
The Context Manager: Personalized Information
and Services in Mobile Environments

Pablo Curiel, Ana B. Lago
Deusto Institute of Technology - DeustoTech

MORElab - Envisioning Future Internet
University of Deusto

Avda. Universidades 24
48007 - Bilbao, Spain

Email: {pcuriel, anabelen.lago}@deusto.es

Abstract—In this paper, we present a context management
infrastructure for mobile service environments. Due to the
remarkable advances the mobile technologies have experimented
in the last years, mobile devices have become one of the most
promising scenarios for the deployment of context-aware systems.
For this reason, the aim of the proposed infrastructure is to
provide context information to applications and services, both
executed in the end-user terminals or in the network, enabling
them to adapt their behaviour to each user and situation. The
solution here exposed relies on semantic technologies and open
standards to improve interoperability, and is based on a central
element, the context manager, which acts as a central context
repository and carries out demanding tasks in behalf of mobile
devices.

Index Terms—context management; semantic technologies;
pervasive computing; mobile computing; context-aware services

I. INTRODUCTION

Context awareness is a subject which has attracted interest
since it was introduced by Schilit and Theimer in [1]. The
reason for this growing interest is that, by using context
information, context-aware systems are capable of adapting
their working behaviour, as well as providing information and
services more relevant in the situation of the end user. This
way, context is defined as any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves [2].

One of the most promising scenarios for the deployment of
context-aware systems are mobile phones. Since its appear-
ance, mobile technology has undergone remarkable changes.
First of all, mobile phones have become an everyday-use
device, an almost essential element in our daily lives and
which we carry with ourselves every time. But with the
outstanding step forward in the technology of these devices in
the last few years, this relevancy has become more noticeable.
Nowadays, mobile phones are powerful hand-held computers
capable of carrying out plenty of tasks and remaining on-
line at all times. In addition, they include numerous sensors,
and consequently have access to a great amount of personal
and environmental information. At the same time, mobile

phones are generally used for short and rapid interactions
and in distractive environments, so providing information and
services adapted to each situation is of great value for the
end users. Therefore, mobile devices can greatly benefit from
context-aware systems.

Taking this into account, in this paper we present a context
management infrastructure for mobile environments. The aim
of this infrastructure is to provide context information to
applications and services which are either executed in the end-
user terminals or in the network. To deal with the changing
nature of this kind of environments and the wide range of
devices present in them we propose a solution which relies
on semantic technologies, easing the knowledge sharing and
interoperability, and which provides generic mechanisms to
deal with context information. Also, as mobile devices have
limited computational capabilities, the context management in-
frastructure takes most of the computational burden of dealing
with context, enabling them to simply request the information
they need to carry out their tasks.

The remaining of this papers is structured as follows: in
Section 2, related work is reviewed. In Section 3, the context
management infrastructure is described. In Section 4, the
implementation details are explained along with a preliminary
validation scenario. Finally, in Section 5, discussion and future
work are exposed.

II. RELATED WORK

Numerous context-aware systems for mobile environments
have been developed in the last years.

The work in [3] proposes a Context Managing Framework
whose aim is to provide context information to mobile ap-
plications in order to adapt their behaviour according to that
context. As our system, it uses a blackboard approach, based
on a central context server, to decouple source and consumer
communication. But in contrast to our solution, it places this
central server inside the mobile phone and limits the context
information usage to each mobile phone’s own applications.

CoBrA project [4] proposes an architecture for supporting
context-aware systems in smart spaces. It is based in a central
agent, a broker which maintains a shared model of the context
representing all the entities in a given space. It also uses a

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

policy language to allow users to define rules to control the
use and the sharing of their private contextual information.
However, the system is not explicitly designed to operate in
mobile environments.

In [5], CASS, a middleware for context-aware mobile appli-
cations is introduced. Its main goal is to give service to devices
with low processing capabilities, like mobile phones. For this
purpose, as we do in our system, it delegates demanding
tasks regarding context processing to external entities in the
network. It also resembles our solution in making usage of a
central context repository. But, whereas we adopt a semantic
representation for that central repository, which enables a more
flexible context processing and sharing, CASS uses a database
for this purpose, which follows no semantic representation and
relies mainly on a rule-based engine to process that context.

The MOBE architecture by Coppola et al. [6] intends to
send applications to mobile devices depending on the context
the user is in. MOBE differs from our solution in that it
delegates most of the computing burden in the mobile phones,
making them responsible for both gathering and processing
context information, as well as deciding which applications
to request in each case. It also restricts context information
usage to select and adapt mobile applications, while in our
system both mobile applications and applications executed in
the network take advantage of this information.

Finally, in the context dissemination middleware [7], a peer-
to-peer approach, based on web services is used to share
context information between mobile devices. It uses a rule-
based publish/subscription paradigm to enable this context
information distribution. However, in contrast to our system
both the context information both the rules are structured in
an ad hoc format based on XSD (XML Schema Definition
Language) [8], instead of a standard semantic representation
format, which makes it difficult aspects like interoperability
with other systems.

III. CONTEXT MANAGEMENT INFRASTRUCTURE

The context management infrastructure is responsible for
dealing with context information during its whole life cycle,
from the provisioning of this type of information to the usage
of it in benefit of the user, including all the intermediate
processing needed to present that information in the way
needed by the entities which make use of it. Therefore, it is a
critical element in every context-aware system, and its design
must be carefully carried out to guarantee the right operation
of the whole system.

A. Context management requirements

In this section the requirements defined for the context
management infrastructure are detailed.

First of all, to ease knowledge sharing and interoperability
between the different entities in the system, the managed
context information must be represented following a semantic
model. Among the existing approaches to model context infor-
mation, ontologies are used, because, as Strang and Linnhoff-
Popien point out, they are the best solution for this task in

ubiquitous computing applications [9]. Semantic technologies
allow computing entities to better understand the meaning
of the information they are working with, enabling them to
perform reasoning and thus problem solving and decision
taking. They also provide more flexible and expressive logical
connections an relationships between data, even among those
coming from different sources. And due to they embracing an
open-world approach, they have the ability to better deal with
the uncertainty and incompleteness of data in the real world.
Therefore, all the entities in the system share a common onto-
logical model and exchange context information according to
it. Moreover, all the interactions between entities of the system
that involve context information follow standards designed to
work with semantic data, like RDF [10] to represent and share
context information, and SPARQL [11] to query this kind of
information.

Due to the limited computational capabilities of mobile
devices, the context management infrastructure should take
most of the computational burden of dealing with context
information. For this purpose, we introduce a central element,
the context manager. This element acts as a central repository,
receiving context information from the sources, processing it
as required and storing it, allowing consumers to access it.
This blackboard approach enables resource-limited devices to
only act as context source or consumers, relieving them from
executing demanding tasks with context information. Indeed,
it enables a data-centric approach granting independence be-
tween context sources and providers, as the context manager
receives context information from the sources and stores it,
responding consumers’ queries about that information. Thus,
it prevents consumers from asking directly to the sources
and at the same time enables them to only think about what
information they need, not where it comes from.

However, the context manager is not an atomic element, but
consists of a series of independent and reusable components,
which carry out different tasks with context information,
facilitating system scalability, as they are even able to operate
in different machines. Nonetheless, the context manager must
provide a unique entry point to the context providers and
consumers, known as the context manager API, in order to
provide its functionality in a standard an unified way. This
separation between the context manager logic and the access
to it also enables providing different communication protocols
to expose its functionality.

Finally, in order to meet the requirements regarding context
information accessing of the different kinds of consumers
present in the environment, both synchronous and asyn-
chronous access are be provided. Thus, the context manager
must be able of responding synchronous queries as well as
registering queries, checking when those queries match and
asynchronously notifying the corresponding consumer of this
event.

B. The Context Manager

As detailed in the previous section, the context manager
is the central element of the context management infras-

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 1. Logic Architecture

tructure. It is comprised of various components which carry
out different tasks with context information and exposes a
unified interface for context sources and consumers to access
its functionality, relieving them from carrying out demanding
tasks with this type of information. In this section, the different
components of the context manager, shown in Figure 1, are
introduced and detailed.

The current context is the element which stores the context
information which is valid in each moment, that is, the
one that represents the current status of the entities which
are considered part of the context in every moment. This
information is stored as an RDF triplestore following the
ontological model shared by the rest of the system and can
be kept either in memory or disk. The context broker is the
component responsible for managing this context repository.
This way, it receives the context information from the sources,
stores it in the current context and attends the consumer
requests querying these repository. At the same time, it has two
subcomponents in charge of answering the consumers’ queries:
the query manager, which deals with synchronous queries,
and the subscription manager, responsible for registering
consumers’ subscriptions for context information changes and
notifying them asynchronously when those changes take place.

C. The Context Management API

As defined, the context manager, even if it is composed
of various independent components, exposes a unique entry
point to its functionality. This API exposes several methods
to manage context information in a model-independent way
and relying on standard technologies. Indeed, the methods
here detailed are merely an access layer, as the operational
logic belongs to each corresponding component, so several
communication protocols could be implemented to support as
many devices as needed.

The methods exposed in the context manager API are the
following:

• Add Context Info. This method enables a context source
to add or update the current context space by providing
information in RDF format.

• Remove Context Info. Using this method enables a
context source to delete a context instance from the
context space given its identifier.

• Get Context Info. This method enables a context con-
sumer to retrieve a known instance from the current
context given an identifier.

• Query. By calling this method, a context consumer can
synchronously access the current context space providing
an SPARQL query. The context manager will execute this
query and return the corresponding context information
to the context consumer in RDF format.

• Subscribe. This method enables a context consumer to
asynchronously access the current context space. The
consumer provides an SPARQL query which the context
manager will register and a callback address which the
second will use to asynchronously notify the first when
the query is matched.

• Unsubscribe. To delete a subscription created with the
previous method, a context consumer needs to invoke this
method providing the Subscription ID which corresponds
to the subscription that wants to remove.

• Notify. This method is not exposed by the context man-
ager itself, but by those consumers which make use of
the Subscription system. This way, each time an asyn-
chronous query is satisfied, the context manager invokes
this method of the corresponding consumer, providing the
context information in RDF format.

IV. IMPLEMENTATION AND VALIDATION SCENARIO

As a first validation step of our proposal, we have developed
a prototype of the context manager which fully implements the
API described in the previous section, as well as an end-user
application and a service, which act as context source and
consumers.

The context manager is developed in Java using the OSGi
component framework. To work with semanticized context
information, we use the well known Jena2 [12], semantic
web toolkit, and Jenabean [13], a library which bridges the
gap between working with RDF graphs and Object-Oriented
Programming. The context manager API is exposed as a
RESTful [14] interface.

To test the functionality, a validation scenario is proposed,
which involves an end-user application developed for the An-
droid mobile OS and a service which tracks both user location
and Twitter accounts to infer user status and availability, in
order to suggest plans to nearby friends. The scenario goes by
as described. John, Mike and Greg are friends. The two first
live in Madrid, while the third lives in Barcelona. The three
of them are tech-savvy, and therefore both social network and
smartphone heavy users. They also use a social alerts service,
which helps them to keep in touch with their friends. One
day, Greg travels to Madrid, and the context manager, which
periodically receives users’ locations, reported by their smart-
phones, detects that the three friends are nearby and notifies
the social alerts service. However, Mike has recently updated
his Twitter account, informing his followers of his busy day,

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

’What a day! I’ve got 3 meetings in a row!’. Consequently, the
social alerts service, who periodically checks the three friends’
Twitter accounts, infers that Mike is not available, but sends
alerts to John and Greg suggesting them to arrange a meeting.
Finally, if both agree, it checks their user profiles to select a
restaurant they both like to organize a lunch.

Fig. 2. Ontology of the validation scenario

To enable context information sharing between the context
manager, the mobile application and the social alerts ser-
vice, the ontology show at Figure 2 is used, which models
information about Users (their personal data, preferences,
current location and current activity), Locations, Restaurants
and Alerts sent to users.

V. CONCLUSION AND FUTURE WORK

In the present article, we have proposed a context manage-
ment infrastructure for mobile environments, in which appli-
cations and services both executed in the end-user terminals or
in the network use this context information to become more
relevant for the users. As this kind of environments are of
a very changing nature an a wide range of devices coexist in
them, our proposal offers generic and abstract methods to work
with context information, and relies on semantic technologies
and open standards, trying to offer a solution as interoperable
and extensible as possible.

On to other matters, even if the computational capabilities of
mobile devices have noticeably increased in the last years, their
ability to carry out demanding tasks with context information
is limited, so our proposal delegates this heavy tasks in a
central element, the context manager, which acts as a context
information repository, exposing an interface to provide and
consume context information. This also enables context source
and consumer independence and a data-centric approach, in
which consumers only have to worry about what information
they need, not where to retrieve it from.

Our next steps will involve including the privacy and secu-
rity policies required for this kind of systems, which grant both
preventing unsolicited access to sensitive data while enabling
legitimate access to those entities which need it to successfully
carry out their tasks. In addition, implementing support for a
context history component, which keeps track of the context
information changes, could be a subject of interest as long-
term user behaviour and trends can be inferred using this kind
of information. Finally, a more rigorous validation will be
carried out, involving performance tests with more demanding
real-life use cases, in order to detect possible weakness and
assess the validity of the proposed solution.

ACKNOWLEDGMENT

This work is supported by the CENIT Research Program,
as part of the INGENIO2010 Spanish National Fund.

REFERENCES

[1] B. Schilit and M. Theimer, “Disseminating active map information to
mobile hosts,” IEEE Netw., vol. 8, no. 5, pp. 22–32, 1994.

[2] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, Jan. 2001.

[3] P. Korpipää, J. Mantyjarvi, J. Kela, H. Keranen, and E. Malm, “Man-
aging context information in mobile devices,” IEEE Pervasive Comput.,
vol. 2, no. 3, pp. 42–51, 2003.

[4] H. Chen, T. Finin, and A. Joshi, “An intelligent broker for context-
aware systems,” in Proc. of Ubicomp, Seattle, Washington, USA, 2003,
pp. 183–184.

[5] P. Fahy and S. Clarke, “CASS-a middleware for mobile context-aware
applications,” in Proc. Workshop on Context Awareness, MobiSys, 2004,
pp. 304–308.

[6] P. Coppola, V. Della Mea, L. Di Gaspero, S. Mizzaro, I. Scagnetto,
A. Selva, L. Vassena, and P. Riziò, “MoBe: context-aware mobile
applications on mobile devices for mobile users,” in Proc. Interna-
tional Workshop on exploiting context histories in smart environments,
ECHISE, Munich, 2005.

[7] G. Gehlen, F. Aijaz, M. Sajjad, and B. Walke, “A mobile context dis-
semination middleware,” in Proc. International Conference Information
Technology, ITNG’07., 2007, pp. 155–160.

[8] XML Schema Working Group. (2010, Jan.) XML schema. http://www.
w3.org/XML/Schema/. [Last accessed on August 10, 2012].

[9] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in Proc.
Workshop on Advanced Context Modelling, Reasoning and Management,
Nottingham, England, 2004.

[10] RDF Working Group. (2004, Feb.) RDF - semantic web standards. http:
//www.w3.org/RDF/. [Last accessed on July 5, 2012].

[11] E. Prud’hommeaux and A. Seaborne. (2008, Jan.) SPARQL query lan-
guage for RDF. http://www.w3.org/TR/rdf-sparql-query/. [Last accessed
on July 5, 2012].

[12] Apache Software Foundation, “Apache jena,” http://jena.apache.org/,
Apr. 2012, [Last accessed on August 10, 2012].

[13] “Jenabean,” http://code.google.com/p/jenabean/, Feb. 2010, [Last ac-
cessed on August 10, 2012].

[14] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,
2007.

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://www.w3.org/XML/Schema/
http://www.w3.org/XML/Schema/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://jena.apache.org/
http://code.google.com/p/jenabean/

	Introduction
	Related Work
	Context Management Infrastructure
	Context management requirements
	The Context Manager
	The Context Management API

	Implementation and Validation Scenario
	Conclusion and Future Work
	References

