
An Autonomous Traceability Mechanism for a Group of RFID Tags

Yann Glouche
INRIA, Unité de Recherche Rennes-Bretagne-Atlantique

Campus de Beaulieu,
35042 Rennes Cedex, France
email: yann.glouche@inria.fr

Paul Couderc
INRIA, Unité de Recherche Rennes-Bretagne-Atlantique

Campus de Beaulieu,
35042 Rennes Cedex, France
email: paul.couderc@inria.fr

Abstract—Coupled Objects are an innovative way to ensure
integrity of group of objects, or complex objects made of parts.
This principle can be used in various applications such as
logistic or security. The main property of coupled objects is
that integrity checking is autonomous and does not depend on
external information systems: all the necessary data are self
contained in radio-frequency identification tags associated to
the objects. This avoids important issues such as scalability
and privacy, but the self-contained approach makes error
diagnostics difficult when an integrity check fails. In this paper,
we propose a solution to this problem, with a resilient data
structure supporting the identification of missing elements in a
coupled object. When some elements among the coupled objects
are missing, it is possible to detect if the group is corrupted.
Moreover, our approach also allows to identify the missing
elements.

Keywords-RFID; checking; integrity; data structure; graph.

I. INTRODUCTION

In recent years, we have seen increasing adoption of the
radio-frequency identification (RFID) technology in many
application domains, such as logistic, inventory, public
transportation, and security. In this paper, we focus on
an innovative integrity checking approach, which uses a
collection of RFID tags distributed over a set of object,
discussed in [1], [2]. In the coupled objects approach, a set of
physical entities are associated in a logical group by writing
integrity data in an RFID tag on each object. The integrity
of the group can then be checked when needed by reading
the tag data and verifying integrity properties.

For example, package containing a group of tagged items
could be transported in a secured way by different parties
to the final recepient. Liability transfer and trust between
parties would be ensured by checking the package integrity
at each transfer step.

Unlike typical RFID systems, the tags store data, which
are self sufficient for the integrity checking application, with-
out needing access to an external data base or information
system. Autonomous operation is an important feature as it
avoids many issues associated with typical RFID systems:
network access and scalability, database scalability, privacy
and security.

However, the coupled objects architecture also has some
limitations: when an integrity error is detected in a group of

objects, characterizing the nature of the error is challenging.
Typically, when some parts are missing in the group we
would like to identify them, or to recover the application data
associated with them. Unfortunately, as RFID tags provide
very limited memory capacity, it is difficult to implement
redundant storage and robust data structures distributed over
a set of RFID tags. It is this problem that we address in
this paper. We propose a resilient data structure for coupled
objects, which can be used in particular for improving
traceability when parts of an object group are lost.

The article is organized as follows. The next section
presents the background on coupled objects and discusses
some related works. The third section details our resilient
data structure for coupled objects, while the fourth section
describes the building and verification algorithms. Finally,
Section V concludes the paper.

II. BACKGROUND

The coupled objects concept finds an application in many
RFID approaches. However, due to some memory limitations
in the RFID tags, retrieving the data stored in missing
elements is difficult whithout using an external information
system.

A. Coupled Objects principles

Coupled objects consist in groups of physical objects that
are logically associated together, meaning that they carry
digital information referencing other objects of the set, or
representing their membership to the group.

The physical objects are associated to an RFID tag. Each
member of a group is represented by a tag. The group
representation uses some data distributed over the set of tags.
The structure is self-contained in data stored in the memory
of a set of tags. Because the memory size in the tag is limited
and the integrity check should be fast, the group will be
represented by a digest, computed by a hash code function.
The digest will be stores in the memory of each tag of the
group. This approach enables full autonomous operation of
both the association points and the checkpoints.

The group building phase works as follows. Let us con-
sider a set of n tags with unique identifiers t1, t2, ..., tn. The

161Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

idenfiers are ordered in a determined sequence (using a cho-
sen order relation). Then, a hash function is applied to this
information to compute the digest: d = hash(t1, t2, ..., tn).
This hash value is used as a group identifier gid, stored in
each tag of the set.

This hash value makes possible the integrity checking
phase. Once a group is formed, integrity checks can be
performed. The principle is to read all the tag identifiers
ti of the objects of a given group (sharing the same group
id gid), and verifying that the hash(t1, t2, ..., tn) = gid. If
the computed hash does not match the gid stored in the tags,
the group is considered as invalid.

B. Ubicheck application

A simple application scenario of coupled objects is Ubi-
Check [1]: consider someone at the airport who is going to
cross the security gate. The person is required to remove his
jacket, belt, and put in a tray mobile phone, music player,
remove laptop from his bag, and may be other objects...
All that in hurry, with other people in the queue doing the
same. Obviously, personal objects are vulnerable to get lost
in this situation: objects can get stuck inside the scanner,
can stack up on each other at the exit of the scanner, and
it is easy to forget something while being stressed to get a
flight. A coupled objects solution would secure the process
by associating all personal items into a group, and checking
it at the exit gate of the screening area. The same application
could also work when leaving an hotel, a train, a plane, etc.
We will use the Ubi-Check scenario in the rest of the paper
to illustrate the problem of integrity failure raised by lost
objects.

C. Dealing with integrity errors

When an integrity error is detected, this mean that one
or more objects are missing from the group. In UbiCheck,
this would trigger an alarm or a visual signal to notify
the user. However, the system is not able to characterize
the nature of the error, by listing the missing parts. A
simple solution would be to store in an external information
system a detailed list of the object group, but this would
ruin all the advantages of the coupled objects architecture:
autonomous operation, independance of external information
system, privacy, etc.

Our goal is to design a data structure for the tags that
would help to charaterize the missing element from the
group, with the two following properties :

1) Autonomy: the necessary data to characterize the
integrity error should be self-contained in the tags,

2) Resilience: the data structure should survive losing one
or more objects.

The exact nature of the data used to interpret the integrity
error can depend on the application. In the context of
this paper, we will consider that objects of a group have
interpretable identifiers, such as names, that would be used

to enumerate the missing objects when an integrity failure
is detected. For example, in Ubi-Check, each personal item
would be associated to a user defined shortname such as
’wallet’, ’phone’, ’passport’, etc. These names constitute the
data to be protected by the distributed data structure stored
in the tags, and we should be able to recover them when
some objects are lost.

D. Related works

The problem we are addressing shares some similarities
with data resilience methods that have been widely studied
for storage devices and file systems. Related to the FRD
concept [3], the RAID-6 approach protects disk storage
systems from any disk failures. Unlike RAID-1 through
RAID-5, which detail exact techniques for storing and
encoding data to survive single disk failures, RAID-6 is
merely a specification. The exact technique for storage and
encoding is up to the implementor. Various techniques for
implementing RAID-6 protect disk storage systems from two
disks failures, such as EVENODD coding [4], Row Diag-
onal Parity coding [5], Liberation Codes coding [6]. These
techniques for implementing RAID-6 have been developed
and are based on erasure codes. There is no one standard
for RAID-6 encoding.

The RAID implementation proposed in [7], [8] can restore
some data lost after at most two disks failures. For restoring
the data of two disk, this approach is based on the resolution
of an equation system. This equation system is build by
the definition of two parity functions, with two unknown
variables, which are the two pieces of data lost on each of
the two defective disks. It can be generalized to restore the
data of n disks by considering n parity functions, to build
an equation system of n equations and n unknown variables.
Then, n disks are used to store the parity data to restore the
disk failures. Like the data disk, the RFID tags store some
data.

The RAID-5 approach distributes parity data along with
the data. It is possible to distribute the parity data over the
memory of each tag. The impact on the memory consump-
tion of each tag becomes less important. It is simple to use a
RAID approach to restore the data of the tags. This approach
can be easily adapted for restoring some lost data on the
RFID memory banks. The RAID approach can be used to
rescue the data of n tags lost. However, when more than n
tags are lost, nothing can be said about the missing tags:
nothing can be deduces about the n first lost tags.

The RAID approach is used to secure the data, minimizing
the overhead on storage space. The goal of our approach is
not exactly the same. We want to able to recover some data
that characterize the physical objects that have been lost, or
the parts of a group that have been lost.

In the domain of the communication network, some
approaches are based on the graph theory [9] to enforce the
connectivity between network stations. In [10], the graph

162Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

optimally connected is used to enforce the links between
a set of stations, which be can viewed as a set of vertices
of a graph. This approach enforces the connectivity in the
network, when the disconnection of some stations occurs.
Close to our RFID problem, a link between stations can
be seen like the capacity to describe each tag data by the
other tags. Enforcing the link between stations is a similar
problem to enforce the link between tags.

III. RESILIENT DATA STRUCTURE FOR COUPLED
OBJECTS

As explained previously, when parts of a coupled object
are lost, integrity failure is detected, but we need a resilient
data structure to improve the traceability of the lost parts.
This structure will be distributed over all the parts of the
group, stored in tags memory. We assume that each part
is described by an application-specific data item. For the
purpose of simplicity, in the examples we will consider the
Ubi-Check case where objects are described by short names.

The structure is based on the following design principles.
First, the traceability mechanism should be able to identify
the missing parts, so the structure should implement data
redundancy. Second, the same memory space is allocated on
each tag of the structure: the data distribution is balanced
over the set of tags. Third, the robustness of the traceability
mechanism should be independent of particular tags that
may be lost; this means that if we want the structure to be
able to resist to k tags lost in a coupled object of n parts,
any of the k out of the n tags could be lost.

Our approach is based on the notion of regular graph from
graph theory [9].

A. A graph representation for the data of RFID tags

In this model, a group of tags is modeled by a graph. Each
RFID tag represents a vertex of a graph. Each tag stores in
its memory some data about the neighbors: for example a
nickame, which can be considered, as a short description.
Each tag knows the nickname of its neighbor in the graph
representation. These data are used to store the edges of the
graph representation in the memory of the tags of the group.

Definition 1 (Graph): A graph G is a pair (V,E) com-
prising a set V of vertices, and a set E of edges, which is
a set of pairs of vertices belonging to V.

Definition 2 (Regular graph): A regular graph is a graph
where each vertex has the same number of neighbors: every
vertex has the same degree. Let k ∈ N. A regular graph with
vertices of degree k is called a k-regular graph or regular
graph of degree k.

The regular graphs of degree at most 2 are easy to classify:
A 0-regular graph (Figure 1) consists of disconnected ver-
tices, a 1-regular (Figure 2) graph consists of disconnected
edges, and a 2-regular graph consists of a connected cycle
(Figure 5) or a set of disconnected cycles (Figure 3). A 3-
regular graph (Figure 4) is also called a cubic graph.

Figure 1. A 0-regular graph.

Figure 2. A 1-regular graph.

Figure 3. A 2-regular graph.

Figure 4. A 3-regular graph.

Let us consider the 2-regular graph G composed of 8
vertices presented on Figure 3. Let G1 be the subgraph of
G composed of the vertices 1, 2, 3, 8, and G2 the subgraph
of G composed of the vertices 4, 5, 6, 7. If the subgraph G1

is deleted, then in the subgraph G2, it does not exist a vertex
for which one of its neighbors is missing. It is impossible to
determine something about the missing vertices. In fact, it
is impossible to deduce something by only considering the

163Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

vertices 4, 5, 6, 7, because the subgraph G2 is completly
disconnected of the subgraph G1. The graph structure should
be connected to ensure a better tracabality of the vertices by
their neighbors in a graph representation.

Definition 3 (Path): In a graph, a path is a sequence of
vertices such that from each of its vertices there is an edge
to the next vertex in the sequence.

Definition 4 (Connectivity in graph): In a graph, the ver-
tices of a path are said to be connected. Consider a graph
G = (V,E). If, for all vertices u and v of V , there exists a
path from u to v, then G is connected.

Let us consider a graph G = (V,E). This property ensures
that, for all subgraph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E, there exists two vertices v ∈ V ′ and u ∈ V \ V ′,
such that (u, v) ∈ E \E′ (there is an edge of G between a
vertex of V ′ and a vertex of V \V ′). A 2-regular connected
graph is shown on Figure 5. The regular graph presented on
Figures 1 and 2 are also not connected. The 2-regular graph
shown in Figure 3 is not connected. A k−regular graph can
be connected if k ≥ 2.

A connected graph ensures that, when some vertices are
deleted, at least one edge from one missing vertex to a
present vertex is deleted. When a vertex is missing, it
becomes easy to ensure that it is missing by using a simple
graph exploration algorithm. The k−vertex-connected graph
enforces the connection property in the k−regular graph.

Definition 5 (k−vertex-connected graph): A graph G =
(V,E) is said to be k−vertex-connected if the graph remains
connected when you delete fewer than k vertices from the
graph.

A a graph is k−vertex-connected, if k is the size of the
smallest subset of vertices such that the graph becomes
disconnected if you delete them. So, it is sure that when
less than k vertices are deleted in the graph, it is still
connected. A k−vertex-connected graph ensures that: when
some vertices are deleted, at least k edges from the set of
missing vertices to the set of present vertices are deleted. By
the following Property 1, a k−regular graph structure can
at most ensure a k−vertex-connectivity.

Property 1: A k−regular graph is at most k−vertex-
connected.

Proof (sketch): In the example presented on Figure 5,
the 2−regular graph is also 2−vertex-connected.
In a k−regular graph, each vertex can be disconnected from
the graph by deleting at least k neighbors. In this case, the
graph becames disconnected, and one subgraph is defined
by only one vertex.

Figure 5. A 2-regular graph connected.

This structure of k−vertex-connected graphs induces the
property of k-edge-connected.

Definition 6 (k-edge-connected graph): Let G = (V,E)
be an arbitrary graph. If G′ = (V,E \X) is connected for
all X ⊆ E, where | X |< k, then G is k−edge-connected.
Trivially, a graph that is k−edge-connected is also (k −
1)−edge-connected.

Property 2: Let’s G = (V,E) a k-vertex-connected
graph. Then, G is a k-edge-connected graph.

Proof: Let’s a graph G = (V,E), such that G is not
k−edge-connected.
⇒ There exists a set of edges E′ ⊆ E, such that

| E′ |< k, and the subgraph (V,E \ E′) is not
connected.

⇒ There exists a set V ′ ⊆ V such that | V ′ |=| E′ |
and V ′ = {s ∈ V | ∃t ∈ (V \ V ′), (s, t) ∈ E′}
for which the subgraph (V ′, {(u, v) ∈ E | (u ∈
V \ V ′) ∨ (v ∈ V \ V ′)})) is not connected.

⇒ There exists a set of vertices V ′, such that | V ′ |<
k and the subgraph (V \ V ′, {(u, v) ∈ E | (u ∈
V \ V ′) ∨ (v ∈ V \ V ′)}) is not connected.

⇒ G is not k−vertex connected.
Thus, if a graph G is not k−edge-connected, then it is not
k−vertex-connected.
It is equivalent to say that a graph G is always k−edge-
connected or not k−vertex-connected (by definition of the
implication relation).
Thus, if a graph G is k−vertex-connected, then it is k−edge-
connected.

Then, the structure of k−regular graph k-vertex-
connected is also k−edge-connected.

Definition 7 (Optimally connected graph): Let G be a
regular graph of degree k. If G is indeed k−vertex-
connected and k−edge-connected, then it is called an op-
timally connected graph.

Thus, the structure of k−regular graph k-vertex-connected
and k−edge-connected is also called an optimally connected
graph of degree k. Then, the graph presented on Figure 5
is a optimally connected graph of degree 2, and the graph
presented on Figure 6 is an optimally connected graph of
degree 3.

By using this representation of graph k−vertex-connected
and k−regular (with k ≥ 2) to the RFID application

164Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

presented in Section II, each tag is modeled by a vertex
of the graph. Each association of two tags is modelized
by an edge of the graph. Two tags are associated and they
define an edge, when each of them contained the nickname
describing the other. So, each vertex (or tag) knows who
are its neighbors. With this representation of regular graph,
the same quantity of memory is used in each tag, and the
existence of each tag is equivalently stored in the others.
By the k−vertex-connection property of this graph, this
structure ensures that in a graph k − regular:
• when a set of n tags is lost, with n ∈ N, n ≤ k, the

structure ensures that exactly n tags are missing, and
the n nickames are known,

• when some tags (some vertices of the graph represen-
tation) are missing, at least k neighbors can give the
nickname of some missing neighbors.

When a neighbor of a tag in the graph representation is
missing, it is possible to determine explicitly that it is
missing by using the knowledge of each vertex on the
identity of its neighbors. This knowledge is stored in the
RFID tags memory.

For example on Figure 5, it is possible to ensure that:
• if the tag 1 is missing, then the remaining tags 2 and

8 lost a neighbor.
• If the tags 1 and 2 are missing, then:

– the remainging tag 8 looses the tag 1 as neighbor,
– the remaining tag 3 looses the tag 2.

• If the tags 1, 2 and 3 are missing, then:
– the remaingings tag 8 looses the tag 1 as neighbor,
– the remaining tag 4 looses the tag 3,
– Nothing can be deduces about the tag 2, because

its neighbors are also missing.
• If the tags 1, 2 and 5 are missing, then:

– the remainging tag 8 looses the tag 1 as neighbor,
– the remaining tag 3 looses the tag 2,
– the remaining tag 4, 6 looses the tag 5 as neighbor.

B. Robustness of the structure and memory cost

The greater the degree of a graph is the more robust
is the structure. More robust is the structure, the easier
it is to rescue some data when some tags are lost. It is
also easier to determine the missing tags. The greater the
degree of a graph is, in consequence, the more costly this
representation is costly in tag memory. Let us consider
the scenario application of Ubi-Check of the traveler in an
airport presented in Section II-B. A traveler have 8 objects:
Phone, Wallet, Bag, Belt, Jacket, Passport, Watch, Laptop,
that he considers as very important. The traveler decides to
group this set of objects with the Ubicheck application based
on a RFID solution. Each object is associated to an RFID
tag. In the example presented on Figure 6, the traceability
mechanism links the tags by using an optimally connected
graph of degree 3.

Figure 6. A 3-regular graph connected.

Each tag stores a nickname, which characterizes (for
the owner) the object associated to it. To store the graph
structure over the set of tags, each tag stores the nicknames
of all its neighbors. Figure 7 represents the data stored in
the memory bank of the tag associated to the phone (in the
example of a 3−regular graph presented on Figure 6).

Figure 7. 3-regular graph representation in the tag data bank of the phone
and wallet.

When the degree k of the graph representation increases,
the robustness of the information also increases. But, in-
creasing the degree also increases the memory space used
in each tag for storing the graph structure. In fact, each tag
stores an information about all of its k neighbors. So, the
space used by the traceability mechanism is proportionnally
increased when k increases.

With this optimal graph representation of degree 3, when
at most 3 objects are lost, it is possible to explicitly list
them. When more than 3 objects are lost, 3 of them can be
listed. More generally, by using a graph representation of
degree k, when at most k objects are lost, it is possible to
explicitly list them. When more than k objects are lost, k of
them can be listed.

For this example, the traceability mechanism can ensure
that:

• if the phone is missing, then its absence is detected by
the tag of laptop, wallet, and jacket.

• If the phone and wallet are missing, then:
– the absence of the phone is detected by the tags of

laptop, and jacket,

165Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

– the absence of the wallet is detected by the pass-
port, and the bag.

• If the phone, wallet and bag are missing, then:
– the absence of the phone is detected by the tags of

laptop and jacket,
– the absence of the wallet is detected by the pass-

port,
– the absence of the bag is detected by the tags of

watch and belt.
• If the phone, wallet, bag and passport are missing, then:

– the absence of the phone is detected by the tags of
laptop and jacket,

– the absence of the bag is detected by the passport,
– the absence of the passport is detected by the tags

of watch and jacket,
– nothing can be deduces about the missing wallet

because in this 3-regular graph representation the
three neighbors of the wallet are also lost.

As shown on Figure 8, when the traceability mechanism
uses a regular graph of degree 3, four memory fields are
used. For example, in the graph structure presented on
Figure 6, the tag associated to the phone stores a nickname
phone that characterizes the object associated to it, and it
also stores the nicknames of its neighbors: Wallet, Laptop,
Jacket. In the same way, the tag associated to the wallet
stores its nickname, and the nicknames of its neighbors.

Figure 8. 4-regular graph representation in the tag data bank of the phone.

The characters can be translated in a hexadecimal value
on two bytes. Let us consider, that the nicknames have at
most 10 characters. In a 3-regular graph representation, each
tag must store the three nicknames of these three neighbors.
Then, it is necessary to use 60 bytes to store the nickname
of the neighbors in 2-regular graph. More generally, for a

k−regular graph representation, when the maximum length
(in number of characters) of the nickname is equal to l, the
memory space used to store the nickname of the neighbors
of a tag is equal to: 2 ∗ l ∗ k. Here, each tag is identified
by a nickname, this a good way to extend the Ubicheck
application. For other applications, it is also possible to save
another information than a nickname.

IV. BUILDING AND VERIFICATION ALGORITHMS

In this section, we present the algorithm of graph building,
and the algorithm of graph structure checking.

A. Graph building

The graph building algorithm is used during the group
creation phase of RFID tags, to store information about their
neighbors in the graph structure.

It is essential to determine the necessary conditions to
build a k−regular graph with a set of tags.

Property 3: Let d ∈ N, and V a set a vertices. A regular
graph G = (V,E) of degree d exists, if and only if there
exists e ∈ N, such that d <| V | and d∗ | V |= 2 ∗ e.

=⇒:
Each vertex has at most | V | −1 potential neighbors.

Then in a regular graph G = (V,E) of degree d, d <| V |.
Let d : V 7→ N the function that associates a vertex

of V to its degree. In a simple graph each edge links
two vertices. When the sum of the degrees is done, each
vertices is counted twice: one time when the degree of the
first vertex is counted, and a second time when the degree
of the other vertex is counted. Then, in a simple graph:∑

v∈V d(v) = 2∗ | E |.
In a regular graph of degree d, all the vertices have the

same degree d, then d∗ | V |= 2∗ | E |. Thus, if a regular
graph G = (V,E) of degree d exists, then there exists e ∈ N,
such that d∗ | V |= 2 ∗ e and d <| V |.
⇐=:

Let a set of vertices V , and d, e ∈ N such that d <| V |
and d∗ | V |= 2 ∗ e. Let us consider the set of vertices V
as points regularly placed on a circle (as the vertices of a
regular n−gon, with n =| V |). Let a set of edges E defined
as follow:
• if d is even (the assumption: d ∗n is even, is satisfied),

then each vertex is connected to d/2 vertices that are
after it as well as d/2 vertices that are before it,

• if d is odd and | V | is pair (that satisfies the
assumption: d∗ | V | is pair), then each vertex is
connected to (d− 1)/2 vertices that are after it as well
as (d − 1)/2 vertices that are before it, and all the
diagonals (those connecting two diametrically opposite
points) of the n−gon are adding.

Then there exists a regular graph G = (V,E) of degree d.

The algorithm 1 builds a regular graph of degree d from
a set of vertices V , with n =| V |. To ensure the existence

166Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

of the regular graph, it is assumed that d <| V | and d∗ |
V |= 2 ∗ e with e ∈ N (Property 3). The algorithm 1 works
as follow. Let’s us consider n vertices as points regularly
placed on a circle (as the vertices of a regular n−gon). So,
if d is even then each vertex is connected to bd/2c vertices
that are after it as well as bd/2c vertices that are before
it. And if d is odd, all the diagonals (those connecting two
diametrically opposite points) of the n−gon are adding. In
the case where d is odd, it is necessary that n is pair to
satisfy the existence condition: d ∗ n is pair. In this case,
each vertex is also connected to bd/2c neighbors before it,
and to bd/2c neighbors before it.

Algorithm 1 Algorithm of building a graph optimally con-
nected.

d : degree of the graph
V : a set of vertex

Ensure: (d <| V |) and ((d∗ | V |) is pair)
set : Array of tags
nbTags : Integer
j : Integer
E : a set of edge
V ← ∅
E ← ∅
set← HW read()
nbTags← set.length
for i = 0 to nbTags do
{//for each tag a vertex is added in V }
add a new vertex set[i] in V
for all j such that j 6= i and j ∈ [i−bd

2c; i+ b
d
2c] do

{//all the edges between the vertex i and the d/2
vertices that are after him are added to E}
{//all the edges between the vertex i and the d/2
vertices that are before him are added to E}
if the edge (set[j modulo nbTags], set[i]) /∈ E
then

add the new edge (set[i], set[j modulo nbTags])
in E

end if
end for
if d is odd then
{//the edge between the vertex i and its diametrically
opposite points is added to E}
add the new edge (set[i], set[(i +
bnbTags

2 c) modulo nbTags]) in E
end if

end for
return new Graph(V ,E)

HW read() represents the inventory method provided by
the RFID reader to return the set of RFID tags detected by
the reader.

Let’s a k−regular graph G = (V,E). With the building

principle of algorithm 1, it is impossible to delete less
vertices for disconnecting a set of vertices of the n−gon,
than for deleting only one vertex. The algorithm 1 builds
a regular graph of degree d. Then, the d neighbors of
a vertex must be deleted to disconnect one point. Thus,
a regular graph of degree d built with the algorithm 1
is d−vertex-connected. Thus, the algorithm 1 builds some
optimal graphs.

B. Checking graph

Algorithm 2 checks the integrity of an RFID structure
modelized by a k−regular graph. For each vertex in a set
| V |, the algoritm search all its neighbors in the same set
| V |. The missing neighbors of all tags are stored in the set
| S |. This set stores some information to depict the missing
vertex. If S is empty, then no vertex is missing, the integrity
of the graph is alright.

More formally, the algorithm is described as follows:

Algorithm 2 Algorithm of checking.
S : set of nicknames
V : set of tags or set of vertices in the graph
representation
E : a set of edges
S ← ∅
for all v ∈ V do
{//The presence of all the neighbors of each vertex v
is tested}
for all n ∈ neighbors(v, E) do

if n /∈ V then
{//The nickname of the missing neighbor is added
to S}
add the nickname of n in S

end if
end for

end for
{//If S = ∅ then no object is missing,}
{//else S contains the nicknames of the missing objects.}
return S

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a resilient data structure
for coupled objects to help integrity error diagnosis: in
particular, it can be used to identify the missing elements of
a group of objects. The structure is stored in tags memory, in
line with the idea of coupled objects to support autonomous
operation. The robustness of the structure can be increased
at the expense of memory overhead, making the structure
configurable to application requirements.

Beside the Ubi-Check application described in the pa-
per, we are considering other application scenarios where
integrity checking of coupled objects should be diagnosed
in case of errors. For example, it could be used to secure

167Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

a medical prescription with a set of drugs. In case of an
integrity error, it would be important to charaterize the
nature of the error, such as identifying a missing drug. Some
perspectives to this work include supporting dependency
properties between elements inside a coupled object, in order
to better charaterize integrity errors, or to characterize the
global properties of a composite object when some elements
are missing.

REFERENCES

[1] M. Banâtre, F. Allard, and P. Couderc, “Ubi-check: A perva-
sive integrity checking system,” in NEW2AN, 2009, pp. 89–
96.

[2] F. Allard, M. Banâtre, F. Ben Hamouda, P. Couderc, and J.-F.
Verdonck, “Physical aggregated objects and dependability,”
Avalaible: http://hal.inria.fr/inria-00556951 [Last accessed in
June 28, 2012], INRIA, Research Report RR-7512, Jan. 2011.

[3] J.-C. Fabre, Y. Deswarte, and L. Blain, “Tolérance aux fautes
et sécurité par fragmentation-redondance-dissémination,”
Technique et Science Informatiques (TSI), vol. 15, no. 4, pp.
405 –427, 1996.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: an
optimal scheme for tolerating double disk failures in raid
architectures,” SIGARCH Comput Archit News, vol. 22, no. 2,
pp. 245–254, 1994.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar, “Row-diagonal parity for double
disk failure correction,” in Proceedings of the 3rd USENIX
Symposium on File and Storage Technologies (FAST’04, 2004,
pp. 1–14.

[6] J. S. Plank, “The raid-6 liberation codes,” in FAST-2008: 6th
Usenix Conference on File and Storage Technologies, 2008,
pp. 97–110.

[7] H. Anvin, “The mathematics of raid-6,” 2011. [Online].
Available: http://kernel.org/pub/linux/kernel/people/hpa/raid6.
pdf

[8] I. S. Reed and S. Solomon, “Polynomial Codes Over Certain
Finite Fields,” Journal of the Society for Industrial and
Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[9] F. Harary, Graph Theory. Reading, MA: Addison-Wesley,
1969.

[10] B. Myers, “Optimally connected communication networks
with maximum diameters,” Electronic Circuits and Systems,
IEE Proceedings G, vol. 128, no. 6, pp. 289 –292, December
1981.

168Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

