
User-centric Complex Event Modeling and Implementation
Based on Ubiquitous Data Service

Feng Gao
Unit of Service Oriented Architecture

Digital Enterprise Research Institute, DERI
Galway, Ireland

email: feng.gao@deri.org

Sami Bhiri
Unit of Service Oriented Architecture

Digital Enterprise Research Institute, DERI
Galway, Ireland

email: sami.bhiri@deri.org

Abstract—Current complex event processing systems are
often implemented as standalone engines that produce business
events and feed process execution environments. Event patterns
are defined with rule-based languages. Logical programming
and/or stream processing techniques are used to detect match-
ings for the patterns. However, tremendous technical efforts are
required both for the pattern definition and implementation. In
this paper, we present a novel framework that provides a user-
centric way to define complex event patterns and implement the
patterns automatically. We allow the business users to describe
their complex events with graphical notations and transform
the graphical pattern into a stream query, then, we evaluate
the query over primitive sensor data streams to obtain results
as complex events.

Keywords-user-centric; complex event processing; stream rea-
soning; web service; BEMN.

I. MOTIVATION

Business Process Management (BPM) provides concepts,
methodologies and tools to design, implement, execute and
reengineer business processes. Today business are demand-
ing more flexibility from BPM to adapt to the fast changing
business environment in-time. To this end, the concept of
”BPM 2.0” has been brought up that aims to bring more
flexibility into BPM. Among the methodologies used in
BPM 2.0, an important idea is to provide automation support
for the implementation of business processes [1]. This allows
business analysts to test and run the processes they design
with minimized technical effort. Current research focus on
combining BPM with Service Oriented Architecture to pro-
vide automation support for process implementation. In par-
ticular, service discovery will find direct matching services
for process tasks and simple events, service composition will
try to create services for process tasks when there’s no direct
matching.

However, Complex Event Processing (CEP), an indis-
pensable technique for business process systems [2], has
not yet get enough automation support. Most current CEP
tasks are delegated to CEP engines. These engines are
usually equipped with rule-based languages and engines
to define and analyze complex event patterns, and require
some programming skills to encapsulate the corresponding

event data to communicate with event processing engines.
Unfortunately neither rule languages nor programming APIs
are friendly enough for business users. As such, companies
need significant technical efforts to implement a business
process that requires CEP.

On the other hand, development in sensor networks is
gaining increasing interests from enterprises. Many efforts
have been made to integrate sensor functionalities with
enterprise systems to manage business processes more dy-
namically. A natural use of sensors is to monitor the state
changes of the real-world and notify event driven processes
to take actions. However business events are complex and
sensor events are primitive, thus CEP techniques are crucial
for the deriving business events from sensor reading events.

To give an example of complex events derived from
sensor readings, let us consider the following scenario: in
a supermarket, sensors are deployed on shelves to monitor
the numbers of remaining products, when products left on
the shelf are insufficient, a sensor will report an out-of-
stock event and trigger a replenishment process. If 10 out-
of-stock events are captured for the same product during
the past week, or a direct request from the manager asks for
increasing the storage for the product is received, a complex
event will raise to notify the need of increasing the amount
of the product in the next purchase order. In this paper,
we will demonstrate our work that provides a user-centric
and automatic way to define and implement complex event
patterns.

The remainder of the paper is organized as follows.
Section 2 elaborates our research problems in detail. Section
3 presents the related work. Section 4 gives an overview
of the proposed system. Section 5 discusses the graphical
notations for complex event definitions. Section 6 briefly
describes the algorithm to transform the event patterns into
stream queries before we conclude in Section 7.

II. RESEARCH PROBLEM DESCRIPTION

Our research intends to provide means to define and
implement complex event patterns in a user centric way.
Our goal can be further decomposed into the following.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A. User-centric Complex Event Pattern Definition

We need an intuitive, friendly language for business users
to create the complex events they need. Graphical notation
is our first choice. Flow-based graphical structure can be
used to model the control and data dependency between
primitive events. The language should be expressive enough
for various business event patterns. Meanwhile, to ensure
that the event patterns are operating on the correct event
sources, a user-oriented mechanism is required to facilitate
primitive event service discovery.

B. Automated Implementation for Complex Event Patterns

Implementing complex event pattern requires evaluating
event rules represented by event patterns over streaming
data. A Data Stream Management System (DSMS) is usually
implemented as a component in a CEP system to process
streaming data. Comparing to conventional DSMS employed
by current CEP engines that can only process syntactical
data, an emerging research area of stream reasoning aims to
process continuous semantic data. Our key idea of automated
implementation is to transform complex event patterns into
declarative stream reasoning queries, so that the complex
event patterns defined by the process modelers/business
users can be evaluated by the stream reasoning engine
and are practically made executable with minimal technical
efforts. There exist some stream reasoning languages and
engines, our approach can reuse some of them with proper
modifications/extensions to evaluate complex event patterns.

III. RELATED WORK

Complex Event Processing (CEP) is a technique to
detect complex events in (near) real-time. A complex event
represents a set of correlated events called its member
events. A complex event pattern describes the temporal re-
lationships, data specifications and other conditions required
to derive the complex event from its member events. Most
CEP systems describe event patterns in SQL-like languages.
Wang et al. [3] and Dunkel et al. [4] use such languages to
specify complex events and feed the process engine with
derived events. However these languages only offer textual
representations. BEMN proposed by Decker et al. [5] is the
first work that attempts to provide a graphical and executable
event pattern language and is an inspiration to our work,
it is able to describe various business event patterns. Still,
the BEMN language have some limitations regarding to the
difficulty of implementation, scalability and expressiveness,
which we will discuss in details later. All the approaches
described above can only process the dynamic data in the
stream and do not go beyond syntactical processing.

Stream Reasoning is an emerging research area that tries
to enable reasoning on continuous data and support process-
ing for both dynamic data and static background knowledge.
Anicic et al. [6], proposes a prolog-based framework is
to transform continuous triples as logic facts and stream

query as rules, so that the processing of complex events can
make use of both dynamic event data and static background
knowledge. Le-Phuoc et al. [7] use a “white box” approach
and support native stream reasoning operators, they also
provide means to optimize the query plan so that the
evaluation of stream query can be more efficient. We will
transform our user-centric complex event definition into the
executable stream query language defined in [7] (with some
extensions) to enable automated implementation of complex
event patterns.

Semantic CEP is discussed in several works. Moser
et al. [8]elaborate the benefits to extend syntactical event
correlation to semantic event correlations. In the paper they
define 3 kinds of semantic correlations on event attributes:
equivalence, inheritance and relation-based. Li et al. [9] use
an ontology to describe event rules as well as context-aware
devices (sensors), and an event hierarchy is used to model
the causal relationship between different levels of events.
In the framework propsed by Taylor et al. [10], users can
select and correlate sensors based on the semantic sensor
description, then, a semantic middleware will translate the
users’ requirements into the internal language used by
the CEP engine (e.g. EPL) and program the sensors to
prepare the streams. Semantic query and reasoning in this
approach will not affect the run-time processing so that it
can guarantee high throughput of the CEP engine. However,
it does not give a formalization of event patterns and have
limited expressiveness in terms of AND and OR patterns and
aggregations. Moreover, it relies on programmable sensors.
Hasan et al. [11] propose a dynamic enrichment of the
stream sensor data so that the information sensed can be
correlated to background knowledge based on the interested
situation at runtime. This approach is different to ours, where
we load the static knowledge before runtime.

IV. SYSTEM ARCHITECTURE

In this section, we will introduce the architecture of
our proposed system by presenting the overview of the
framework and functional descriptions of its components.

A. Overview

An architectural design of our system is depicted in
Figure 1. The system aims to realize user-centric and auto-
mated complex event implementation for business users in
a service-oriented environment based on publish/subscribe
messaging paradigm and semantic web technology.

B. Functionalities of Components

Due to the limited space we will only introduce the crucial
components in the system framework in the followings.

• Process Modeling Environment provides utilities for
business process designers to create, update, retrieve
and delete process models. The process modeling tool
will support graphical notations for describing complex

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Process Engine

Streamming Sensor Services

Query Transformer

Sensor
Networks

Sensor
Networks

Sensor
Networks

Semantic Stream Adapter

Event Knowledge BaseStream Reasoning
Engine

Discovery
Engine

Subscription Manager

Process Interface

Process Modeling
Environment

Figure 1. System Architectural Overview

event patterns. The graphical notations can be made
compatible to the standardardized Business Process
Modeling Notation (BPMN).

• Event Service Discovery Engine helps the process
designer to select primitive sensor event services based
on semantic service descriptions.

• Query Transformer will take the complex event de-
scriptions as inputs to create stream queries over the
sensor data streams. We will briefly describe the strat-
egy of the algorithms used in the transformer later.

• Event Knowledge Base stores the top-level event
ontology, domain-specific ontology and datasets (in-
cluding sensor service descriptions).

• Semantic Stream Adapter is the direct consumer of
the sensor services. It will subscribe to sensor services
and receive messages from them. Then the adapter will
convert these messages into RDF triples using mapping
schemas defined in service descriptions and construct
semantic streams for the stream reasoner.

• Stream Reasoner is the query engine for the RDF
streams. It will evaluate a stream query over a specified
window on semantic streams. Results of the stream
query will be consumed by the process engine as
business events.

• Streaming Sensor Services are the set of web services
that produce notification messages used to construct
streams. Currently we adopt the WS-Notification proto-
cols to wrap functionalities of sensors into web services
and produce primitive events.

V. GRAPHICAL NOTATIONS FOR COMPLEX EVENTS

BEMN [5] intends to provide a graphical representation
for the event composition languages beyond conventional
textual language. BEMN diagram can be integrated into
BPMN process models seamlessly to facilitate complex
event description in business processes. The complex event

pattern in BEMN for the example given in Section 1 is
shown in Figure 2.

Start event Input event Output event

AND

AND operator

OR

OR operator

Precedence Inhibition

Grouping

Aggregated grouping

OR

Input event
with payload

Output event
with payload

Time window
filter

Data filter

Out of stock

10

Same product Within 7 days

Increase amount

Increase purchase
order for product

OR

Out of stock

10

Same product Within 7 days

Increase order

Same product

Increase purchase
order for product

Start End

Error Occur

10

Within 1 day

Maintaince
Required

Figure 2. Example event pattern

Despite that the formal semantics of the language are
defined and the execution environments are described, the
original language did not take into account how current
stream processing technique can be integrated to enable the
execution of event models. As a result, some simplified
matching functions are defined in the execution semantics to
make only core event composition models executable. This
will limit the expressiveness of executable event composition
models and bring the overhead of translating general (non-
core) models into core models. In our work, we align the
semantics of event models with stream reasoning languages
to make the models executable without such overhead.

Furthermore, BEMN execution environment exposes all
the events to all the event patterns through a single event
stream. This will bring efficiency issues as the matching
functions need to filter out events from irrelevant sources. In
our approach, we use the pub/sub messaging paradigm based
on asynchronous web service interactions to create different
event streams on-demand using WS-notification protocol,
thus irrelevant events are filtered out before entering the
event processing engine.

Moreover, BEMN language does not provide specification
on data structure of event declarations. It is left to the
programmers who implement the event streams. In this way,
technical details are hidden from business users, with the
price of compromising automation support for event pattern
implementation. Also, it is difficult for the business users
to create good event composition models without knowing
what the primitive events really mean. We propose to use
semantic web technology to help business users discover the
primitive events they need, as well as create filters upon
primitive event data. To this end, we refine the abstract
syntax of event declarations and filters to allow more detailed
definition of them.

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

VI. PATTERN TO QUERY TRANSFORMATION

We will provide an algorithm based on Program Structure
Tree (PST) to parse the event composition models and
transform them into stream reasoning queries in a ’Divide-
and-Conquer’ style. First, we do not take parallel inhibition
relation into consideration (an inhibition is considered par-
allel if when removed, source and target of this inhibition
is still connected to start and end node, otherwise it is
considered sequential), thus event patterns will be Directed-
Acyclic-Graphs (DAGs), and we will traverse the DAG to
find embedded Single-Entrance-Single-Exit (SESE) regions.
Each SESE region can be sequential or branched. Each com-
ponent in sequential SESE regions is connected with SEQ
operators (as in [6]). Components in branched regions are
translated into GroupGraphPattern (as in [7]) or OPTIONAL
query patterns with filters on their occurrences (bound()
filters). Then we deal with the inhibitions. Inhibition in
sequential events will be transformed into optional patterns
with !bound() filters. Inhibition in parallel will be defined
using filters on timestamps. Finally, we will build aggrega-
tions and put filters to the correct scope. The query for the
example in Figure 2 is listed in Listing 1.

Listing 1. Sample query for event pattern in Figure 2
SELECT ? pid , c o u n t (? x) a s ? c n t
WHERE{
{STREAM <h t t p : / / example . o rg / OutOfStock> [7 Days]
{?x a c e s : OutOfStock ;

Evt : h a s P a y l o a d [hasID ? p i d]}}
UNION
{STREAM <h t t p : / / example . o rg / I n c r e a s e S t o r a g e > [NOW]
{?y a c e s : I n c r e a s e S t o r a g e ;

Evt : h a s P a y l o a d [hasID ? p i d]}}}
GROUPBY ? p i d HAVING (c o u n t (? x)>10)

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel framework to facilitate
user-centric definition and automated implementation of
complex events based on ubiquitous data service. The user-
centricity is achieved by revising a graphical notation of
complex events called BEMN [5] which can be seamlessly
integrated with BPMN and is targeted to business users. The
automated implementation is realized by allowing detailed
description of primitive events in event patterns and trans-
lating event patterns defined by business users to a stream
reasoning query, so that they can be evaluated immediately
without further coding.

Apart from the implementation and evaluation of the
proposed system, future works may be explored in the
following 3 aspects: support for multiple stream reasoning
systems, navigation of sensor functionalities and creation
of complex event hierarchies. We intend to provide support
for multiple stream reasoning systems by creating profiles
for the BEMN revision to align its semantics with different
query languages. Primitive event service discovery is one of

the key enabling techniques of automatic implementation.
We aim to provide a navigation based discovery by modeling
service capabilities and their relationships to construct a
service capability hierarchy/graph, which can be navigated
by business users. Currently, we assume all member events
are primitive sensor events and we are not able to create
event causal hierarchy, we intend to break this assumption
to support more comprehensive event models in the future.

ACKNOWLEDGMENTS

This work is supported by the Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2),

REFERENCES

[1] M. Kurz and A. Fleischmann, “Bpm 2.0: Business process
management meets empowerment,” in Subject-Oriented Busi-
ness Process Management, 2011.

[2] D. Luckham, “The power of events: An introduction to
complex event processing in distributed enterprise systems,”
in Rule Representation, Interchange and Reasoning on the
Web, 2008.

[3] F. Wang, S. Liu, P. Liu, and Y. Bai, “Bridging physical
and virtual worlds: Complex event processing for rfid data
streams,” in Advances in Database Technology - EDBT 2006,
2006, pp. 588–607.

[4] J. Dunkel, “On complex event processing for sensor net-
works,” in International Symposium on Autonomous Decen-
tralized Systems, 2009., 2009, pp. 1 –6.

[5] G. Decker, A. Grosskopf, and A. Barros, “A graphical nota-
tion for modeling complex events in business processes,” in
EDOC 2007, 2007, p. 27.

[6] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-
sparql: a unified language for event processing and stream
reasoning,” in Proceedings of the 20th international confer-
ence on World wide web, 2011, pp. 635–644.

[7] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth,
“A native and adaptive approach for unified processing of
linked streams and linked data,” in Proceedings of the 10th
international conference on The semantic web - Volume Part
I, 2011, pp. 370–388.

[8] T. Moser, H. Roth, S. Rozsnyai, R. Mordinyi, and S. Biffl,
“Semantic event correlation using ontologies,” On the Move
to Meaningful Internet Systems OTM 2009, pp. 1087–1094,
2009.

[9] Z. Li, C.-H. Chu, W. Yao, and R. a. Behr, “Ontology-Driven
Event Detection and Indexing in Smart Spaces,” 2010 IEEE
Fourth International Conference on Semantic Computing, pp.
285–292, 2010.

[10] K. Taylor, “Ontology-driven complex event processing in
heterogeneous sensor networks,” The Semanic Web: Research
and Applications, pp. 285–299, 2011.

[11] S. Hasan, E. Curry, and M. Banduk, “Toward Situation
Awareness for the Semantic Sensor Web: Complex Event
Processing with Dynamic Linked Data Enrichment,” Semantic
Sensor, 2011.

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

	Motivation
	Research Problem Description
	User-centric Complex Event Pattern Definition
	Automated Implementation for Complex Event Patterns

	Related Work
	System Architecture
	Overview
	Functionalities of Components

	Graphical Notations for Complex Events
	Pattern to Query Transformation
	Conclusions and Future Work
	References

