
Using Unsupervised Learning to Improve the Naive Bayes Classifier for Wireless
Sensor Networks

Ardjan Zwartjes, Paul J.M. Havinga, Gerard J.M. Smit, Johann L. Hurink
PS, CAES, DMMP

University of Twente
Enschede, The Netherlands

g.j.zwartjes@utwente.nl, p.j.m.havinga@utwente.nl, g.j.m.smit@utwente.nl, j.l.hurink@utwente.nl

Abstract—Online processing is essential for many sensor
network applications. Sensor nodes can sample far more data
than what can practically be transmitted using state of the
art sensor network radios. Online processing, however, is
complicated due to limited resources of individual nodes. The
naive Bayes classifier is an algorithm proven to be suitable
for online classification on Wireless Sensor Networks. In this
paper, we investigate a new technique to improve the naive
Bayes classifier while maintaining sensor network compati-
bility. We propose the application of unsupervised learning
techniques to enhance the probability density estimation needed
for naive Bayes, thereby achieving the benefits of binning
histogram probability density estimation without the related
memory requirements. Using an offline experimental dataset,
we demonstrate the possibility of matching the performance
of the binning histogram approach within the constraints
provided by Wireless Sensor Network hardware. We validate
the feasibility of our approach using an implementation based
on Arduino Nano hardware combined with NRF24L01+ radios.

Keywords-Wireless sensor networks; Unsupervised learning;
Classification algorithms.

I. INTRODUCTION

Advancements in miniaturization and the declined cost
of hardware have enabled the vision of Wireless Sensor
Networks (WSN), where a network of tiny computers can
monitor environments using sensors and wireless communi-
cation. The implementation of a practical WSN, however, is
not a trivial task. Even on small WSNs, the amount of data
that can be sampled by the sensor nodes is considerable.
Simple micro-controllers can acquire samples at rates above
10kHz; this is more than what can practically be transmitted
using current WSN radios.

For many applications the raw sensor data itself is not of
interest. For example, in domestic fire detection [4] carbon-
dioxide readings do not need to reach a human operator.
The presence of a fire, however, is important information.
In applications like this, online processing can be a valuable
solution.

Online data processing comes in many forms, ranging
from simple schemes to compress the data, to complex event
recognition algorithms that draw intelligent conclusions.

This last group of algorithms can result in considerable re-
ductions in communication by removing the need to transmit
the sensor readings. Considering that the energy needed to
transmit a few bytes of data is significant [7], it is clear that
online intelligent processing is a promising area of research.

A. Problem description.

The characteristics of WSN platforms limit the type of
algorithms that can be used. Both memory and computa-
tional power are very limited [12], and the unreliability
of individual nodes further complicates matters. The naive
Bayes classifier is a classification algorithm that can be
executed on simple hardware [11]. Its performance with
regard to input unreliability and distributed execution make
it an interesting algorithms for WSN applications [14], [15].

The naive Bayes classifier can be implemented in multiple
ways. Some of which are unsuitable for WSN hardware,
while others can show poor classification performance in
certain circumstances. The goal of this research is to create
a naive Bayes implementation that can run within the
constraints provided by WSN hardware, provides excellent
classification performance and has limited overhead caused
by distribution.

B. Related work

An important part of the naive Bayes [13] algorithm is
probability estimation. This part of the algorithm can be
implemented in various ways. Perfect probability estimation
requires complete knowledge of the data distribution of
the measured data. For most scenarios, this is no feasible
requirement. For practical purposes a sufficiently accurate
probability estimation is needed, but the WSN platform
limits the algorithms that can be chosen.

A straightforward choice for the probability estimation
part of the naive Bayes classifier is the use of histograms [5].
This works by first dividing the input space for each input
in a number of intervals. The second step is to determine
for each interval how many samples belong to each class.
These values give an estimate of the data distribution of the
samples for each class over the intervals, which is needed for
naive Bayes. Benefits of this approach for WSNs are: it does

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

not require floating point operations, it is computationally
inexpensive, no a-priori knowledge of the data distribution
is required. These aspects make histogram based approaches
suitable for WSN implementations.

The method in which the histogram borders are defined,
however, is of great importance. Different methods can give
very different results [10]. The most basic approach divides
the input space in intervals of equal width. Given an uniform
data distribution this works very well, with other data
distributions like Gaussian distributions, however, sparsely
populated intervals can lead to a decline in classification
robustness [10]. Small random variations in training data
can have a significant influence on the classification output.

A method that improves on this problem is the so called
binning histogram approach [10]. In this approach, the input
space is divided in equally populated intervals, thereby
ensuring that each interval contains a relevant amount of
samples. A drawback of this approach is that in order to
obtain equally populated intervals, the training data needs to
be stored and sorted. This is not a task that can be executed
within the memory constraints provided by WSN hardware.

In this work, we propose the use of unsupervised learning
techniques to create a suitable partitioning of the input space.
Our hypothesis is that unsupervised learning techniques can
obtain results similar to the binning histogram approach,
without exceeding the limits of WSN hardware.

II. METHOD

The first step in our work was an investigation using an
offline dataset. We looked into the performance of binning
and fixed width histograms and compared these with a num-
ber of trained classifiers using unsupervised learning. We
investigated two different unsupervised learning algorithms:
Self Organizing Maps (SOM) [8] and K-Means [9]. These
algorithms were chosen because of their suitability for WSN
implementations. We do not claim that these two algorithms
are the best choice, but they are well known and suitable to
proof the concept of our approach.

To compare the different classifiers in multiple situations,
we used the distance to the Receiver Operator Characteristic
(ROC) center line for each classifier [6]. This distance
provides a metric for a classifier’s capability to discriminate
between multiple classes, regardless of the bias between
these classes [14]. We determined the mean ROC distance
and the standard deviation for all classifiers over ten training
runs.

In each training run we trained the classifiers using 5000
samples from each class, or if one of the classes was rather
rare then we used the maximum amount of samples we could
take without using more than half of the total samples of a
class for training. We used this limit to ensure that there
was enough data, not used during training, to validate the
performance of the classifier.

For the K-Means algorithm we used the implementation
provided by Matlab, for the SOM we created a custom
implementation. We chose to implement the SOM algorithm
ourselves in order to gain experience for the experimental
validation described later in this section.

The dataset used in this investigation was made for
previous research [14], [15]. It is a dataset from multiple
sensors situated around a refrigerator and coffee machine
in the social corner of our research group. Three different
states were manually labeled for this dataset, namely: the
state of the the cooler of the refrigerator, the state of the
coffee machine and the state of the fridge door.

We trained classifiers for each of the different states, using
all the different approaches for interval determination.

A. Experimental verification

After the experiments with the offline dataset showed
promising results, we verified these results using an exper-
imental implementation. The platform for this experiment
provided all the complications found on WSNs. More specif-
ically, we wanted to validate our approach on a platform
with a cheap 8-bit microcontroller, a low power radio and
a network topology where nodes could have a hop-distance
of at least three.

On this platform, we demonstrated the feasibility of
implementing an unsupervised learning algorithm to de-
termine histogram intervals within the given constraints.
Furthermore, we demonstrated that these intervals can be
used as a base for a naive Bayes classifier running on such
a network. We used the distribution scheme proposed in [15]
to make multiple sensor nodes collaborate in a distributed
naive Bayes classifier.

We chose a classification task for which we could easily
provide automatic training information: the presence of
people in an office. The capability to detect this kind of
information is useful for many home-automation and safety
applications.

The exact details of our implementation are described in
Section III-B.

III. RESULTS

This section describes the results gathered in this research.

A. Offline results

Figures 1 to 3 show the results from our tests on the offline
dataset. In addition to the fixed width histogram approach
and the binning histogram approach we tested the K-Means
algorithm and SOMs.

Figure 1 shows the result for the fridge running event.
This event was the most common in the used datasets, these
results were all obtained using 10000 samples.

Figure 2 shows the result for the coffee machine running
event. This event occurred less frequent then the fridge
running event. The amount of positive samples limited our
training set size to 5703 samples.

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

#intervals

N
or
m
al
iz
ed

R
O
C
di
st
an
ce

Performance for the fridge running event

Fixed width
Binning
K−Means
SOM

Figure 1. Fridge running performance

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

#intervals

N
or
m
al
iz
ed

R
O
C
di
st
an
ce

Performance for the coffee machine event

Fixed width
Binning
K−Means
SOM

Figure 2. Coffee machine performance

Figure 3 shows the results for the fridge open event. This
event was the rarest in our dataset. The amount of positive
samples limited the training set size to 435 samples.

B. Implementation

As a platform for our implementation, we have chosen
the Arduino Nano [1] experiment board. Arduino is a cheap
platform for experimentation with electronic circuits. The
Arduino Nano is equipped with an ATmega328 micro-
controller, which has a limited set of 8-bit instructions and
2KB of SRAM (see Table I). We consider these specifica-
tions a realistic representation of WSN hardware.

For the radio, we have attached a NRF24L01+ [2] to the
Arduino Nano (see Table II) . The NRF24L01+ is a low
power 2.4Ghz radio that is well supported on the Arduino
platform . We used the RF24Network library [3] to create
a tree topology with a maximum hop distance of four. The
topology of our network is shown in Figure 4. Also, the types

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

#intervals

N
or
m
al
iz
ed

R
O
C
di
st
an
ce

Performance for the fridge open event

Fixed width
Binning
K−Means
SOM

Figure 3. Fridge open performance

Root node

Temperature

Light

Humidity

Range

PIR

Furniture

Connection

Figure 4. Network topology in office

of sensors with which each node is equipped are shown in
Figure 4. The root node in this network is where all data
is combined in a final classification. Each node transmits a
combination of its local estimations and that of its children
to its parent. Also, the types of sensors with which each
node is equipped are shown in Figure 4.

We deployed ten sensor nodes around an office, using
magnets to attach the nodes to white-boards and beams
in the ceiling. This allowed for quick maintenance and

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Type ATmega328
Clock speed 16Mhz

Program memory 32KB
SRAM 2KB

EEPROM 1KB

Table I
MICRO-CONTROLLER

deployment. The ten sensor nodes were equipped with a
number of different sensors. All nodes were equipped with
LM35 temperature sensors and photo transistors to act as
light sensors. Three nodes were furthermore equipped with
ultrasonic range finders, three other nodes with humidity
sensors. Finally two of the nodes were equipped with Passive
Infra-Red (PIR) sensors to provide training information
about the presence of movement in the office.

Each node was equipped with at most three sensors that
were used by the Bayes classifier, the PIR sensors were
just used as training feedback. We sampled each sensor at
an arbitrary rate of 5Hz, and distilled three features from
each sample stream, namely, the average value over the last
second, the peak value over the last second and the slope
over the last second.

We chose Self Organizing Maps (SOM) as the unsuper-
vised algorithm to implement because these tend to divide
the input space in equally populated partitions, making the
expected results similar to the binning algorithm. Each node
trained a SOM for each feature derived from each sensor,
meaning there were up to nine SOMs per node. We chose
four neurons as the size of the SOM, this number was a
result of the memory constraints of the Arduino Nano.

For the distribution scheme, we used the method proposed
in [15], meaning that each node had to send a single message
to its parent in the network topology for each classification.
We let the network make one classification per second.

Our implementation uses ten bytes of memory per sensor
to buffer the sample data, 16 bytes per SOM, and 32 bytes
to store each Bayes histogram. Given a typical node in
our setup has three sensors with three features per sensor,
our algorithm uses 462 bytes of memory. Each node uses
the available EEPROM to periodically store the trained
classifier.

We let our experimental setup run for a couple of days,
where each node used its local sensors to create a SOM
of its input space and used the feedback from the two
PIR sensors to train its naive Bayes classifiers. We did not
gather exact result of the accuracy of our platform, but we
did periodically check if the networks classification output
matched the real presence of people in the office. We noted
a gradual improvement in classification performance as the
training proceeded, a clear sign that our approach works as
intended.

Type NRF24L01+
Band 2.4Ghz

Data rate 2Mbps
Voltage 1.9-3.6V
Current <13.5mA

Table II
RADIO

Figure 5. Sensor node

IV. ANALYSIS

In this section, we analyze the results provided in the
previous section.

A. Offline results

As shown in Figures 1 to 3, binning histograms clearly
give a better performance than the fixed width histograms.
Only with a large amount of intervals, the performance of
the fixed width histograms starts to improve. This is a clear
indication that careful selection of the interval borders can
result in improved classification performance.

For the fridge running event, both unsupervised learning
algorithms show performance similar to the binning his-
togram approach and far superior to the fixed width his-
togram approach, especially with a low number of intervals.
For the two rarer events, K-Means shows results similar to
the binning approach, our SOM implementation however
shows some less favorable results with a larger number of
intervals.

This result can be explained by the way the Matlab
version of K-Means is implemented. In Matlab K-Means

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

works with an iterative process repeating the training until a
nearly optimal result is achieved. Our SOM implementation,
however, uses each sample only once, which is more realistic
when considering WSN implementations. Given a large
enough training set both solutions will converge on a correct
partitioning, which explains the results for the fridge running
event. For smaller training sets, however, the SOM has
not yet converged to a stable solution which explains the
decreased performance for these two events. The lower
performance that can be seen for higher number of intervals
can be explained in a similar way: the higher the number
of intervals, the lower the number of samples that is used
to train each interval. We expect that given enough samples,
binning histograms, K-Means and SOMs will show the same
behavior.

For practical implementations, this behavior is not prob-
lematic. Each sensor node only uses its local data to create
the SOM, therefore each node can gather the information
needed to create its SOM without using its radio. This means
that the energy needed to create the SOM is minimal and
all that is needed to determine the correct interval borders
is patience.

A result that is clear for all events is that when using a
low number of intervals, unsupervised learning algorithms
can help create a much better naive Bayes classifier. This
reduction in the number of intervals means that this approach
can be implemented using even less memory than the fixed
width interval approach.

B. Experimental verification

Our experimental implementation shows that our pro-
posed solution is possible within the memory and compu-
tational constraints of WSN hardware. Our implementation
runs on a simple micro controller with 2KB of RAM and an
8-bit instruction set. The used SOM algorithm automatically
creates a suitable partitioning of the input space for each
sensor. Given proper training data, we expect that the
performance showed in the offline tests can be achieved in
real life.

Our current implementation does not gather accuracy
results, we could only visually check if the network was
performing the desired task. As a proof that the algorithm
was working as desired, this was sufficient. Especially
considering that we did not investigate the optimal learning
method for the SOM.

We consider the use of Arduino hardware for WSN ex-
periments very successful. Arduinos are a versatile platform
to which a variety of sensors can be attached. The addition
of a radio allowed us to create a real sensor network. One
limitation of the Arduino platform is energy usage. It was not
designed with energy efficiency in mind and, for example,
contains some LEDs that cannot be turned off.

V. FUTURE WORK

Although this work gives some valuable insights in the ap-
plication of clustering algorithms on naive Bayes classifiers,
we have by no means created a system that can be directly
applied on real life problems. This section describes some
areas of research that need work before real life applications
can be made.

Network maintenance and installation: While theoretical
analysis of algorithms and practical experiments can provide
valuable insight in the performance of algorithms on WSNs,
real life deployments are far more dynamic. Deployment of
the WSN and the training of a classification algorithm on
such a network in an unaccessible environment combined
with the complexities of replacing defective sensor nodes
with new nodes in a trained classification network are
matters that need to be investigated. We are working on
research where we investigate the entire life cycle of a
classification network and assess the complexities to use
various algorithms during all the phases of this cycle.

Algorithm optimization: Although this paper shows
promising results, we have not looked into the optimal
settings for all the parameters. Different learning functions
for the unsupervised algorithms, for example, can probably
improve the speed with which the classifier learns, or the
accuracy. Our offline results, for example, showed that the
K-Means algorithm had a better performance than the SOM
algorithm, especially for smaller training sets. Although this
is probably caused by the fact that we used the standard
Matlab toolbox for K-Means which uses the training data in
multiple iterations, it is clear that it had better results with
the same data. These are aspects that need to be investigated.

Time aspects: Evolution of conditions over time is an
important consideration in the training of classifiers. In this
research, we have looked into classifications from moment
to moment. Feedback from previous classifications, however,
could provide valuable information to improve classification
performance. This feedback would change the structure of
the algorithms. The effects of this change on the options for
distribution is another direction of future research.

VI. CONCLUSION

In this work, we have demonstrated the merits of using
unsupervised learning algorithms to determine histogram
borders for naive Bayes. This approach can result in a
significant improvement of the classifier over the traditional
fixed width histogram approach, both on performance and on
robustness. When given enough training data, this approach
matches the performance of the binning histogram approach,
without excessive memory or computational requirements.
It should be noted that it is important to use enough
data to train the unsupervised learning algorithms, if the
unsupervised algorithm has not converged to a stable state
undesirable results are possible.

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

We have demonstrated the validity of our offline results
with an implementation on a realistic WSN platform. Next to
the validation of our approach, our implementation demon-
strates that the Arduino platform is an accessible platform
for WSN experiments. The fact that our implementation was
based on cheap and readily available components makes us
recommend this approach for other research on WSNs.

REFERENCES

[1] Arduino. http://www.arduino.cc [retrieved: June, 2012].
[2] Nrf24l01+. http://www.nordicsemi.com/eng/Products/2.

4GHz-RF/nRF24L01P [retrieved: June, 2012].
[3] Rf24network library. https://github.com/maniacbug/

RF24Network [retrieved: April, 2012].
[4] M. Bahrepour, N. Meratnia, and P. J. Havinga. Automatic fire

detection: A survey from wireless sensor network perspec-
tive. Technical report, Centre for Telematics and Information
Technology, 2007.

[5] M. Bahrepour, N. Meratnia, and P. J. Havinga. Fast and
accurate residential fire detection using wireless sensor net-
works. Environmental Engineering and Management Journal,
9(2):pp. 215–221, 2010.

[6] A. P. Bradley. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
Recognition, 30(7):pp. 1145–1159, 1997.

[7] N. Chohan. Hardware assisted compression in wireless sensor
networks. 2007.

[8] S. Haykin. Neural Networks: a comprehensive foundation.
Prentice Hall, 2 edition, 1999.

[9] A. Jain, M. Murty, and P. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):pp. 264–323, 1999.

[10] S. Kotsiantis and D. Kanellopoulos. Discretization tech-
niques: A recent survey. International Transactions on
Computer Science and Engineering, 32(1):pp. 47–58, 2006.

[11] E. Tapia, S. Intille, and K. Larson. Activity recognition in
the home using simple and ubiquitous sensors. Pervasive
Computing, 3001:pp. 158–175, 2004.

[12] M. Vieira, J. Coelho, C.M., J. da Silva, D.C., and J. da Mata.
Survey on wireless sensor network devices. Emerging Tech-
nologies and Factory Automation, 1:pp. 537–544, 2003.

[13] H. Zhang. The optimality of naive bayes. 17th Florida
Artificial Intelligence Research Society Conference, 2004.

[14] A. Zwartjes, M. Bahrepour, P. J. Havinga, J. L. Hurink,
and G. J. Smit. On the effects of input unreliability on
classification algorithms. 8th International ICST Conference
on Mobile and Ubiquitous Systems, 2011.

[15] A. Zwartjes, P. J. Havinga, G. J. Smit, and J. L. Hurink.
Distribution bottlenecks in classification algorithms. The 2nd
International Symposium on Frontiers in Ambient and Mobile
Systems (FAMS), August 2012.

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://www.arduino.cc
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
https://github.com/maniacbug/RF24Network
https://github.com/maniacbug/RF24Network

	Introduction
	Problem description.
	Related work

	Method
	Experimental verification

	Results
	Offline results
	Implementation

	Analysis
	Offline results
	Experimental verification

	Future work
	Conclusion
	References

