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Abstract—The actual trend towards more driver assisting
systems in automotive scenarios induces a need for additional
sensory data from the environment. Those perceptions can
be generated by the inherent sensor systems or by external
transducers. However, these data may be affected by faults and
uncertainties, which may not be obvious to other cars receiving
the data. Additionally, the management and dissemination of the
data between the plethora of cars on the road is a big challenge.
Therefore, this paper proposes an extension to existing complex
event detection systems to support fault and uncertainty aware
collaborative applications. An automotive scenario was chosen to
illustrate the new approach. Consequently, the requirements of
automotive scenarios were described and existing complex event
systems were evaluated against these requirements. The extended
system is called a complex event processing system, since it tries
to enable sensor processing in an highly dynamic event system. To
reach this goal additional attributes are introduced to the basic
event schemes. Finally the processing steps are adopted to cope
with the new quality attributes validity and uncertainty.

Keywords—Autonomous vehicles; Command and control; Fault-
tolerance; Sensor networks.

I. INTRODUCTION

On of the important prerequisites for ubiquitous computing
is the availability of environment data to allow context-aware
computation and behaviour. Today, there is an enormous
amount of this environment information potentially available,
e.g., from traffic information infrastructure, floating car data,
mobile devices and from instrumented smart spaces. Coopera-
tively perceiving environmental conditions and situations is a
crucial component for improving the coordination of mobile
entities like , e.g., team robots, autonomous transportation
systems and cars. Recently, the use of autonomous air vehicles
is considered that are partly controlled through collaborative
sensing and coordination [1][2]. The locally perceived events
of the environment need to be interpreted, related and com-
bined to recognize more complex events and situations. The
relations may be in the temporal domain , e.g., detecting that
multiple subsequent events belong to a certain trajectory and
in the spatial domain , e.g., predicting a jam or a collision
situation of multiple vehicles. In this paper, we will describe
our approach of complex event processing along a traffic
scenario.

Actual approaches like PeerTIS by Rybicki et al. [3] or
SOTIS by Wischoff et al. [4] try to enable collaboration
between multiple cars. However, both only deal with the
low level data dissemination between cars. To efficiently

support collision warning systems, active collision avoidance
and adaptive cruise control, a higher abstraction is needed
since all cars will have different sensory equipment as well
as different features regarding communication and automated
control. An early example of a using floating car date to
support an overtaking action is provided in [5]. In this example,
Jini [6] is exploited to discover and use the front camera of a
preceding car to see whether the road is free. Although using
remote sensor information, this is a singular event establishing
a unique channel between the cars. A promising approach for
complex event detection systems emerged from the wireless
sensor systems and the active database communities.

To evaluate the different approaches we will introduce an
example scenario. It is shown in Figure 1. In this scenario some
of the cars are able to communicate (CR1, CR2 and CR2) and
others are not (CL0 and CR0).

CR0

CR1

CR2CR3

CL0

Fig. 1. Example of a dangerous situation in an automotive scenario. Car
CR1 wants to change lane to overtake CR0 while car CL0 is driving with
high speed on the left lane.

Car CR1 wants to overtake car CR0 and needs to change
lane. However, this lane change is considered a dangerous
manoeuvre, therefore CR1 wants to know if other cars may
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collide during and after the manoeuvre. To detect possible
collisions cars need to check their position against the po-
sition and speed of other cars. However, some cars cannot
communicate and therefore their positions need to be observed
and disseminated by the surrounding cars. In the example
cars CR2 and CR3 might be able to detect the speed and the
position of the endangered car CL0. To achieve this they need
to combine their individual position estimations of car CL0 to
a speed estimation. The result can then be checked against the
manoeuvre trajectory of car CR1. Depending on the result a
collision warning event may be issued.

This intuitive approach leads to an directed acyclic graph
(DAG) of events and their combination. The event DAG of
this example scenario is shown in Figure 2.
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Fig. 2. The complex event DAG induced by the example scenario described
in Section I. The nodes refer to types of events used in the systems. The links
represent the individual named events travelling through the network.

Each event is a node in this graph. The nodes without
any inputs are considered to be primitive events, which are
generated by sensors. The top node represents the final event
the application is interested in: the collision warning. To
support the transition of the primitive events towards the final
collision warning multiple combinations of intermediate events
are needed. This leads to the definition of complex event
detection systems (CEDS). These CEDS are researched mainly
in the context of wireless sensor networks (WSN) and active
databases.

The following Section II evaluates some typical system
against this scenario. Afterwards we extend the CEDS through
sensor processing descriptions to Complex Event Processing
Systems(CEPS) in Section III . This Section is followed by an
approach towards the distribution of the processing within the
network in Section IV. The paper ends with a conclusion in
Section V.

II. STATE OF THE ART

Generally, the existing complex event detection system can
be categorized into query based systems and stream based
system. The main difference is the considered use case. Query
based system efficiently allow single queries to the network.

Examples for these systems are Snoop by Chrakravarthy et al.
[7] and Abstract Events by Katsiri et al. [8]. Snoop is limited
to an active database context, which only supports centralized
evaluation of the expressed complex events. However, the
language imposed by Snoop is very rich. Abstract events on
the other hand only support a very basic language based on
temporal first order logic, but allow distribution within the
network.

The stream based systems handle periodic events and
therefore consider network issues like bandwidth and latency.
Examples for these systems are Sensid by Krantz [9] and Solar
by Chen et al. [10]. Sensid focus on wireless sensor networks
with limited resources. Therefore, the expressiveness is limited
and the evaluation of the complex event is centralized in one
node. Solar on the other hand considers distributed detection
of events and also specifies rules to drop specific events in case
of overload. The description of the composition is XML-based,
but limited to basic operations.

So far, complex event detection systems focus on the pure
existence of events and neglect the contents or the specific
attributes of the detected events. They introduce extensive
languages to describe sets of events that generate the complex
event. However, the generation of the attributes of the new
event is almost always limited to basic operations like average,
min or max. Considering the needed steps in the example
scenario there are multiple steps that cannot be expressed
efficiently with the described complex event detection systems.
The state estimation of car CL0 for example needs to compute
the current velocity based on two detection events. To do this,
it needs to evaluate the position as well as the time between
two events to approximate the velocity.

Another problem emerges from the fact that sensor read-
ings are not perfect. This fact is usually not considered in the
related work. Sensor data is affected by transient errors and
uncertainties, which may have a varying impact on the sensor
data. Some complex event detection systems like the one of
O’Keeffe [11] tries to handle uncertainties by the definition of
detection policies, which may influence the system decisions
in uncertain situations. However, this system only considers
timing uncertainties originating from network latencies and no
value errors. Brade et al. [12] defined ways to express the
trustworthiness of sensor data based on the error probabilities
of the sensor. This can be exploited to extend the detection
policies of O’Keeffe.

Liebig et al. [13] considered the problem of uncertainty
in the timestamps of events. To cope with this uncertainty
they expressed the time stamp as an interval and formulated
appropriate algebraic operations to replace a simple time stamp
in computations. However, the proposed mechanism can not
be transferred to other data like positions or sensory values
easily.

To overcome the described short comings of the existing
systems, we propose the transition from a pure complex
event detection system to a complex event processing system,
which applies sensory processing steps onto the sensory inputs
contained in the events. The following Section will describe
our approaches towards a fault and uncertainty aware complex
event processing for collaborative sensing.
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III. COMPLEX EVENTS FOR SENSOR DATA PROCESSING

As complex sensor events are used to represent arbitrary
sensor data their structure needs to be appropriate and flexible.
Sensor values are a representation of the current state of the
environment and therefore are only valid for a limited time
as described by Kopetz in [14]. The accuracy of these time-
value entities drops over time. Therefore, the time stamp of the
sensory information is essential in processing sensory inputs.
As described by Liebig et al. [13] an interval representation of
the time stamp is appropriate to convey this aging information
over multiple nodes in the network. The resulting time stamp
[ts,±αts] is defined through the approximate time stamp (ts)
and the distance to the interval bounds (αts).

Most of the sensing equipment available today has a limited
range as well as a limited observation area. These information
is crucial for processing, because only sensors observing the
correct area are useful. Therefore, representation of the obser-
vation area as well as the position and orientation of the sensor
is needed to support remote processing of sensor data. Like the
time representation, these values are subject to uncertainties
since localization algorithms are limited in accuracy. The rep-
resentation of position is dependant on the application. Sensor
network applications may benefit from GPS-compatible 2D
positions to directly convey their information to the internet.
Whereas aeronautic applications need a position representation
containing three dimensional coordinates and attitude.

In the case of the example scenario described in Section
I, the position may be described as a triple of road segment
(r), lane (l) and linear position within the segment (o). In this
case, it is sufficient to describe only the offset as an interval
with an uncertainty of αo, because the road and lane can be
deduced quite efficiently using maps and camera systems.

The data each sensor produces needs to be described as
a general event scheme, since the set of available sensors is
dynamic and not known on design-time. If we consider car
CR3 to use a camera based system to identify overtaking
vehicles, the resulting sensor data may be described through
the unique identification number id of the vehicle. The iden-
tification needs to be deduced from the camera’s picture in a
variation of light conditions, which may impact the detection’s
effectiveness. Therefore, a validity value v representing the
error probability based on the work of Brade et al. [12] needs to
be attached to the value as well. For simplicity an uncertainty
abstraction of car identifications is omitted at this point.

Putting together the descriptions of time, space and content
we can formulate an event scheme of an identifying vehicle
detector as:

ED = ([ts,±αts], r, l, [o,±αo], id, v) (1)

In consequence, a general event scheme for sensory data
can be derived. The general scheme consists of a time stamp,
which is described as an interval together with the position of
the event. The position of an event can be derived from the
sensor observation area and the current position of the sensor.
Since localization mechanism are subject to a defined uncer-
tainty, this value needs to be appended to the event scheme
too. Additionally, the positions may be represented differently
based on the application’s scenario. The sensor’s values are

represented based on the sensor data sheet as described by
IEEE standard 1451 [15] or the MOSAIC framework [16].
Finally, a validity value is attached representing the error
probability within the sensor.

ESensor = ([ts,±αts], [pos], [sensor data], v) (2)

IV. DISTRIBUTED COMPLEX EVENT PROCESSING

The combination of multiple input events towards a com-
plex event needs a domain specific language as they have been
introduced in Section II. However, as mentioned these lan-
guages lack the support for special sensor fusion operations. As
an example, the collision warning system scenario described in
Section I may be used. To detect a collision it is necessary to
compute the intersection point of two cars extrapolating their
current states (speed vi and position oi). The time to collision
can be expressed as:

∆tcollision =
o1 − o0
v1 − v2

(3)

All described systems are not able to compute such a new
attribute value for the resulting event. Therefore, these schemes
cannot express the concept of virtual sensors as proposed
by the MOSAIC sensory middleware [16]. Additionally they
consider the data of the events to be perfect, which may result
in failures detecting an event.

A collision warning event needs to be issued whenever
the time to collision is smaller then a defined safety time:
∆tcollision < tsafe. However, variations of the speed of the two
vehicles may have a huge impact on the space and time esti-
mation of a detected collision. Therefore, these uncertainties
may change the outcome of the detection.

In the described example, the important car CL0 had no
mechanism to supply its current state to other cars, therefore
the state of this car needed to be derived from other sensor
readings. This deduction lowers the quality of the provided
sensory data since the resulting speed (v1 or v2) may be
susceptible to a higher uncertainty or in the case of unreliable
detection, to lower validity. Through the provided validity
information the impact of this deduction can be estimated
and propagated from one processing step to another. Finally,
our approach allows the application to describe its quality
requirements in terms of validity or uncertainty predicates.

To supply the necessary validity and uncertainty values they
need to be automatically determined during the processing of
the individual events. To support this, we need to extend the
processing description from a simple event set comparison to
an applications specific function which handles uncertainties
and fault probabilities. We consider the well-known Event-
Condition-Action (ECA) rule mechanism with the action being
an event generating function.

Such an ECA rule may be defined for the deduction of the
speed of non-communicating cars as:

{ED, ED}, (e0.id = e1.id) ∧ (e0.ts 6= e1.ts) → ES : fs(e0, e1)
(4)

This rule contains as input events two detection events ED

if both events detected a car with the same id e0.id = e1.id
and the timestamps of both detections is different e0.ts 6=
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e1.ts. The result of this rule will be a state event of type
ES created through the application of function fs to the input
events (e0, e1).

The application of these rules within the network creates a
directed acyclic graph of complex events processed to finally
deliver the collision warning event. The resulting graph includ-
ing the predicates of the combination operations is visible in
Figure 2.

It is important to mention, that the resulting graph heavily
depends on the current events available and their attributes.
Especially if validity or uncertainty predicates are used, ad-
ditional invocations of sensor fusion rules may be needed to
increase the validity or decrease the uncertainty to pass the
event filter.

A general ECA rule will accord the following pattern:

{E0, ..Ej , ..Em}, p0[∨|∧]pi[∨|∧]pn → Ek : f(e0, .., ej , .., em) (5)

Therefore, the rule consist of a set of input events of
type {E0, ..Ej , ..Em} as well as some predicates pi combined
through either or (∨) or and (∧). The resulting event will be of
type Ek and is created through the function f(e0, .., ej , .., em).
The function itself is defined to be side-effect free, so that
the repositioning of a processing step within the network only
needs event dissemination.

There already exists some work on the effective positioning
of processing nodes within a network. The CED system of
O’Keeffe [11] tackles the problem for overlay networks using
spring relaxation algorithms like the one of Pietzuch et al. [17].
However, these algorithms need to be tested in highly dynamic
environments like automotive scenarios.

V. CONCLUSION

This paper proposes an extension of the complex event
detection mechanism to support sensor driven collaborative
applications. The requirements of automotive scenarios are
described and existing complex event systems are evaluated
against these requirements. To support fault and uncertainty
awareness needed in these applications the event schemes and
detection steps of classical complex event detection systems
are extended, which lead to a new approach called Complex
Event Processing.

Applications based on the new approach are able to express
individual quality requirements against their input events.
Contributing to this classical sensor fusion algorithms may be
exploited in a distributed fashion. Related to the automotive
scenario applications like CWS systems may enhance their
performance through these quality attributes.

The algorithm of the classic complex event detection
systems for WSN need to be evaluated against the requirements
of the automotive domain. Especially the highly dynamic
network topology and the short connection times between cars
may impose additional challenges to the processing placement
subsystem. The definition of a basic set of event schemes
and combination operations for automotive scenarios lead
to a domain specific language easing the development of
applications of the automotive domain. Finally the described
basic event scheme and ECA rule system needs to be evaluated

against multiple scenarios to detect short comings in the
expressiveness.
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