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Abstract—Embedded systems, such as smartphones, have become 

ubiquitous due to the versatility of these devices for various 

applications, which have varying application resource 

requirements. Due to these variances, system resources should be 

specialized to the executing applications’ resource requirements 

in order to adhere to design/optimization goals (e.g., reduced 

energy consumption, improved performance, etc.). In multicore 

systems, core heterogeneity and/or configurability affords 

specialization, however, this design choice exacerbates design 

challenges and complexity due to an embedded system’s stringent 

design constraints. We evaluate the benefits and tradeoffs of 

heterogeneous and configurable cores as compared to 

homogeneous cores for design-constrained multicore embedded 

systems. Our studies provide valuable insights and guidelines on 

design choices and show that combining heterogeneity and 

configurability provides unique opportunities for fine-grained 

specialization. 
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I.  INTRODUCTION AND MOTIVATION 

Multicore architectures are becoming prevalent in 
ubiquitous embedded systems (e.g., automotive systems, 
consumer electronics, smartphones, etc.) as an alternative to 
single-core architectures for achieving design/optimization 
goals, such as reducing cost, energy consumption, time to 
market, and/or increasing performance. However, this single- 
to multicore architecture shift significantly increases design 
challenges and complexity when coupled with an embedded 
system’s stringent design constraints and resource availability 
(e.g., energy, power, area, real-time deadlines, size, etc.), which 
affords challenging design decisions. Additionally, designers 
must consider the applications’ varying resource requirements 
during execution [12], thus necessitating specialization to the 
applications’ unique requirements in order to adhere to design 
goals, which is becoming increasingly difficult to achieve using 
traditional homogeneous cores due to widely disparate 
application requirements. 

One method to achieve multicore system specialization is 
by using disparate—heterogeneous—cores with varying 
characteristics (e.g., processor family/version, performance, die 
area, etc.). For example, the Open Multimedia Applications 
Platform (OMAP) chip contains a microprocessor core 
(ARM926) and a digital signal processor (DSP) coprocessor 
core (TMS320C55X) [20]. Even though the designer can select 

different cores to meet the varying applications’ requirements, 
the design space is limited to the number of core combinations.  

To increase adherence to design goals, configurable cores 
have configurable parameters (e.g., cache size, core frequency 
and/or voltage, etc.), whose values/configurations can be 
determined statically at design time or dynamically during 
runtime. In a configurable homogeneous core system [8], the 
cores have identical characteristics, but the cores’ 
configurations are specialized to the applications’ 
requirements. Depending on the level of configurability, the 
cores can have either the same or different configurations. 
Configurable core systems have large design spaces that consist 
of all combinations of parameter values, and thus provide more 
fine-grained specialization. 

However, fine-grained specialization exacerbates design 
complexity, challenges, and decisions. Selecting between a 
heterogeneous or configurable homogeneous core system 
affects the level of design goal adherence, but this selection 
affects competing design goals, including design complexity, 
energy consumption, performance, runtime overhead, time to 
market, etc. For example, in heterogeneous core systems, 
designers have limited configuration options—lower design 
complexity—but must carefully select the most appropriate 
cores, and thus adherence to design goals may be limited due to 
the coarse-grained design space.  

Alternatively, configurable homogenous cores may adhere 
more closely to design goals, but significantly increase design 
complexity, and time to market, since the cores’ configurations 
must be tuned. Tuning evaluates an application’s requirements 
and determines the best configuration for design goal 
adherence, but incurs overhead in terms of time, performance 
and/or energy overhead. 

Concomitant to system specialization is application 
scheduling, which determines the most appropriate core to 
execute the application on [16]. Scheduling decisions, whether 
made a priori or at runtime, must consider the cores’ 
characteristics and configurations since this information can 
significantly affect the system’s adherence to design goals. 
Heterogeneous cores offer less specialization, thus designers 
must carefully select the cores to maximize the potential for 
design goal adherence. Configurable homogenous cores 
alleviate the core selection challenge and increase design goal 
adherence potential, but complicate scheduling decisions due to 
a larger design space.  

 Previous research for general purpose systems showed that 
heterogeneous and configurable homogeneous cores improve 
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energy consumption and performance as compared to 
homogeneous cores [11][12], however, there is little research 
with respect to the unique, and highly constrained, embedded 
system design goals. Prior scheduling and design space 
exploration methods [10] for embedded systems did not 
compare heterogeneity versus homogeneity. Furthermore, to 
the best of our knowledge, no prior work studied the tradeoffs 
(with respect to energy consumption, time to market, runtime 
overhead, etc.) between using heterogeneous and configurable 
homogeneous cores for achieving specialization, or whether 
configurable homogeneous cores provide an appreciable 
increase in design goal adherence to offset the increase in 
design and scheduling complexity and tuning overhead (e.g., 
energy, power, performance, etc.).  

In this paper, we present an empirical comparison of the 
tradeoffs between heterogeneous and configurable 
homogeneous core embedded systems with respect to the 
energy delay product (EDP) and cache configuration and core 
frequency specialization. We also evaluate the EDP savings 
attained by using configurable heterogeneous cores, which 
leverage the advantages of both heterogeneity and 
configurability. Our evaluations provide valuable insights and 
guidelines to assist designers with design challenges and 
decisions.  

The remainder of this paper is organized as follows. Section 
II presents the related work, Section III identifies the design 
challenges and studied architectures, Section IV discusses our 
experimental methodology, and our results are presented in 
Section V. Section VI posits multicore design suggestions and 
Section VII concludes the paper and discusses future work 
directions. 

II.  RELATED WORK 

Kumar et al. [12] proposed a single-instruction set 
architecture (ISA) heterogeneous multicore system to reduce 
power in general purpose computers, where each core provided 
different performance versus power tradeoffs. In [11], Kumar 
et al. showed that heterogeneous core systems provided power 
and throughput advantages for applications with varying 
execution requirements. Balakrishnan et al. [3] investigated the 
effects of data input size for recurring applications verses core 
scheduling, and concluded that heterogeneous core systems 
were beneficial for performance when core scheduling 
decisions considered the input size/characteristics. Grochowski 
et al. [9] studied heterogeneous cores with respect to energy 
and throughput improvements. However, all of these works 
focused on evaluating heterogeneity in general purpose 
computers, where throughput typically outweighs energy 
consumption. 

Configurable core systems can be composed of any core 
with any configurable parameter(s). Zhang et al. [28] showed 
that applications have varying cache requirements and 
proposed a configurable cache architecture that determined 
Pareto optimal cache parameter values trading off energy 
consumption and performance, showing average energy 
savings of 40% as compared to a conventional, non-
configurable cache. Gordon-Ross et al. [8] showed that 
configuring the cache to a particular application’s requirements 
reduced memory access energy by 62% with performance 
improvements in most cases. Semeraro et al. [25] showed that 

dynamically scaling core voltage using multiple clock domains 
resulted in EDP savings of 20%. Albonesi [2] presented 
complexity-adaptive processors where the instruction per cycle 
(IPC)/clock rate tradeoff could be dynamically altered to match 
the application’s changing requirements, and reduced time per 
instruction by an average of 9%. 

Whereas prior works clearly motivate the benefits of 
heterogeneous cores and configurable cores, to the best of our 
knowledge, we are the first to investigate the tradeoffs between 
heterogeneous and configurable core systems for fine-grained 
specialization in embedded systems. Our studies and outcomes 
provide designers with valuable insights into design decisions 
when choosing an appropriate system configuration for 
specialization to the applications’ requirements.  

III.  DESIGN CHALLENGES AND ARCHITECTURES 

Since incorporating specialization into embedded system 

design imposes many daunting design challenges, this section 

details some of the challenges introduced when considering 

heterogeneity and configurability, and illustrates our evaluated 

system architectures.   

A. Heterogeneity 

In heterogeneous core systems, the cores’ non-uniformity 
enables designers to statically select different cores that are 
suitable for different application requirements. If the 
applications are scheduled to the most suitable cores, 
performance and energy improvements are possible as 
compared to a homogenous core system. To provide a wide 
variety of suitability for diverse application requirements, most 
traditional heterogeneous core systems contain disparate cores 
[20]. However, large core disparity can introduce additional 
overheads and design challenges, especially if the cores have 
different ISAs, necessitating additional design time, area 
overheads, more complex scheduling, multiple binaries for 
each application, etc. Since leveraging cores with the same 
ISA, but different characteristics, eases system design while 
still offering specialization, we evaluate single-ISA systems, 
however, our fundamental tradeoff analysis is applicable to any 
heterogeneous core system with diverse core ISAs. 

Since embedded systems typically have a large design 
space and several options for heterogeneity (e.g., ISA, core 
interconnect, memory hierarchy, etc.) one of the major 
challenges of heterogeneity is determining the key core 
characteristics that should differ in order to most closely adhere 
to design goals. The designer must evaluate the system and 
anticipated applications to select the appropriate cores, which 
places pressure on the time to market. Oftentimes this process 
is not straightforward at design time for general purpose 
embedded systems that execute a wide variety of applications 
(e.g., smartphones, tablets, etc.), and may require lengthy 
application evaluation/pre-analysis and design space 
exploration when the application(s) (or application domain(s)) 
is/are known a priori. Ideally, the cores would have enough 
diversity such that there exists a core that would be suitable for 
any application that could potentially execute on the system.  

Scheduling further compounds the core selection challenge 
since the benefits of core diversity can only be exploited if the 
scheduler is aware of the cores’ tradeoffs with respect to the 
applications’ requirements. We evaluated the scheduling 
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policy’s criticality on EDP (Section V) and observed that naïve 
scheduling decisions (e.g., the scheduler does not consider core 
tradeoffs, and randomly schedules applications to arbitrary 
cores) can severely degrade EDP, even resulting in higher EDP 
than a simple homogeneous core system. Whereas the 
scheduler must effectively analyze application versus core 
tradeoffs, this analysis and scheduling must not impose 
excessive overhead [4]. Prior works showed that effective 
scheduling can be integrated into the operating system, thus 
avoiding hardware overhead [7].  

A simple, yet effective, approach to scheduling is the 
sampling-based method [4][12], which samples different 
application-to-core mappings at runtime and selects the best 
schedule based on design goals. This method introduces 
performance overhead due to periodic application migration 
across cores for application-to-core mapping evaluation, 
especially for systems with a large number of cores, and can 
incur significant overhead when executing an application on an 
unsuitable core. This overhead is less significant for 
heterogeneous core systems with replicated cores and in 
systems with persistent applications (e.g., smartphones), since 
the best schedule only needs to be determined once and can be 
reused for each subsequent application execution. Other prior 
works proposed more complex scheduling methods [4][7][10], 
however, due to sampling’s simplicity, effectiveness, and ease 
of implementation, and thus appropriateness for embedded 
systems, we leverage sampling-based scheduling in our 
experiments, however, our fundamental tradeoff analysis could 
evaluate any scheduling method. 

B.  Configurability 

System configurability is key to adhering to design goals, 
thus much research has explored configurability with respect to 
instruction set extensions [14], core voltage [25], issue queue 
[6], reorder buffer [21], etc. Since research shows large 
potential EDP savings when combining dynamically 
configurable caches and core frequency [18], in this work we 
focus on these parameters, however our fundamental tradeoff 
analysis is applicable to any configurable parameters.  

When using multiple configurable parameters, the design 
space increases rapidly, especially for interdependent 
parameters, thus exacerbating design challenges due to 
potentially intractable design spaces and large tuning overhead. 
One major challenge when leveraging configurability is 
specialization granularity, which determines how often the 
configuration changes. Application-based tuning [28] uses a 
single configuration that represents the best configuration for 
the average run of the entire application. Phase-based tuning 
[8] achieves finer-grained specialization by changing the 
configuration during application execution based on the 
application’s varying runtime requirements. Whereas phase-
based tuning increases design goal adherence potential, phase-
based tuning requires identifying phase changes (changes in 
requirements) and determining the best configuration for each 
phase, thus increasing tuning overhead.  

Dynamically determining the best configurations without 
incurring significant tuning overhead is especially challenging 
for large design spaces and fine-grained specialization. 
Heuristics [8] significantly prune the design space and 
analytical models/methods [1] can directly determine the best 
configuration sans design space exploration, thus significantly 

reducing tuning overhead. Despite the overheads, dynamic 
configurability alleviates costly system/application pre-analysis 
by the designer, thus resulting in a shorter time to market as 
compared to heterogeneous core systems [24].  

C.  Illustrative System Architectures  

Fig. 1 illustrates our evaluated dual-core system 
architectures, however, our evaluation methodology is 
applicable to any system with any arbitrary number of cores 
and any configurable parameters. Figure 1 (a) depicts a 
heterogeneous dual-core system with the following on-chip 
components: two processing cores with different clock 
frequencies and private level one (L1) instruction and data 
caches (iCache and dCache, respectively) with different cache 
configurations for each core. The clock frequencies and cache 
configurations are tuned at design time and remain static 
throughout the system’s lifetime. Figure 1 (b) depicts a 
configurable homogeneous dual-core system with the 
following on-chip components: two identical processing cores 
with private configurable L1 instruction and data caches, and 
lightweight, low-overhead tuning hardware—a cache tuner and 
a DC-DC converter [18][28]. The cache tuner orchestrates 
dynamic cache tuning by changing the caches’ configurations, 
evaluating and determining the best configurations, and fixing 
the system to run in those configurations. The DC-DC 
converter dynamically tunes the core frequency based on 
power measurements from the power monitor. 

IV.  EVALUATION METHODOLOGY AND EXPERIMENTAL SETUP 

To quantify the EDP variances for heterogeneous, 
configurable homogeneous, and homogenous core systems, we 
modeled cache and core frequency configurations common to 
consumer embedded systems [10] (e.g., the Tegra 2 [26]) and 
evaluated dual-core systems, which are common in general 
purpose consumer embedded systems. Even though our 
experiments in this paper represent state-of-the-art embedded 
systems [26], our fundamental tradeoff analysis is applicable to 
future and/or more complex systems (e.g., n-core systems with 
multi-level caches) because the fundamental design goals and 
challenges are independent of these characteristics. 
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Table 1 depicts our experimental dual-core systems and the 
systems’ configurations, which represent actual embedded 
systems (e.g., Nokia Lumina 620 [19] and Motorola’s Atrix 4G 
smartphones [17]). All cores had separate, private L1 
instruction and data caches connected directly to off-chip main 
memory. Even though our evaluated systems could include a 
level two (L2) cache, our work evaluates the effects of L1 
cache specialization, therefore we do not need to model the L2 
cache, however, our work could be easily extended to include 
an L2 cache. The homogeneous core system served as our base 
system for comparison purposes. The configurable system 
represented the configurable homogeneous and configurable 
heterogeneous core systems, and offered cores with varying 
cache parameter values and operating frequencies (denoted as 
ranges). The configurable homogeneous core system’s cores 
were tuned simultaneously to a single, homogenous 
configuration (the cores had the same configurations), resulting 
in a design space of 108 core configurations. The configurable 
heterogeneous core system’s cores were tuned independently to 
heterogeneous configurations (the cores could have different 
configurations), resulting in a design space of 108

n
 

configurations, where n is the number of cores.  
In order to compare to static designer-selected cores, we 

evaluated three different heterogeneous core systems, denoted 
as Heterogeneous-1, -2, and -3. Based on empirical analysis, 
Heterogeneous-1 represented the best average configuration for 
all workloads (Section V), and thus served as the base 
heterogeneous core system. Heterogeneous-2 and -3 offer 
different core selection options for situations where designers 
cannot perform extensive design time analysis, and therefore 
the designer must make a “best guess” of the applications’ 
requirements. 

We exhaustively modeled and evaluated all configurations 
using GEM5 [5], which we modified to support heterogeneous 
cores, and McPAT [15] to calculate the systems’ cores' EDPs 
in Joule seconds:  

EDP = core_power * running_time
2 

            = core_power * (total_cycles/core_frequency)
2
         (1) 

where core_power includes the core’s components, such as the 
network interface units (NIUs), peripheral component 
interconnect (PCI) controllers, etc., and the cache, and 
total_cycles is the number of cycles for a single workload 
execution.  

In order to reduce the sensitivity of the results to a 
particular set of simulated workloads and model real-world 
embedded system applications, we created twenty-four 
multiprogrammed workload sets by selecting two random 
single-threaded benchmarks from seventeen EEMBC [22] 
Automotive benchmarks (the entire EEMBC Automotive 
benchmark suite could not be evaluated due to compilation 
errors) and six random MediaBench [13] benchmarks for 
image, video, and audio processing. To ensure that both cores 
executed the same number of cycles and both benchmarks 
executed at least once to completion, we looped the faster 
benchmark in each set. The benchmarks were always scheduled 
to a separate core during execution, such that both cores were 
active throughout execution. Since embedded systems typically 
execute small applications with relatively stable characteristics 
throughout execution, we leveraged application-based tuning in 
our experiments. 

Table 2 depicts our test scenarios. We determined optimal 
scheduling using sampling such that the lowest EDP schedule 
represented the best case. Since naïve scheduling randomly 
schedules applications to cores, we used the highest EDP 
schedule in order to compare with the worst case schedule. In 
practice, naïve scheduling would not necessarily achieve the 
worst case EDP, but comparing to the worse case provides a 
clearer picture of core selection tradeoffs. We determined the 
best configurations for the configurable homogeneous and 
configurable heterogeneous cores using exhaustive search for 
all of the workloads. 

V.  RESULTS 

Fig. 2 depicts the EDP for the test scenarios in Table 2 
normalized to the homogeneous core system (baseline of one) 
for all experimental workloads, denoted as the x-axis 
benchmark combinations, and the average and standard 

    

Figure 2. EDP normalized to the homogeneous core system (baseline of one) for the test scenarios in Table 2 

 

TABLE 1. DUAL-CORE SYSTEMS AND CONFIGURATIONS. THE CONFIGURABLE SYSTEM’S 

PARAMETER VALUES REPRESENT RANGES. THE HETEROGENEOUS SYSTEMS’ PARAMETER 

VALUES REPRESENT CORES’ VALUES AS CORE1/CORE2. 

System Cache size Associativity Line size Clock frequency 

Homogeneous  32 Kbyte 4 way 64 byte 2 GHz 

Configurable  16 – 32 Kbyte 1 – 4 way 16 – 64 byte 1 – 2 GHz 

Heterogeneous-1 16/32 Kbyte 4 way 64 byte 1/2 GHz 

Heterogeneous-2 8/16 Kbyte 4 way 64 byte 800 MHz/1 GHz 

Heterogeneous-3 8/32 Kbyte 4 way 64 byte 800 MHz/2 GHz 

 

 

 

 

TABLE 2. TEST SCENARIOS 

Name Core descriptions 

Test scenario 1 Naively-scheduled Heterogeneous-1 

Test scenario 2 Optimally-scheduled Heterogeneous-1 

Test scenario 3 Configurable homogeneous 

Test scenario 4 Configurable heterogeneous 
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deviation across all workloads. For brevity, we show 
comparisons with only the base heterogeneous core system, 
Heterogeneous-1. 

Test scenarios 1 and 2: Compared to the homogeneous core 
system, the naively-scheduled Heterogeneous-1 system 
achieved similar EDP savings for most workloads, averaging 
15% over all workloads, ranging from 9% for djpeg-bitmnp01 
and 69% for canrdr01-aifftr01, with a standard deviation of 
12%. 

The optimally-scheduled Heterogeneous-1 system achieved 
average EDP savings of 16% over the homogeneous core 
system, with savings increasing to 13% and 70% for djpeg-
bitmap and canrdr01-aifftr01, respectively. This optimally-
scheduled system performed only marginally better than the 
naïvely-scheduled system, 1% on average over all of the 
workloads, with differences as high as 4%, but all workloads 
benefited from heterogeneity regardless of scheduling. The 
EDP savings for these systems were similar because both 
cores’ configurations represented good average configurations 
for all of the benchmarks (i.e., the cores were averagely-suited 
for all of the benchmarks), thus neither core resulted in 
prohibitively high EDP. However, we point out that we 
exhaustively evaluated our benchmark suite to determine the 
best average heterogeneous cores’ configurations, and in 
practice, a designer would have to expend considerable design 
time effort to replicate these results. This comparison shows 
that scheduling decisions have little effect if the cores’ 
configurations are carefully selected to match the applications’ 
requirements. 

Therefore, given limited time to market and potentially 
unknown applications, we evaluated heterogeneous core 
systems more representative of actual designer-selected cores. 
Figure 3 depicts the EDP of the optimally-scheduled 
Heterogeneous-1, -2, and -3 systems (Table 1) normalized to 
the homogeneous core system. Heterogeneous-2 increased the 
EDP by 7% on average as compared to the homogeneous core 
system, and Heterogeneous-3 and -1 decreased the EDP by 
19% and 16% on average, respectively. Additional results, not 
shown for brevity, also showed that scheduling had a 
significant impact on EDP for these systems, with 
Heterogeneous-2 and -3 showing EDP increases of 65% and 
26% on average as compared to the homogeneous core system, 
respectively, as compared to Heterogeneous-1’s 15% decrease 
in EDP.  

Test scenario 3: The configurable homogeneous core 
system revealed similar EDP savings as the optimally-
scheduled Heterogeneous-1 system, with average EDP savings 

of 16%, ranging from no savings for some workloads to 66% 
for canrdr01-aifftr01, as compared to the homogeneous core 
system. Even though the configurable homogeneous cores 
afforded a larger design space, and potentially finer-grained 
specialization than Heterogeneous-1, since the cores could only 
select a single (same) average best configuration for all the 
benchmarks, the specialization granularity and EDP savings 
were reduced.   

Test scenario 4: The configurable heterogeneous core 
system achieved the highest overall average EDP savings of 
29% over the homogeneous core system, ranging from 27% to 
75% for djpeg-bitmnp01 and canrdr01-aifftr01, respectively, 
with a standard deviation of 10%. Compared to the 
configurable homogeneous core system and the optimally-
scheduled Heterogeneous-1, -2, and -3 systems, the 
configurable heterogeneous core system achieved average EDP 
savings of 11%, 16%, 34%, and 13%, respectively. The 
configurable heterogeneous core system achieved the 
maximum EDP savings because each core was tuned 
independently for each application’s requirements, thus 
affording the finest-grained specialization and the largest EDP 
savings. We note that these results do not include runtime 
tuning overhead, but prior work showed that these overheads 
can be minimal [23]. 

VI. MULTICORE SPECIALIZATION GUIDELINES  

Previous work established that two cores introduce 
sufficient heterogeneity to attain appreciable EDP reductions 
[12]. In this paper, we significantly extend prior evaluations by 
studying the tradeoffs between core diversity and scheduling, 
and the benefits of incorporating configurability into 
heterogeneous core systems. Based on our findings, we suggest 
practical multicore specialization design guidelines intended to 
aid embedded system designers in selecting appropriate core 
characteristic and configuration diversity to meet design goals. 

Our findings revealed a clear tradeoff between scheduling 
efficiency/effort and core diversity. Increased core diversity 
with a good balance of characteristics/configurations (e.g., 
Heterogeneous-2, as opposed to Heterogeneous-1 or 
Heterogeneous-3) enhances the benefits of heterogeneity by 
reducing the EDP, however, to realize these benefits, the 
scheduling policy must be very effective. With a less effective 
(i.e., naïve) scheduling policy, less core diversity is 
advantageous, such as using Heterogeneous-1, which contained 
good average configurations for the executing applications, 
such that either core will reveal good average savings, but 
neither core will reveal the largest savings. Therefore, 
designers can adjust their core selection efforts based on the 
system’s scheduling policy 

Maximum EDP savings is achieved using configurable 
heterogeneous cores where the cores can be independently 
tuned and the larger design space reveals greater EDP savings 
potential. Based on previous work [27], we conjecture that the 
design space can be significantly reduced with similar EDP 
savings by using cores with different configuration subsets. 
Each subset would be specialized to a different application 
domain’s requirements, and applications from a particular 
domain would be scheduled to the appropriate core. Tuning 
would therefore only evaluate the reduced design space 
available on that core, which may be a fraction of the total, 

 
Figure 3. EDP of the heterogeneous systems in Table 1 normalized to the 

homogeneous core system (baseline of one) 
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unsubsetted design space (only three/four in [27]), thus 
significantly reducing tuning overhead, however, the tradeoff is 
extensive design time analysis.  

VII.  CONCLUSIONS AND FUTURE WORK 

Configurable and/or heterogeneous cores specialize a 
system’s configurations to the applications’ execution resource 
requirements to adhere to design goals, however, this 
specialization exacerbates design complexity, challenges, and 
decisions. System core selection (e.g., homogenous, 
heterogeneous, or configurable homogeneous/heterogeneous 
cores) affects the level of design goal adherence and affects 
competing design goals. In order to assist designers in core 
selection, we evaluated and empirically quantified the benefits 
and tradeoffs of heterogeneous and configurable core systems 
as compared to homogeneous core systems with respect to 
cache configuration and core frequency specialization. We 
provided insights and guidelines for designers and showed that 
the best energy delay product (EDP) savings can be achieved 
by using configurable heterogeneous cores, which leverage the 
advantages of both configurability and heterogeneity. 
However, since configurable heterogeneous cores result in 
exponentially large design spaces, our future work will explore 
and evaluate the impact of reducing the configurable 
heterogeneous cores’ design space by designing heterogeneous 
core systems with different configuration subsets in each core, 
where each subset is specialized to a different application 
domain.  
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