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Abstract— Cognitive Radios have emerged as a promising 

paradigm for increasing spectrum utilization and alleviating the 

spectrum scarcity problem. However, the majority of works in 

the Cognitive Radio domain focus on the interaction between the 

primary and secondary users, while the efficiency and fairness of 

transmissions between secondary users are rarely explored. In 

this scope, we introduce an algorithm for fair transmissions in 

cooperative Cognitive Radio networks. The proposed scheme 

places particular emphasis on the QoS of underprivileged users, 

while maintaining a high overall network utility. Specifically, a 

Genetic Algorithm is designed and used to select transmission 

power values, under fairness constraints. The proposed 

algorithm is evaluated through extensive simulations. Results 

indicate significant improvement in the SINR of underprivileged 

users with minimal impact in the overall network utility.  

Keywords-component; cooperative power control; interference 

mitigation; fairness; genetic algorithm 

I. INTRODUCTION 

A plethora of novel communication technologies and 
wireless standards were developed during the last decade, in 
order to provide wireless users with enhanced Quality of 
Service (QoS). These novel telecommunication technologies 
coexist with legacy systems for extended periods of time. 
Furthermore, emerging wireless network environments are 
characterized by a growing need for spectrum, especially for 
high data rate applications. In this context, static frequency 
allocation schemes are considered too constrained for coping 
with the previous challenges. Actually, the paradox is that 
licensed spectrum use is not high, as mentioned by Defense 
Advanced Research Projects Agency (DARPA) in [1]. This 
leads to the observation that dynamic spectrum access 
techniques will play a catalytic role towards addressing the 
spectrum scarcity problem [2], [3]. A promising technology 
for efficient spectrum utilization is Opportunistic Spectrum 
Access (OSA) [4]. OSA introduces opportunistic reallocation 
of unused spectrum bands, also known as white spaces. 
Cognitive Radios (CRs) constitute a key enabler for OSA. 

Cognitive Radios, first introduced by J. Mitola, are radio 
systems able to sense the unused spectrum and adapt their 
operating characteristics to the real-time environment [5]. In 
this direction, CRs should decide on the best spectrum band, 
over all available, in order to meet QoS requirements. A 
typical cognitive radio network comprises of secondary 
cognitive users trying to transmit in unused frequency bands. 
Their main objective is to communicate without causing 
interference to existing primary users. However, secondary 
users also compete with each other for resource allocation. In 
this scope, power control between secondary users is a 

particularly important aspect of the resource allocation 
problem, directly impacting the QoS, performance and energy 
efficiency of the wireless network. 

In addition to high spectrum utilization, a key requirement 
for CR networks is that resource allocation should be fair and 
every cognitive user should have the opportunity to transmit. 
A comprehensive definition of “fairness” is difficult to be 
given, but it can be described intuitively as the ability to 
provide equal satisfaction to all users. Specifically for 
computer networks a formal performance parameter for 
fairness is given by the equation below [6]: 

 ( )throughput
fairness

delay

β

=  (1)  

where β is a weight factor. The main obstacle in treating fairly 
each user is that fairness function is non-convex and may have 
several maxima. As a consequence, it is quite challenging to 
achieve the optimal throughput for every user in a network. 

The throughput of each individual user, as well as various 
other aspects of the operation of a cognitive radio network [7] 
is largely dependent on the transmission power level (Tx). 
Therefore, a cognitive user is trying to choose an appropriately 
high transmission power value, targeting to keep the quality of 
the signal at the receiver at tolerable levels. However, if all 
cognitive users demonstrate selfish behavior and transmit 
using the maximum valid power, the outcome will be an 
increased interference among them and more importantly to 
the primary users. For these reasons, several cooperative 
algorithmic schemes were proposed for power control in 
cognitive wireless networks [8]. Such schemes mainly focus 
on optimizing the performance of the network as a whole, 
ignoring the characteristics and QoS requirements of each 
cognitive user. Under these assumptions, a typical 
phenomenon is that depending on their relative locations, a 
portion of cognitive users get high power values, in order to 
transmit, and the rest are assigned significantly lower ones, in 
order to mitigate interference and reach a steady state for the 
system. However, there is little point in maximizing overall 
network performance without taking into consideration the 
actual performance of each cognitive user. For this reason, 
there is a strong need for power control algorithms, which 
conform to the concept of fairness and provide increased 
opportunities for transmission to the underprivileged users. 

A widely used resource allocation scheme in wireless 
networks is max-min fairness [9]. In this approach, wireless 
nodes try to achieve enhanced resource allocation starting 
from a minimum valid level, until all nodes are assigned 
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resources fairly. An important drawback of max-min fairness 
scheme is the need for extensive message exchange among 
wireless nodes in order to be fully synchronized. Additionally, 
such schemes typically require a full knowledge model, which 
implies perfect message exchange, an assumption that is often 
not a realistic especially for cognitive radios operating under 
high uncertainty.   

In this paper, a novel technique is proposed in order to 
enhance fairness properties in cooperative power control. The 
introduced approach is based on the distributed and 
cooperative power allocation scheme of [10] that is known to 
perform well under uncertainties. However, the original 
algorithm lacks fairness, as the power level of each cognitive 
user is not examined over time in order to reject consistently 
low level power values. The key contributions in the current 
paper are:  

• The extension of the algorithm proposed in [10] with a 
fairness module that caters for underprivileged users. 
Specifically, a fairness check point is executed every time 
cognitive users calculate their power values to transmit. In 
this case, each cognitive user is examined i.e., if he was 
treated in an unfair way for a certain chronicle window in 
the past. If so, enhanced power values are generated by 
the evolutionary execution of Genetic Algorithm.  

• The evaluation of the algorithm’s behavior in cases of an 
incomplete knowledge model (i.e., some of the users may 
not know all the information). This is particularly 
important for real systems, since a full knowledge model 
is typically an unrealistic assumption. 

The rest of the paper is organized as follows: Section II 
describes the baseline algorithm for cooperative power 
control. In Section III, fairness issues are discussed and a brief 
description of Genetic Algorithms is provided. Additionally, 
assumptions are formulated for the proposed fairness scheme. 
Furthermore, Section IV evaluates the performance of the 
proposed fairness scheme, comparing the Genetic Algorithm 
execution with a simplified fairness policy. Finally, in Section 
V, the key points of the proposed technique are summarized. 

II. COOPERATIVE POWER CONTROL ALGORITHM 

In this section, a description of the algorithm in [10] is 
provided, in order to set the basis for the proposed fairness 
scheme. The main scope of the algorithm is to mitigate 
interference among cognitive users in licensed exempt 
spectrum bands. For this reason, each transmitter computes its 
power by taking into consideration both its Signal to 
Interference plus Noise Ratio (SINR) and the interference it 
causes to the other users. This formula prevents users from 
always setting their power to the maximum valid power level.  

Initially, a set of L pair nodes is considered operating at 
the same frequency band, where K channels are available. The 
SINR of the i-th transmitter (i ∈{1, 2,.., L}) in k-th channel (k
∈{1, 2, ..., K}) is calculated by the equation given below: 

  (2) 

where, 

• 
k

i
p is the power of i-th transmitter on channel k 

• 
iih is the link gain between i-th receiver and i-th 

transmitter 

• 
0n  is the ambient noise level (equals 10

-2
) [11] 

• 
k

jp is the power for all other users on channel k, 

assuming that  j ∈{1,2,…,L} and j≠i 

• 
ji

h is the link gain between i-th transmitter and j-th 

receiver 

A flat faded channel without shadowing effects is 
considered (this assumption is only required for proving that 
the algorithm will converge in a limited number of steps [10], 
[11]). Since the channel is static, the only identified 
attenuation is the path loss h (channel attenuation or channel 
gain). Given that indoor urban environments are considered, 

the channel gain is 3

ji jih d
−= , where d is the distance between 

the j-th transmitter and the i-th receiver.  

We adopt from the literature [11] the notion of interference 
price, which expresses the marginal loss of utility for receiver 
i if all the other users marginally increase their transmission 
power. The equation below computes the interference price for 
user i: 

  (3)  

where, 

• ( ( )) log( ( ))k k

i i i i i i
u p pγ θ γ= is a logarithmic utility 

function 

• 
iθ is a user dependent parameter 

As mentioned before, cognitive users select their 
transmission power value by taking into consideration their 
own utility and the degradation in utility of the other users. 
They compute the appropriate power value to transmit by 
maximizing the formula given below: 

  (4) 

The first part of the equation is closely related to the 
Shannon capacity of the channel, while the second part 
expresses the utility loss to other users if user i increases its 
power level. It should be noted that factor α is included as a 
weight in order to prevent underestimation of interference that 
user i will cause to the others. Underestimation is caused due 
to uncertainties in message exchange (i.e., message loss), large 
delays in the message exchange between users and users’ 
mobility. The value of α ranges from 1 to 2. As a 
consequence, factor α compensates for the underestimation of 
interference, as the second part of the equation is increased.  

The algorithm consists of three steps. The first is the 
initialization, where each user sets its power to a valid value 
(usually a minimum one) and calculates its interference price. 
The second step is the power update, where each user 
computes the appropriate power value in order to maximize 
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the equation (4). The third step is the interference price 
update, where each user computes its interference price based 
on the updated power value from the second step. Finally, it 
announces its interference price to the other users. The second 
and the third step take place asynchronously for all users until 
a final steady state is reached. As a steady state, we define a 
state where no further enhancement in utility of any node pair 
can be achieved without negatively affecting the total network 
utility.  

III. FAIRNESS POLICY BASED ON GENETIC ALGORITHMS 

It is clear from the previous section and particularly from 
equation (4) that the original algorithm does not impose any 
lower bounds for the minimum power value a user chooses to 
transmit. Each user only attempts to balance the trade-off 
between utility optimization and interference mitigation. 
Furthermore, recalculating appropriate power values for L 
users is a multi-dimensional problem. In order to find the 
optimal power values, a search space of L-dimensions needs 
to be investigated. A simplified scheme would be to assign 
higher power values to underprivileged cognitive users, (for 
example the maximum allowed). However, this would lead to 
increased interference to other users and sharp degradation to 
the utility of the network. As a consequence, a trade-off 
between enhanced power value assignment and increased 
interference exists and the system can be tuned towards the 
desirable behavior using appropriate policies. Specifically, 
fairness policies are introduced to the cooperative power 
control algorithm, targeting to benefit cognitive users that are 
considered as underprivileged, without disregarding the needs 
of the other cognitive users. For example, choosing the 
maximum permitted power value for the underprivileged users 
is not an attractive option, as the rest of the users will face a 
significant increment of interference that will lead to QoS 
degradation. 

In general, policies can be used to formalize the concept of 
decision making, especially when closed loop optimization is 
concerned. Typically, policies are comprised by constraint 
rules, which represent the set of limitations (i.e., memory size 
or battery level) and action rules, which specify procedures to 
be executed when certain conditions are met (e.g., [12], [13]). 
Such rules can be incorporated in machine learning schemes 
(such as Genetic Algorithms, Neural Networks, etc.) in order 
to enhance the flexibility and performance of the system. In 
this work, Genetic Algorithms (GAs) are utilized as a function 
optimization technique since they are known to perform well 
in problems with multidimensional and large search space. 

Genetic Algorithms (GAs), first introduced by John 
Holland in [14], belong to the overall category of Evolutionary 
Computing techniques (EC). Typically, a candidate solution is 
structured as a string and is referred to as chromosome. A 
chromosome consists of a series of genes, in accordance to the 
dimensions of the search problem. It is usual to represent 
chromosomes as binary strings, but other encodings are also 
permissible. GAs use the principles of evolution and natural 
selection to optimize an initial set of chromosomes in order to 
reach a final optimal solution.   

The execution of GAs starts from a set of chromosomes, 
constituting the initial population. A series of crossovers and 

mutations on the initial population produces offsprings that are 
incorporated to the population. Afterwards, based on a fitness 
function each chromosome of the population is being 
evaluated. Finally, a subset of the population will proceed to 
next generation based on a selection scheme.  The procedures 
of mutation, crossover and selection are repeated iteratively 
until a termination criterion is satisfied. Terminal condition of 
a GA could be a fixed number of generations, an optimal 
threshold value for the fitness function, or a minimum 
deviation between the best chromosomes of two consecutive 
generations.  Figure 1 depicts the steps of a GA. 

 

Figure 1.  Flowchart of genetic algorithm 

The main advantage of a GA is its capability to perform 
global search and, thus, converge efficiently to a near optimal 
solution [15]. This is due to the deviant nature of the candidate 
solutions that start from different points in the search space, in 
contrast to other heuristic methods that follow single candidate 
solution approach. Mutations and crossovers ensure 
production of different chromosomes (i.e., different candidate 
solutions to the search problem) during the generation process. 
Also, the ability of manipulating different chromosomes 
simultaneously makes GAs quick and robust. The main 
disadvantage of GAs is that for a high dimensional search 
space, it is complex to model the problem; however, this is not 
a major concern for the considered case, because the number 
of unprivileged users is a small percentage of the total number 
of users and therefore, exploring the search space is 
computationally feasible in an acceptable timeframe. 

In our approach, a gene is a power value of a secondary 
cognitive user. Thus, a chromosome includes the power values 
of all the secondary cognitive users. The key point in GA 
execution is the evolutionary modification of the power values 
of the underprivileged users to more fair ones. Thus, 
appropriate assumptions and modifications were conducted for 
the phases of mutation, crossover and selection. In case of 
mutations, only genes, which correspond to underprivileged 
power values are mutated (i.e., increased). This modification 
is inline with the requirement for keeping cognitive users, 
which are not considered underprivileged, unaffected. 
Furthermore, the crossover procedure is designed to be simple. 
Thus, a single crossover point is selected randomly (the 
selection scheme followed in our approach is roulette wheel 
mechanism). Based on this scheme, the chromosome with the 
best fitness value passes to the next generation and following 
that, fitness values of the remaining chromosomes correspond 
to bounds between [0,1]. A random number on the same 
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bounds determines which chromosome will follow the best 
chromosome to the next generation. The fitness function 
captures the trade-off between the increment of 
underprivileged users’ Tx power and the increment of 
interference that will cause to the rest users and is computed 
for every chromosome. The proposed fitness function is given 
by the following equation: 

  (5) 

where, 

• 
uPower  is the mean power of underprivileged users 

• 0

u
Power is the initial mean power of underprivileged 

users 

• Interference is the current mean interference price 

• 0
Interference is the initial mean interference price 

• 
maxP and

minP are the boundaries of users’ Tx power 

Finally, as mentioned before, GA is iterative and stops 
when a terminal criterion is met. In our approach termination 
criterion is considered to be the state where no significant 
enhancement is achieved between two consecutive 
generations. 

IV. PERFORMANCE EVALUTATION 

The performance of the proposed algorithm is evaluated 
through extensive MATLAB simulations. Towards this 
direction, our GA approach is compared to a scheme of fixed 
power value assignment (maximum valid power level). The 
main objective is to give “fairer” power values to the 
underprivileged cognitive users. This concludes to a more 
“fair” treatment, but incurs loss in system performance, as 
principles of the power control algorithm are violated. The 
major difference between the two proposed techniques is that 
in case of GA, underprivileged users get better power values, 
but not the maximum ones due to the negative impact of 
interference in the fitness function.  

The proposed implementation examines a commonly used 
environment of 10 LTE mobile cognitive users (CUs) (e.g., 
[16], [17]) cooperating in order to transmit with an acceptable 
power value. The power range is between 10 and 23 dBm and 
the distances between the cognitive users is a random number 
in the [50, 550] meters range [18]. The users set their 
transmission power levels to maximize equation (4) until the 
algorithm converges to a steady state for a given topology. 
The whole procedure lasts for 10 topologies (i.e., steps) that 
reflect the mobility of the users in consecutive time frames. 
For every successive step, the fairness policy mechanism is 
called, in order to examine if underprivileged users exist. If so 
the GA algorithm is activated, so as to enforce fairness. In 
order to identify if a cognitive user is underprivileged, 
previous Tx powers are examined for a certain time window in 
the past. The size of the window is considered to be 3. 

Consequently, our fairness policy examines the current step 
and the previous 3 to detect underprivileged users. 

Figure 2 illustrates 10 steps where each cognitive user (CU) 
chooses to transmit with a certain power value (in dBm) based 
on the original algorithm in [10]. On the first step, the average 
power value is 13.719 dBm, which is also the general upper 
bound for the “unfair” power values. For the simplified fixed 
power value schema (FX), maximum power values will be 
assigned to the underprivileged users. In such cases, an 
arbitrary increase in Tx power value of a CU usually results to 
a non cooperative state, where all CUs are negatively affected. 
Alternatively, fairness policy is called in every step and is 
enforced only in the fourth and eighth steps for the CUs 1, 9, 
10 and CUs 9, 10 respectively. The initial power values for the 
fourth step will be re-calculated in case of GA. The same 
situation occurs in the eighth step as well. Both in case of GA 
or in case of fixed power values, the privileged users are not 
affected directly (i.e., by decreasing their transmission power). 

 

Figure 2.  Converged power values for 10 cognitive users 

Figure 3 illustrates the average Tx power values of the 
CUs for each of the 10 topologies. As can be seen again, the 
fairness policy is enforced in the fourth and eighth topology.  

The purpose of a fairness scheme is to support the 
underprivileged users and minimize the negative impact to the 
network. Indeed, in the proposed scheme the underprivileged 
users get enhanced power values; however, this is done in a 
planned way, so that the impact in the overall performance of 
the network is limited (marginal reduction of the average 
network SINR by approximately 0.3 dB). This is a reasonable 
trade-off for enhancing the overall fairness, especially 
considering that the SINR of the underprivileged users and the 
related QoS is increased. 

0

0

max min

u uPower Power

Interference Interference

P P

−

−
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Figure 3.  Average power values for 10 topologies 

Figure 4 illustrates SINR values for the 10
th

 CU in 
topologies where fairness was enforced. Specifically, 
concentrating on the underprivileged CUs 9 and 10, enhanced 
Tx power levels are calculated. This increase leads also to 
enhanced SINR at the receiver. 

 

Figure 4.  SINR improvement for underprivileged users 

Since equation (4) strikes the optimal balance from a 
system utilization perspective between the selfish need for 
transmission at the highest level and the social conformance of 
reducing the interference to other neighboring users, altering 
the Tx Power to the constantly underprivileged users will also 
have a negative impact to the rest of the users in the 
environment. Figure 5 shows a comparative analysis of the 
average SINR gains of the underprivileged users against the 
average SINR degradation that the other users will experience. 

 

Figure 5.  Fairness SINR gains against SINR degradation 

As mentioned previously, many fairness schemes are 
challenging in their application to real world systems due to 
the full knowledge requirement and the stringent 
synchronization constraints among the wireless nodes that this 
requirement imposes. In our case the genetic algorithm can 
operate efficiently with a significantly relaxed knowledge 
model and synchronization scheme. For our evaluation of this 
highly desirable property we have conducted 1000 
experiments assuming the same environment as before; the 
fundamental difference is that the system suffers a 10-20% 
message loss, thus leading to undesired effects for the nodes, 
as they will not have a complete knowledge of the 
environment. Figure 6 shows that in cases of an incomplete 
knowledge model the GA is triggered again exactly 2 times 
(as in the case with full knowledge) with probability equal to 
42%. The results also show that cases of not triggering the GA 
when needed (false negatives) are not possible, but there are 
some false positive cases where the algorithm is triggered 
more times than actually needed. 

 

Figure 6.  GA behavior in cases of an incomplete knowledge model  

However, these false positives do not influence the 
efficiency of the algorithm as even in that cases the SINR of 
the users is only marginally affected. Figure 7 shows a 
characteristic example where the GA was triggered four times. 
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As it is shown, only on topologies 4 and 8 the SINR of the 
underprivileged users was adjusted while on other cases the 
algorithm did not change the transmission power of the users. 

 

Figure 7.  SINR improvement for underprivileged users in a false positive 

case 

V. CONCLUSION 

A novel technique for enforcing a fairness policy in 
cooperative power control for cognitive radio networks was 
presented. The proposed scheme extends the cooperative 
power control algorithm of [10] with a fairness check module. 
The power level values, which are assigned to the 
underprivileged cognitive users, are calculated through the 
evolutionary execution of a Genetic Algorithm. GAs were 
selected as a heuristic able to search multidimensional search 
spaces. The outcome of the GA algorithm was compared both 
with the original cooperative power control scheme and with a 
simplified fairness scheme. The results indicate that increased 
power values were assigned to the underprivileged users, 
considering also the negative impact in power gain of the 
network. Specifically, simulations show significantly 
improved SINR for the underprivileged users compared to the 
original algorithm with minimal impact in the SINR of the 
privileged users. Furthermore, in comparison to the case of a 
simplified fairness policy, which assigns underprivileged 
cognitive users with the maximum valid power level, the 
proposed scheme offers considerable power gains to the 
network. Finally, we have shown that the proposed algorithm 
can operate efficiently even in cases of partial knowledge 
models and imperfect message exchange/synchronization 
between the nodes, a property that is highly desirable for 
application in real world systems. 
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