an additional
layer on top of the finite-space version. Finally, the performance
of the prototype is then compared to the one of the finite-space
version in a series of experimental tests.

Keywords—Infinite spatial models; spaces-based communica-
tion; software architecture; component-based architecture.

I. INTRODUCTION

Pervasive computing [1] aims at simplifying the everyday
life through digital environments that are sensitive, adaptive,
and responsive to the user’s needs. A pervasive computing
system requires the perception of the context in which the user
operates to provide a richer and expanded mode of interaction,
in addition to an intelligence for performing actions on the en-
vironment. From a technological point of view, pervasive com-
puting relies on responsive environments. The term responsive
environment [2] refers to physical environments enhanced by
input devices (e.g., sensors or cameras) and output devices
(e.g., displays, lights, motors). Input devices capture stimuli
from the environment, whereas output devices execute actions
on the environment given a predefined set of commands.

Responsive environments are, therefore, able to perceive
and respond to users thanks to the presence of a computer
system that receives data from the sensors (input stream) and
sends commands to the actuators (output stream). For example,
an application may locate the user onto the cartographic
representation of the city and may also receive data from
light sensors (input stream). On the basis of established rules,
it could send commands to the street lights (output stream).
This simple example emphasizes how responsive environments
require establishing information flows from the devices to the
applications and vice versa.

Space Integration Services (SIS) [3] is a software com-
munication platform that enables the seamless integration of
sensors, actuators, and application-logic components through
a multi-space model and a spaces-based publish/subscribe

mechanism. It provides various spatial models that can be
used by applications to represent location-related information
in order to support complex representations of the environment
with a focus on location-aware systems. In this regard, different
spatial representations can be put in appropriate correspon-
dence to describe the localization according to different visions
of the environment. The spatial representations supported by
SIS are symbolic models (graphs and name spaces) and grid
models (bi- and tri-dimensional). With the increase of accuracy
and precision of localization sensors [4] and with the need to
include geographical-related spatial models, a revision of the
platform was required in order to deal with spatial represen-
tations that contain a potentially infinite number of locations,
for example those described by continuous coordinates, such
as geodetic and Cartesian spaces, but also unbounded grids
described by discrete coordinates.

The paper is organized as follows. Section II presents the
SIS conceptual model and the proposed extension for the in-
clusion of infinite spaces. Section III discusses the application
of the model to a simplified case study. Section IV describes a
prototype implementation used to test the extension. Section V
presents the results of several tests aimed at estimating the
performance of the proposed extension with respect to the
existing SIS implementation. Section VI reviews related works.
Finally, conclusions and future developments are presented in
Section VII.

II. CONCEPTUAL MODEL

The previous conceptual model was based on the as-
sumption that spaces are finite sets of locations built from
spatial models (e.g., graph spatial model). Non- empty sets of
locations belonging to a space are named spatial contexts. In
such a model, locations play a crucial role since the existence
of both a space and a context is subject to the existence of the
set of locations that constitutes them (space and context). In
order to handle infinite spaces, that is, spaces that contain a
potentially infinite number of locations, the conceptual model
has been revised around the concept of spatial context.

A. Space

A space is a set of potential locations, that are all the
locations that could be theoretically considered in that space,
not only the ones actually used explicitly. For example, in a
Cartesian space only a finite number of points (i.e., locations)
can be actually used explicitly by a real application, but theo-
retically every point in R2 could be used by the application.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A spatial model defines 1) the types of locations that may
belong to the spaces created by that model, 2) the way in which
locations are arranged, and 3) at least one premetric that can
be applied to a pair of locations. The premetric defines the
distance between two locations as a positive, non-zero number
if the two locations are distinct, and zero if the locations are
the same. A single location might be, for example, a node of a
graph, a symbolic label or a numeric coordinate. Two examples
of spatial models for infinite spaces are (1) the Geodetic spatial
model, defining locations as geodetic coordinates (i.e., latitude
and longitude) in a geodetic coordinate reference system [5];
(2) the n-dimensional Cartesian spatial model, that models an
Euclidean space Rn. In this model, locations are represented
by ordered tuples of real numbers in a orthogonal Cartesian
reference system. These examples also highlight that a location
in an infinite space can be identified with a potentially infinite
precision, as in the nature of the coordinate system based on
real numbers.

B. Spatial Context

In order to handle the selection of subsets of locations in
an infinite space, the concept of spatial context (context in the
following), already present in the finite space-based SIS model,
has been refined. A spatial context CS is a subset of potential
locations of a space S. It is defined by a set of characteristic
locations in S and by a membership function that states if
a given location of S belongs to the context. Essentially, the
membership function is a boolean function that is true when a
location is in the spatial context. According to the membership
function used, the following kinds of contexts have been
identified: enumerative, premetric declarative, polygonal, and
pure functional.

In a enumerative context the set of characteristic locations
is non-empty and the membership function is based on the
standard belonging relationship defined in set theory. For
example, given a space S, an enumerative context is defined
by the set CS = {l1, l2, ..., l5} of characteristic locations.

In a premetric declarative context the members are all the
locations within a given distance from a given characteristic
location in terms of a premetric function (see Figure 1a).

In a polygonal context the characteristic locations are the
vertices of a polygon, and the membership function indicates
the inclusion of a location in the region corresponding to the
polygon itself (see Figure 1b).

Finally, in a pure functional context the set of characteristic
locations is empty and the membership function is defined
by using mathematical expressions defined in terms of the
space coordinate system. For example, consider a Cartesian
bi-dimensional space S. A context can be defined by the
following membership function: for all locations (x, y) in S
and for any given location (x0, y0) and (x1, y1),

f(x, y) =

{
true if x0 < x < x1 and y0 < y < y1
false otherwise (1)

C. Projection

Related to the concept of space, is the concept of pro-
jection, which is widely used in geometry and in algebra.

S

CS

r

l0

(a) A premetric context

S
1

2

3

4

5
CS

(b) A polygonal context

Fig. 1: Different types of spatial context

Given a source spatial context CS defined in a source space
S and given a target space T , the result of a projection is
a spatial context CT on the target space T containing the
locations that are obtained by applying a projection function
f to all the locations in the source context CS . The target
space can be defined according to the same spatial model of
the source, or to a different one. For example, a planimetry of
a building is the projection of the tri-dimensional environment
onto a bi-dimensional surface. Another typical example of the
application of a projection is the transition from a geodesic
representation of the Earth to any cartographic representation.

D. Mapping

Mappings relate different spaces. For example, a map-
ping can relate an area of a Cartesian space (representing
the plant of a building) to a node of a graph (representing
a synoptic view of the same building). Mappings are key
concepts because, as it will be explained afterward, enable
the communication among components, even if they rely on
different spaces. Three kind of mappings have been defined:
explicit, projective and implicit.

An explicit mapping is an ordered pair of contexts defined
in different spaces (possibly based on different spatial models):
given the two spaces S1 and S2 with S1 6= S2, the ordered
pair 〈SC1, SC2〉 is an explicit mapping between the contexts
SC1 ⊆ S1 (source) and SC2 ⊆ S2 (target).

Figure 2 shows two examples of explicit mappings between
the context SCm of the Geo space (a Geodetic spatial model)
and the context SCk of the LocationNames space (a
graph spatial model), and between the context SCi of the
PeopleIds space (a name spatial model) and the context
SCm of Geo.

The target context may be defined independently of the
source context. But when the target context is the result of the
application of a projection to the source context, the mapping
is termed projective mapping and is fully determined by the
source context and the projection function.

Let SM be the set of all the defined explicit and pro-
jective mappings, and let SCa and SCb be contexts de-
fined in different spaces. The implicit mapping 〈SCa, SCb〉
is derived if there exist k contexts SC1, . . . , SCk such that
〈SCa, SC1〉, 〈SC1, SC2〉, . . . , 〈SCk, SCb〉 ∈ SM for k > 1.

In Figure 2 the dotted arrow represents an implicit map-
ping between the contexts SCi of PeopleIds and SCk of
LocationNames.

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

PeopleIds

Location
Names

Parco
Sempione

SCk

SCm

SCi• Jonh Locke

Geo

Fig. 2: Explicit and implicit mappings

E. Matching

A direct matching occurs when the intersection between
two spatial contexts defined in the same space is not empty.

Let SC1 and SC2 be spatial contexts defined in different
spaces. An indirect match between SC1 and SC2 occurs when
there exists a mapping (explicit or implicit) 〈SCa, SCb〉 such
that the intersections between SC1 and SCa and between SC2

and SCb are both not empty (see Figure 3).

Space1 SpaceN

SCa

SCbSC1

SC2

Fig. 3: Indirect matching

F. Publication and subscription

As previously introduced, SIS enables information flows
relying on the publish and subscribe mechanism. A publication
includes a thematic information (whose semantics is up to
the application domain) and one or more spatial contexts; a
subscription includes one or more spatial contexts.

When an application performs a publication, the enclosed
thematic information is received by all the applications that
previously performed a subscription such that at least one of
its contexts matches, either directly or indirectly, a context of
the publication. The thematic information is enriched with all
the contexts that contributed to the matching.

III. APPLICATIVE SCENARIO

This section will apply the concepts introduced in Section
II considering an exemplified scenario. Consider a parcel distri-
bution company with warehouses distributed in Europe (for the
sake of simplicity, we consider only six warehouse distributed
in Italy and Spain). The company exploits vehicles to distribute
parcels. Each vehicle is equipped with a device (mounting a
GPS) that periodically notifies its position. Before reaching
the final warehouse, vehicles can pass through intermediate
warehouses. Each time a vehicle enters a warehouse, different
operations have to be performed according to the country’s
rules, including the decision of the next warehouse the vehicle
has to reach.

As depicted in Figure 4, the required spaces are: S1, a
Geodetic spatial model covering the involved countries; S2,
a graph spatial model where each node corresponds to a
specific warehouse (identifiers wh1, wh2, ..., wh6) and each
arc connects the warehouses that can be reached without any
intermediate stop; finally, S3, a name spatial model containing
the identifiers of the two countries (Italy, Spain).

S2

wh1
wh3

wh2

SC2

S3

SC3 = SCS• Italy

• Spain

S1

SC1

SCP

M1

M2
M3

Vehicle

App1

Fig. 4: Example scenario

Explicit mappings are required from S1 to S2 with the aim
of localizing each warehouse in the Geodetic space. Mappings
are in the form M = 〈(latitude, longitude, radius), {whi}〉,
where the target is an enumerative context containing a node
of the S2 space (i.e., a warehouse whi) and the source is a
premetric declarative context specifying the area in S1 where
the warehouse whi is located. For example, the mapping
M1 = 〈SC1, SC2〉, where SC1 = (45.523653, 9.219436, 50)
and SC2 = {wh1}. In Figure 4 spatial contexts on S1 have
been hugely enlarged for visualization purposes. Moreover,
explicit mappings are required from S2 to S3 with the aim
of localizing each warehouse in its country. Mappings are in
the form M = 〈{whi}, {country}〉, where the source is an
enumerative context containing a node of the graph (i.e., the
identifier of a warehouse) and the target is an enumerative
context containing the identifier of the country. For example,
the mapping M2 = 〈SC2, SC3〉, where SC2 = {wh1} and
SC3 = {Italy}. Finally, six indirect mappings are derived:
their source contexts are the source contexts of the explicit
mappings defined between S1 and S2, and their target contexts
are the target contexts of the explicit mappings defined between
S2 and S3. For example, M3 = 〈SC1, SC3〉.

Two applications are required (App1 for Italy and App2
for Spain), each implementing the local rules. Each ap-
plication subscribes to the appropriate country to be noti-
fied when a vehicle enters a warehouse in the country of
competence. For example, App1 performs a subscription to
the enumerative context SCS in S3 containing the loca-
tion Italy (i.e., SCS = {Italy}). Periodically, the vehicles
make publications in the S1 space, thus sharing their posi-
tion with all the interested applications. Publications are in
the form [vehicleID, {(latitude, longitude, radius)}], where
vehicleID is the thematic information that identifies the ve-
hicle, and (latitude, longitude, radius) is a premetric declar-
ative context specifying the position of the vehicle iden-

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

tified by vehicleID in the Geodetic space. For example,
publication Pubi = [12345, {SCP }], where 12345 is the
identifier of the vehicle that performs the publication and
SCP = (45.51788, 9.214071, 20) is the location in which it
has been localized.

When the vehicle 12345 makes the publication Pubi,
App1 is notified because an indirect match occurs. Indeed, the
following conditions result true: SCP intersects SC1, SC1 is
indirectly mapped to SC3 (M3 mapping), and SCS intersects
SC3. When notified, App1 receives the thematic information
12345 enriched with all the contexts that enabled the matching,
that is, SCP , SC1, SC2, SC3, SCS . This way, App1 is aware
of the warehouse in which the vehicle 12345 is, and, if it is
able to manage S2, it can inspect the graph in order to decide
the next stop for the vehicle.

Form the above example, it is clear that spaces can be used
by applications not only to enable information flows, but also
to reason about spatial configurations.

IV. IMPLEMENTATION

A. Prototype

The developed prototype is based on the implementation
of the finite-space version of Space Integration Services.

The infinite-space extension of SIS is organized according
to two different software layers [6] on top of the finite-space
SIS core layer. Figure 5 shows the resulting structure.

SIS

Software
Components

C1 C2 C3

Core

Manager Spatial Models Data types Con�guration

Distributed Access

Web Services Web Socket Web Interface

In�nite Space Extension

Manager Extension TypesSpatial Models

Fig. 5: The extended SIS Structure

The Distributed Access layer exhibits three different mech-
anisms allowing applications to interact with the platform.
The Web Services interface provides access to the platform
features by means of the Web Service Definition Language
(WSDL) and of the Representational State Transfer (REST).
Web Sockets [7] are a recent W3C standard for two-way asyn-
chronous communication in the context of web applications;
this technology makes available asynchronous communication
of notifications to the applications. Finally, a Web interface
visually exposes all the primitives of the platform and allows
for the configuration of the users with their access permissions.

The Infinite Space Extension layer encloses the manage-
ment of the new spatial models, the new data structures and
the business logic to handle publications and subscriptions, the
definition of contexts and the creation of mappings between
contexts of different spaces.

The Core layer contains the finite spatial models (i.e., graph
space, name space and grid space) with related primitive types
and the manager in charge of monitoring instances of SIS
itself. The Core layer uses the JESS rule engine in order to
handle the operations of transitive closure and matching. This
layer grants the full compatibility of the SIS extension with
the previous versions of SIS.

The prototype has been developed in Java because the
current Core layer is implemented in this language.

V. PERFORMANCE EVALUATION

Several performance tests have been performed on the SIS
prototype. For such tests, a SIS instance has been used running
on an Intel Core i5 2.8 GHz PC with 4GB of RAM, running
Windows(R) 7 64bit with the 64bit version of the Java Runtime
Environment 1.6.33. Publications were generated by a mobile
client and sent to the SIS server. The tests measured the mean
reasoning time and the maximum RAM occupation. The mean
reasoning time is the mean time between the reception of a
publication and the moment at which notifications are made
available to interested applications.

A. Mean reasoning time vs. Mappings

The first experimental setup allows studying the depen-
dence of the mean reasoning time on the number of mappings.
In this test, the mappings are created in the space configuration
phase and do not change dynamically.

Space1 Space2 SpaceN

Fig. 6: Space configuration for the mapping test

The space configuration for this test consists of n Cartesian
spaces, each containing a single premetric declarative context
with a radius of 2 units. Every context is directly mapped
onto a context in the next space, thus realizing a chain of
n�1 explicit mappings, as shown in Figure 6. Considering the
implicit mappings, the total number of mappings is therefore
equal to n(n� 1)/2. Publications occur on the context in the
first space with a frequency of 50 Hz (i.e., every 20 ms),
and a subscription is made on the context of the last space.
With this generic configuration, the mean reasoning time for
a publication can be measured as a function of the number of
spaces n.

Figure 7 shows the measured mean reasoning time, ex-
pressed in milliseconds, for n varying from 2 to 300. Two
different behaviors can be identified in the graph: for n
between 2 and 90, the mean reasoning time is mostly constant
(about 0.9 ms), whereas for n > 90 the reasoning time depends

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0

1

2

3

4

5

6

7

2 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Fig. 7: Mean reasoning time vs number of spaces

0

200

400

600

800

1000

1200

1400

2 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Fig. 8: Memory footprint vs number of spaces

more or less linearly on n. Figure 8 shows the RAM footprint,
showing a constant increase for about half of the test and next
an oscillatory behavior until the maximum value around 1.3
GB for 300 spaces. Such an amount of memory is probably due
to the current implementation, which is not optimized and thus
exploits a huge number of objects. The oscillatory behavior is
probably due to the Java memory management.

Given these experimental results, a comparative test has
been conducted against the finite-space implementation. In
particular, when using the finite-space version of SIS (SIS
1), the Cartesian space has been approximated with a grid
of regular cells.

0

1

2

3

4

5

6

7

8

2 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

SIS 2 SIS 1

Fig. 9: SIS 2 vs SIS 1: mean reasoning time comparison

As pointed out by the graph in Figure 9, the prototype (SIS
2) is 0.7 ms faster than SIS 1 using a grid approximation.
Considering the prototypical stage, the memory footprint is at
acceptable levels when compared to SIS 1. Overall, an average
gain of 50 MB was observed on the use of grid spaces as
approximation of a Cartesian space.

0

200

400

600

800

1000

1200

1400

1600

1800

2 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

SIS 2 SIS 1

Fig. 10: SIS 2 vs SIS 1: memory footprint comparison

B. Mean reasoning time vs. context size

The second test aims to investigate the dependence of the
mean reasoning time on the size of the contexts. The space
configuration in this case includes two Cartesian spaces. One
premetric declarative context was defined in each space, the
first one for publication and the second one for subscription.
During the test, the number of mapped spaces has been
maintained fixed at two, whereas the radius of the premetric
declarative contexts was varied according to the values 1, 5,
10, 15, 20 and 25 units.

To get a better idea of the results, a comparative test has
been conducted between the SIS 2 prototype and the SIS 1
implementation with Cartesian spaces approximated by regular
sized grid. As pointed out by the graph in Figure 11, the SIS
1 prototype has a constant mean reasoning time about 2 ms,
while the SIS 1 implementation behaves like O(n2).

0

200

400

600

800

1000

1200

1 5 10 15 20 25

SIS 2 SIS 1

Fig. 11: Mean reasoning time vs. size of context

C. Discussion

The experimental tests show how the implemented tech-
niques allow for a better management of different context sizes
in infinite spaces, maintaining a constant time of reasoning
together with a moderate use of the available RAM memory.

Moreover, the prototype has a better scaling behavior with
respect to the finite-space implementation, both for increasing
number of mappings and for increasing size of publication

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

and subscription contexts. Such improved scalability can be
understood in terms of the number of facts that form the
knowledge base of the rule engine managing the operations
of transitive closure and matching; the infinite-space imple-
mentation reduces the number of facts to one per context, and
thus to two facts for a single mapping, whereas the finite-space
implementation creates a fact for each location involved in the
mapping.

The memory footprint globally resembles the one char-
acterizing the finite-space implementation, but without the
peak that has been evidenced during the tests. This memory
occupation is caused by the supplementary data structures
needed by the infinite-space implementation to correctly han-
dle situations which involve both finite and infinite spaces.
It is noticeable that these structures have a relevant weight
when a reduced number of spaces and mappings is involved
but become negligible as the number of spaces increases.

VI. RELATED WORK

Location-aware computing has been an active area of
research. Different platforms at the state of art enable location-
aware applications focusing on sensor fusion and reasoning
with the help of a multi-spatial model, or hybrid model (as
called by Becker et al. [8]).

Location Stack [9] defines a layered modeled for fusing
location information from multiple sensors and reasoning
about an object’s location. It, however, does not incorporate
a spatial model of the physical world and does not support
representations of immobile objects. This leads to a lack of
support for spatial reasoning relative to stationary entities such
as rooms or corridors.

Loc8 [10], on the other hand, extends the Location Stack
layered architecture by considering only high level position and
data instead of low level sensor data. Reasoning is applied to
that position data, enriched by the knowledge given by a base
ontology, to infer additional spatial relationships.

The Aura Space Service [11] combines coordinate and
hierarchical location models into a single hybrid model, which
supports spatial queries. The focus of the Aura Space Service
is only on modeling the physical space and supporting spatial
queries. It does not address location inferencing and does not
provide a framework for spatial reasoning.

MiddleWhere [12] uses the hybrid location model intro-
duced by the Aura Space Service and enables the fusion of dif-
ferent location sensing technologies. MiddleWhere introduces
also probabilistic reasoning techniques to resolve conflicts and
deduce the location of people given different sensor data. The
model of the world is stored in a spatial-enabled database.

Semantic Spaces from Microsoft Research decomposes the
physical environment into a hierarchy of spaces. The locations
of moving users or devices are correlated to actual physical
spaces, thus it is capable of answering ”containment” queries.
However, because of its inherent lack of metric attributes
and precision, it is unable to compute distance accurately or
represent locations precisely, which are requirements for some
ubiquitous computing applications [13].

Semantic Spaces and Location Stack lack any support
for infinite spaces and in general spaces with a coordinate

system, while Loc8 and MiddleWhere have at least one spatial
model with a Cartesian coordinate system and can handle
different levels of precision on that space model. These two
platforms substantially treat infinite spaces by using different
granularities for location representation on a local and a global
coordinate system.

VII. CONCLUSION AND FUTURE WORK

The paper proposed an extension to the conceptual model
of the SIS platform. This refinement comes in order to enable
the use of infinite spatial models like the geodetic or the
Cartesian ones. The approach that has been presented has
involved the extension of the concept of spatial context and the
use of that concept as the elementary unit at the basis of all the
spatial operations enabled by the platform itself (i.e., mapping
and matching). With the help of a prototypal implementation
the revised conceptual model has been tested for performance
evaluation. The tests that have been conducted have shown an
overall increase of performance and capacity to handle spatial
contexts with large extent as needed when using the geodetic
space. The main future work consists in the deep integration
of the Infinite Space Extension layer in the Core layer. This
will enable a more efficient use of the rule engine.

REFERENCES

[1] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[2] L. Bullivant, Responsive environments: architecture, art and design.
Victoria & Albert Museum, 2006.

[3] D. Bernini, F. Fiamberti, D. Micucci, and F. Tisato, “Architectural
abstractions for spaces-based communication in smart environments,”
Journal of Ambient Intelligence and Smart Environments, vol. 4, no. 3,
pp. 253–277, 2012.

[4] C. A. Patterson, R. R. Muntz, and C. M. Pancake, “Challenges in
location-aware computing,” Pervasive Computing, IEEE, vol. 2, no. 2,
pp. 80–89, 2003.

[5] ISO, Spatial referencing by geographic identifiers. International
Organization for Standardization, Geneva, Switzerland, 2003, no. ISO
19112.

[6] D. Garlan and M. Shaw, “An introduction to software architecture,”
Advances in software engineering and knowledge engineering, vol. 1,
pp. 1–40, 1993.

[7] IETF. The WebSocket Protocol - RFC 6455.
[retrieved: July, 2013]. [Online]. Available:
http://datatracker.ietf.org/doc/rfc6455/?include text=1

[8] C. Becker and F. Dürr, “On location models for ubiquitous computing,”
Personal and Ubiquitous Computing, vol. 9, no. 1, pp. 20–31, 2005.

[9] D. Graumann, W. Lara, J. Hightower, and G. Borriello, “Real-world im-
plementation of the location stack: The universal location framework,”
in Mobile Computing Systems and Applications, 2003. Proceedings.
Fifth IEEE Workshop on. IEEE, 2003, pp. 122–128.

[10] G. Stevenson, J. Ye, S. Dobson, and P. Nixon, “Loc8: a location model
and extensible framework for programming with location,” Pervasive
Computing, IEEE, vol. 9, no. 1, pp. 28–37, 2010.

[11] C. Jiang and P. Steenkiste, “A hybrid location model with a computable
location identifier for ubiquitous computing.” Springer, 2002, pp. 307–
313.

[12] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and M. Mick-
unas, “Middlewhere: a middleware for location awareness in ubiquitous
computing applications,” in Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Springer-Verlag New York,
Inc., 2004, pp. 397–416.

[13] B. Brumitt and S. Shafer, “Topological world modeling using semantic
spaces,” in Proceedings of the Workshop on Location Modeling for
Ubiquitous Computing, UbiComp, vol. 2001, 2001, pp. 55–62.

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

