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Abstract—We propose an approach for efficient, fault toler-
ant, and correct distributed execution of Transactional Com-
posite Web Services (TCWSS), based on Colored Petri-Net
(CPN) formalism. We extend a previous COMPOSER in order it
generates, besides a TCWS represented by aCPN, anotherCPN
representing the compensation order for backward recovery.
We present an EXECUTER , which ensures correct execution
flow and backward recovery by following unfolding processes
of the CPNs. We present the formalization and algorithms of
the TCWS execution and compensation processes.

Keywords-Transactional Composite Web Services; Fault Toler-
ant Execution; Compensation; Backward Recovery.

I. I NTRODUCTION

With the advent of Web 3.0, machines should contribute
to users needs, by searching for, organizing, and presenting
information from the Web which means, user can be fully
automated on the Internet. One of the major goals of
Web 3.0 is to make automatic and transparent to users the
Web Service (WS) selection and composition to form more
complex services. This process (executed by a COMPOSER)
is normally based on functional requirements (i.e., the set
of input attributes bounded in the query, and the set of
attributes that will be returned as output),QoS criteria (e.g.,
response time and price), and transactional properties (e.g.,
compensable or not), producing Transactional Composite
WSS (TCWSS). A TCWS is formed by many WSS and
we call these WSS as components of the TCWS (WSS

component). A TCWS should satisfy functional and trans-
actional properties required by the user [1], [2], and it can
be represented in a structure such as graph or Petri-Nets
indicating the control flow and the WSS execution order.

In [2], we present such a COMPOSER. A brief description
of this COMPOSER is presented in section III.

The contribution of this paper is focussed in two as-
pects. First, we extend our previous COMPOSER in order
it automatically generates, besides the TCWS, anotherCPN
representing the compensation order for a backward recov-
ery process. Second, we specify an approach for efficient
fault tolerant execution of TCWS; this approach is imple-
mented in an EXECUTER. In the EXECUTER approach, the
deployment of a TCWS will be carried on by following
unfolding algorithms ofCPNs representing the TCWS and
its corresponding compensation flow in case of failures. The

EXECUTER approach provides acorrect and fault tolerant
executionof TCWSS by: (i) ensuring that sequential and
parallel WSS will be executed according the execution flow
depicted by the TCWS; and(ii) in case of failures, leaving
the system in a consistent state by executing a backward
recovery with theCPN representing the compensation pro-
cess. We formalize the TCWS execution problem and the
backward recovery based onCPN properties. We also present
the execution and compensation algorithms.

II. WSS TRANSACTIONAL PROPERTIES

A transactional property of a WS allows to recover the
system in case of failures during the execution. In the related
literature (see survey [3]), the most used WS transactional
properties are the following. Lets be a WS:s is pivot (p),
if once s successfully completes, its effects remain forever
and cannot be semantically undone, if it fails, it has no
effect at all; s is compensatable(c), if it exists another
WS, s′, which can semantically undo the execution ofs; s is
retriable (r), if s guarantees a successfully termination after
a finite number of invocations; the retriable property can be
combined with propertiesp and c defining pivot retriable
(pr) andcompensatable retriable(cr) WSS.

The Transactional Property (TP ) of a Composite WS
(CWS) can be derived from the properties of its WSS

component and from their execution order (sequential or
parallel). El Haddad et al. [4] extended the previous de-
scribed transactional properties and adapted them to CWSS

in order to define TCWSS as follows. Letcs be a TCWS:
cs is atomic (~a), if once all its WSS component complete
successfully, their effect remains forever and cannot be
semantically undone, if one WS does not complete suc-
cessfully, all previously successful WSS component have
to be compensated;cs is compensatable(c), if all its WSS

component are compensatable;cs is retriable (r), if all its
WSS component are retriable; the retriable property can be
combined with properties~a andc definingatomic retriable
(~ar) andcompensatable retriable(cr) TCWSS.

According to these definitions, a TCWS must be con-
structed in such a way that if, at run-time, one of its WS
component fails, then either it is retriable and can be invoked
again until success or a backward recovery is possible (i.e.,
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all successfully executed WSS have to be compensated).

III. FAULT-TOLERANT TCWS COMPOSER

This section briefly describes our COMPOSER [2] and the
proposed extension in order to consider backward recov-
ery. We formalize the WS composition problem by using
Colored Petri-Nets (CPN), where WS inputs and outputs
are represented by places and WSS with their transactional
properties are represented by colored transitions.

A user queryQ is defined in terms of functional conditions
expressed as input (IQ) and output (OQ) attributes belong-
ing to an ontology,QoS constraints expressed as weights
over criteria, and the required global transactional property
expressed as, T1 ifTP of TCWS is in{~a,~ar} or T0 if TP
of TCWS is in{c, cr}. More formally:

Definition 1: Query. Let OntoA be the integrated ontology
(many ontologies could be used and integrated). A QueryQ is a
4-tuple (IQ, OQ,WQ, TQ), where IQ = {i | i ∈ OntoA is an
input attribute}, VQ = { (i, Op, vi) | i ∈ IQ, Op is an operator
(Op ∈ {=,∈}), and vi is a value whose domain depends oni
}, OQ = {o | o ∈ OntoA is an output attribute whose value
has to be produced by the system}, WQ = {(wi, qi) | wi ∈
[0, 1] with

∑
i
wi = 1 and qi is a QoS criterion}, and TQ is

the required transactional property:TQ ∈ {T0, T1}. If TQ = T0,
the system guarantees that a semantic recovery can be done bythe
user. If TQ = T1, the system does not guarantee the result can
be compensated. In both cases, if the execution is not successful,
no result is reflected to the system, i.e., nothing is changedon the
system.

The WSS Registry is represented by a Web Service
Dependence Net (WSDN) modeled as aCPN containing
all possible interactions among WSS. More formally.

Definition 2: WSDN. A WSDN is a 4-tuple(A,S, F, ξ),
where:

• A is a finite non-empty set of places, corresponding to
input and output attributes of the WSS in the registry
such thatA ⊂ OntoA;

• S is a finite set of transitions corresponding to the set
of WSS in the registry;

• F : (A × S) ∪ (S × A) → {0, 1} is a flow relation
indicating the presence (1) or the absence (0) of arcs be-
tween places and transitions defined as follows:∀s ∈ S,
(∃a ∈ A | F (a, s) = 1) ⇔ (a is an input place ofs) and
∀s ∈ S, (∃a ∈ A | F (s, a) = 1) ⇔ (a is an output place
of s);

• ξ is a color function such thatξ : CA ∪ CS with:
CA : A → ΣA, is a color function such thatΣA =

{I,~a,~ar, c, cr} representing, fora ∈ A, either theTP
of the CWS that can produce it or the user input
(I), and CS : S → ΣS , is a color function such that
ΣS = {p, pr,~a,~ar, c, cr} representing theTP of s ∈ S.

The WS composition problem is solved by a Petri-Net
unfolding algorithm which embeds theQoS-driven selection
within the transactional service selection. To start the COM-
POSERunfolding algorithm, theWSDN is marked with to-
kens on places representing the input attributes (these marks

represent the initial marking). At the end, the unfolding
algorithm will define theCPN representing the composition
that satisfies theQuery. The transactional property of the
resulting CWS is derived from the transactional propertiesof
its WSS component and the structure of theCPN. Thus, the
result of the composition process is aCPN corresponding to
a TCWS whose WSS component locally maximize theQoS

and globally satisfy the required functional and transactional
properties. Formally, we say:

Definition 3: CPN-TCWSQ. A CPN-TCWSQ is a 4-tuple
(A,S, F, ξ), where:

• A is a finite non-empty set of places, corresponding to input
and output attributes of WSS in the TCWS such thatA ⊂
OntoA;

• S is a finite set of transitions corresponding to the set of WSS
in the TCWS;

• F : (A × S) ∪ (S × A) → {0, 1} is a flow relation
indicating the presence (1) or the absence (0) of arcs between
places and transitions defined as follows:∀s ∈ S, (∃a ∈ A
| F (a, s) = 1) ⇔ (a is an input place ofs) and ∀s ∈ S,
(∃a ∈ A | F (s, a) = 1) ⇔ (a is an output place of
s); this relation establishes the input and output execution
dependencies among WSS component.

• ξ is a color function such thatξ: S → ΣS and ΣS =
{p, pr,~a,~ar, c, cr} represents theTP of s ∈ S (TP (s)).

For modeling TCWS backward recovery, our COMPOSER

can be easily extended in order it can generate a backward
CPN , that we called BRCPN-TCWSQ, associated to a CPN-
TCWSQ as follows:

Definition 4: BRCPN-TCWSQ. A BRCPN-TCWSQ, as-
sociated to a given CPN-TCWSQ=(A,S, F, ξ), is a 4-tuple
(A′, S′, F−1, ζ), where:

• A′ is a finite set of places corresponding to the CPN-
TCWSQ places such that:∀a′ ∈ A′ ∃a ∈ A associated
to a′ anda′ has the same semantic ofa.

• S′ is a finite set of transitions corresponding to the set of
compensation WSS in CPN-TCWSQ such that:∀s ∈ S,
TP (s) ∈ {c, cr}, ∃s′ ∈ S′ which compensates.

• F−1 : (A × S) ∪ (S × A) → {0, 1} is a flow relation es-
tablishing the restoring order in a backward recovery defined
as: ∀s′ ∈ S′ associated tos ∈ S, ∃a′ ∈ A′ associated to
a ∈ A | F−1(a′, s′) = 1 ⇔ F (s, a) = 1 and ∀s′ ∈ S′,
∃a′ ∈ A′ | F−1(s′, a′) = 1 ⇔ F (a, s) = 1.

• ζ is a color function such thatζ : S′ → Σ′

S and Σ′

S =
{I,R,E,C,A} represents the execution state ofs ∈ S
associated tos′ ∈ S′ (I: initial, R: running, E: executed,
C: compensate, and A: abandoned).

The marking of a CPN-TCWSQ or BRCPN-TCWSQ
represents the current values of attributes that can be used
for some WSS component to be executed or control values
indicating the compensation flow, respectively. A Marked
CPN denotes which transitions can be fired.

Definition 5: Marked CPN. A markedCPN=(A,S, F, ξ) is a
pair (CPN,M ), whereM is a function which assigns tokens (values)
to places such that∀a ∈ A, M(a) ∈ N .

According toCPN notation, we have that for eachx ∈
(A∪S) of aCPN, (•x) = {y ∈ A∪S : F (y, x) = 1} is the set of
its predecessors, and(x•) = {y ∈ A ∪ S : F (x, y) = 1} is the
set of its successors. Now we can define fireable transitions.
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Definition 6: Fireable CPN transition. A marking M en-
ables a transitions iff all its input places contain tokens such that
∀x ∈ (•s), ∧ M(x) ≥ card(•x).

Note that a transition is actually fireable if on each input
place there are as many tokens as predecessor transitions
produce them. This condition and the fact CPN-TCWS is
acyclic, guaranty that a transition is fireable only if all its
predecessor transitions have been fired. Then, sequential
WSS execution is controlled by input and output depen-
dencies. If several transitions are fireable, all of them are
fired (i.e., the corresponding WSS are executed in paral-
lel). Hence, the sequential or parallel execution condition
affecting the globalTP is ensured. Figure 1 illustrates this
definition. Note thatws3 needs two tokens ina3 to be
invoked; this data flow dependency indicates that it has to be
executed in sequential order withws1 andws2, and can be
executed in parallel withws4. Note that ifws2 andws3 were
executed in parallel, it could be possible thatws3 finishes
successful andws2 fails; in this case, the system can not be
recovery becauseTP (ws3) = pr do not allow compensation.

Figure 1. Example of Fireable Transitions

In the BRCPN-TCWS, a transition color represents the
execution state of its corresponding compensable WS. A
compensation transition can be fired only if the correspond-
ing WS is not being abandoned or compensated (Def. 7).

Definition 7: Fireable compensation transition.A marking
M enables a transitions′ iff all its input places contain tokens
such that∀a′ ∈ (•s′), M(a′) 6= 0 ∧ ζ(s′) 6∈ {A,C}.

IV. EXECUTER: FAULT-TOLERANT EXECUTION

CONTROL

Once a CPN-TCWSQ and its corresponding BRCPN-
TCWSQ are generated by the COMPOSER, an EXECUTER

has to deploy the execution of the TCWS. The execution
control of a TCWS is guided by a unfolding algorithm
of its corresponding CPN-TCWSQ. To support backward
recovery, it is necessary to keep the trace of the execution
on the BRCPN-TCWSQ. To start the unfolding algorithm,
the CPN-TCWSQ is marked with theInitial Marking: an
initial token is added to places representing inputs ofQ

(∀a ∈ (A ∩ IQ),M(a) = 1, ∀a ∈ (A− IQ), M(a) = 0) and the
state of all transitions in BRCPN-TCWSQ is set to initial
(∀s′ ∈ S′, ζ(s′) ← I). The firing of a transition in CPN-
TCWSQ corresponds to the execution of a WS (or CWS),

let say s, which participates in the composition. While a
compensatables is executing, the state of its corresponding
s′ in BRCPN-TCWSQ is set torunning (ζ(s′)← R). Then,
when s finishes, it is considered that the transition was
fired, others transitions become fireable, the state of its
correspondings′ is set onexecuted(ζ(s′) ← E), and the
following firing rules are applied.

Definition 8: CPN-TCWSQ Firing rules. The firing of a
fireable transitions for a markingM defines a new markingM ′,
such that: all tokens are deleted from its input places (∀x ∈ •s,
M(x) = 0), if the TP (s) ∈ {c, cr}, the state of its corresponding
s′ in BRCPN-TCWSQ is set torunning (ζ(s′) ← R), and the
WS s is invoked. These actions are atomically executed. After
WS s finishes, tokens are added to its output places (∀x ∈ (s•),
M(x) = M(x) + 1), and the state of its correspondings′ in
BRCPN-TCWSQ (if it exists) is set toexecuted(ζ(s′) ← E).
These actions are also atomically executed.

In case of failure of a WSs, depending on theTP (s),
the following actions could be executed:

• if TP (s) is retriable (pr, ~ar, cr), s is re-invoked until
it successfully finish (forward recovery);

• otherwise, a backward recovery is needed, i.e., all
executed WSS must be compensated in the inverse
order they were executed; for parallel executed WSS

the order does not matter.
In order to consider failures, the compensation control of

a CPN-TCWSQ is guided by a unfolding algorithm of its
associated BRCPN-TCWSQ. When a WS represented by a
transitions fails, the unfolding process over CPN-TCWSQ
is halted and a backward recovery is initiated with the
unfolding process over BRCPN-TCWSQ by marking it with
its Initial Marking: a token is added to places representing
inputs of BRCPN-TCWSQ (∀a′ ∈ A′ | •a′ = ∅, M(a′) = 1),
tokens are added to places representing inputs ofs (∀a ∈ •s,
M(a′) = card(•x), and other places has no tokens. Then,
fireable compensation transitions defined in Def. 7 and the
firing rules defined in Def. 9 guide the unfolding process of
BRCPN-TCWSQ.

Definition 9: BRCPN-TCWSQ Firing rules. The firing of a
fireable transition (see Def. 7)s′ for a markingM defines a new
markingM ′, such that:

• if ζ(s′) = I , ζ(s′) ← A (i.e., the correspondings is
abandoned before its execution),

• if ζ(s′) = R, ζ(s′) ← C (in this cases′ is executed afters
finishes, thens is compensated),

• if ζ(s′) = E, ζ(s′) ← C (in this cases′ is executed, i.e.,s
is compensated),

• tokens are deleted from its input places (∀x ∈ •s′, M(x) =
M(x)− 1) and tokens are added to its output places (∀x ∈
(s′•), M(x) = M(x) + 1),

We illustrate a backward recovery in Figure 2. The marked
CPN-TCWSQ depicted in Figure 2(a) is the state whenws4
fails, the unfolding of CPN-TCWSQ is halted, and the initial
marking on the corresponding BRCPN-TCWSQ is set to
start its unfolding process (see Figure 2(b)), afterws′3 and
ws′

5
are fired andws7 is abandoned before its invocation, a

new marking is produced (see Figure 2(c)), in whichws′
1

and
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ws′2 are both fireable and can be invoked in parallel. Note
that only compensatable transitions have their corresponding
compensation transitions in BRCPN-TCWSQ.

Figure 2. Example of BRCPN-TCWSQ

V. EXECUTER APPROACH

In our approach, the execution of a TCWS is managed
by an EXECUTER, which in turn is a collection of soft-
ware components called EXECUTION ENGINE and ENGINE

THREADS. One ENGINE THREAD is assigned to each WS
in the TCWS. The EXECUTION ENGINE and its ENGINE

THREADS are in charge of initiating, controlling, and moni-
toring the execution, as well as collaborating with its peers to
deploy the TCWS execution. By distributing the responsibil-
ity of executing a TCWS across several ENGINE THREADS,
the logical model of our EXECUTER enables distributed ex-
ecution and it is independent of its implementation; i.e., this
model can be implemented in a distributed memory environ-
ment supported by message passing or in a shared memory
platform. EXECUTION ENGINE and ENGINE THREADS are
placed in different physical nodes from those where actual
WSS are placed. ENGINE THREADS remotely invoke the
actual WSS component. The EXECUTION ENGINE needs
to have access to the WSS Registry, which contains the
WSDL and OWLS documents. The knowledge required at
run-time by each ENGINE THREAD (e.g., WS semantic and
ontological descriptions, WSS predecessors and successors,
and execution flow control) can be directly extracted from
the CPNs in a shared memory implementation or sent by
the EXECUTION ENGINE in a distributed implementation.

Typically, WSS are distinguished inatomicandcomposite
WSS. An atomic WS is one that solely invokes local oper-
ations that it consists of (e.g.,WSDL and OWLS documents

define atomic WSS as collection of operations together
with abstract descriptions of the data being exchanged).
A composite WS is one that additionally accesses other
WSS or, in particular, invokes operations of other WSS.
Hereby, these additional involved WSS may be provided by
different organizations and were registered in the Registry
as a CWS (e.g., aWS-BPEL documentdefines CWSS by
describing interactions between business entities through
WS operations). In our case, we consider that transitions
in the CPN, representing the TCWS to be executed, could
be atomic WSS or CWSS (TCWSS in our case). Atomic
WSS have its correspondingWSDL and OWLS documents.
TCWSS can be encapsulated into an EXECUTER; in this
case the EXECUTION ENGINE has its correspondingWSDL
and OWLS documents. Hence, TCWSS may themselves be-
come a WS, making TCWS execution a recursive operation.

TCWS Execution and Backward Recovery

We present the four phases of the fault tolerant execution
algorithm by pointing out which components of the
EXECUTER are in charge of carrying on which task.
Algorithms 1, 2, and 3 describe in detail all phases.

Initial phase: Whenever an EXECUTION ENGINE receives
a CPN-TCWSQ and its corresponding BRCPN-TCWSQ
(see Def. 3 and Def. 4), it performs the following tasks:(i)
add two dummytransitions to CPN-TCWSQ: wsEEi

, the
first transition providing the inputs referenced inQ (IQ)
andwsEEf

, the last transition consuming the outputs (OQ);
similar dummytransitions are added to BRCPN-TCWSQ
with inverse data flow relation (ws′EEi

andws′EEf
); these

transitions are represented by the EXECUTION ENGINE

and have only control responsibilities to start the unfolding
process and know when it is finished;(ii) mark the CPN-
TCWSQ with the Initial Marking (i.e., add tokens to places
representing the attributes inIQ) and mark all transitions
in BRCPN-TCWSQ in initial state; (iii) start an ENGINE

THREAD responsible for each transition in CPN-TCWSQ,
except bywsEEi

and wsEEf
, indicating to each one its

predecessor and successor transitions as CPN-TCWSQ
indicates (for BRCPN-TCWSQ the relation is inverse)
and the corresponding WSDL and OWLS documents (they
describe the WS in terms of its inputs and outputs and
who is the compensation WS, if it is necessary); and
(iv) send values of attributes inIQ to ENGINE THREADS

representing successors ofwsEEi
. In Algorithm 1, lines 1

to 14 describe these steps.

WS Invocation phase: Once each ENGINE THREAD is
started, it retrieves the corresponding WSDL and OWLS
documents to extract information about the required inputs
and to construct the invocation. It waits its WS becomes
fireable to invoke it (see Def. 6). Whenever an ENGINE

THREAD receives all the inputs needed it sets torunning
the state of its corresponding transition in BRCPN-TCWSQ
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and invokes its corresponding WS with its corresponding
inputs. When the WS finishes successfully, the ENGINE

THREAD changes toexecutedthe state of its corresponding
transition in BRCPN-TCWSQ and sends values of WS
outputs to ENGINE THREADS representing successors of its
WS. If the WS fails during the execution, ifTP (WS) is
retriable, the WS is re-invoked until it successfully finish;
otherwise theCompensation phasehas to be executed. In
Algorithm 2, lines 1 to 7 describe this phase.

Compensation phase: This phase, carried out by both
EXECUTION ENGINE and ENGINE THREADS, is executed if
a failure occurs in order to leave the system in a consistent
state. The ENGINE THREAD responsible of the faulty WS
informs EXECUTION ENGINE about this failure with a
messagecompensate, marks the respective transition in
BRCPN-TCWSQ to compensatestate and sends control
tokens to transitions successor of the compensation WS.
The EXECUTION ENGINE sends a messagecompensateto
all ENGINE THREADS, marks the BRCPN-TCWSQ with
the Initial Marking (i.e., adds tokens to places representing
inputs of BRCPN-TCWSQ and inputs of the faulty WS),
and sends control tokens to ENGINE THREADS representing
successors ofws′EEf

. Once the rest of ENGINE THREADS

receive the messagecompensate, they apply the firing
rules in BRCPN-TCWSQ (see Def. 9). The compensation
process finishes whenws′EEi

becomes fireable. Algorithm 3
describe these steps for both EXECUTION ENGINE and
ENGINE THREADS.

Final phase: This phase is carried out by both EXECUTION

ENGINE and ENGINE THREADS. If the TCWS was success-
fully executed (wsEEf

becomes fireable) the EXECUTION

ENGINE notifies all ENGINE THREADS predecessors of
wsEEf

by sendingFinish message and returns the values
of attributes in OQ to user. When ENGINE THREADS

receive theFinish message, they backward this message
to its ENGINE THREAD predecessors and return. In case
compensation is needed, the EXECUTION ENGINE receives
a messagecompensate, the process of executing the TCWS
is stopped, and the compensation process is started by
sending a messagecompensateto all ENGINE THREADS.
If an ENGINE THREAD receives a messagecompensate, it
launches the compensation protocol. Algorithm 1 (lines 15-
18) and Algorithm 2 (lines 8- 10) describe this phase for
EXECUTION ENGINE and ENGINE THREADS respectively.

In order to guarantee the correct execution of our algo-
rithms, the following assumptions are made:i) the network
ensures that all packages are sent and received correctly;
ii) the EXECUTION ENGINE and ENGINE THREADS run
in a reliable server, they do not fail; andiii) the WSS

component can suffer silent or stop failures (WSS do not
response because they are not available or a crash occurred
in the platform); run-time failures caused by error in inputs
attributes and byzantine faults are not considered.

Algorithm 1 : EXECUTION ENGINE Algorithm
Input : Q = (IQ, OQ,WQ, RQ), the user query – see Def. 1
Input : CPN-TCWSQ = (A,S,F, ξ), a CPN allowing the execution of a

TCWS– see Def. 3
Input : BRCPN-TCWSQ = (A′, S′, F−1, ζ), a CPN representing the

compensation flow of TCWS– see Def. 4
Input : OWS: Ontology of WSS

Output : OVQ : List of values ofo | o ∈ OQ

begin
Initial phase:1
begin

InsertwsEEi
in CPN-TCWSQ | ((wsEEi

)• = IQ) ∧2
((•wsEEi

) = ∅);
Insertws′EEi

in BRCPN-TCWSQ | (
•ws′EEi

= {a′ ∈ A′

3
| (a′)• = ∅})∧ ((ws′EEi

)• = ∅);
InsertwsEEf

in CPN-TCWSQ | ((wsEEf
)• = ∅) ∧4

((•wsEEf
) = OQ);

Insertws′EEf
in BRCPN-TCWSQ | (

•ws′EEf
= ∅) ∧5

((ws′EEf
)• = {a′ ∈ A′ | •a′ = ∅});

∀a ∈ (A ∩ IQ), M(a) = 1 ∧ ∀a ∈ (A− IQ), M(a) = 0;6
/* Mark the CPN-TCWSQ with the Initial Marking*/
∀s′ ∈ S′, ζ(s′)← I;7
/* state of all transitions in BRCPN-TCWSQ is set toinitial */
repeat8

Instantiate anETWSws;9
SendPredecessors ETWSws ←

• (•ws);10
SendSuccessors ETWSws ← (ws•)•;11
SendWSDLws, OWLSws; /* Semantic web documents */12
/* each ENGINE THREAD keep the part of CPN-TCWSQ

and BRCPN-TCWSQ which it concerns on*/
until ∀ws ∈ S | (ws 6= wsEEi

) ∧ (ws 6= wsEEf
) ;

Send values ofIQ to (wsEEi
)•;13

Execute Final phase;14
end
Final phase:15
begin

repeat16
Wait Result from(•(•wsEEf

));
if message compensate is receivedthen

Execute Compensation Phase/* this phase is shown in
Algorithm 3*/;
Exit Final phase;

else
Set values toOVQ ;

until (∀o ∈ OQ,M(o) = card(•o) ;
/*o has a value an all transition predecessors have finished*/
SendFinish message to•(•wsEEf

);17
ReturnOVQ ;18

end
/*Send instructions are necessary if ENGINE THREADS are executed in a
distributed system, otherwise in a shared memory system, ENGINE

THREADS can access directly CPN-TCWSQ to obtain this
information*/

end

VI. RELATED WORK

There exist some recent works related to compensation
mechanism of CWSS based on Petri-Net formalism [5]–
[7]. The compensation process is represented by Paired
Petri-Nets demanding that all WSS component have to be
compensatable. Our approach considers other transactional
properties (e.g.,pr, cr, ~ar) that also allow forward recovery
and the compensation Petri-Net can model only the part of
the TCWS that is compensable. Besides, in those works, the
Petri-Nets are manually generated and need to be verified,
while in our approach they are automatically generated.

Regarding the decentralized fault tolerant execution
model, we can distinct two kinds of distributed coordination
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Algorithm 2 : ENGINE THREAD Algorithm
Input : Predecessors ETWSws , WS predecessors ofws
Input : Successors ETWSws, WS successors ofws
Input : WSDLws, OWLSws, semantic web documents
begin

Invocation phase:1
begin

InputsNeeded ETWSws ←
getInputs(WSDLws , OWLSws);
repeat

Wait Result from (Predecessors ETWSws));
Set values toInputsNeeded ETWSws ;

until ∀a ∈ InputsNeeded ETWSws,M(a) = card(•a) ;2
/* a has a value and all transition predecessors have finished */
success← false;3
compensate← false;
ζ(ws′)← R;4
repeat

Invokews;
if (ws fails) then

if TP (ws) ∈ {pr, ar, cr} then
Re-invokews;5

else
compensate← true;

else
Wait Result fromws;
ζ(ws′)← E;
Remove tokens from inputs ofws;
Send Results toSuccessors ETWSws;
success← true;

until (success) ∨ (compensate) ;6
if compensate then7

Sendcompensateto EXECUTION ENGINE;
ζ(ws′)← C ;
Execute Compensation phase;/* backward recovery: this
phase is shown in Algorithm 3 */

else
Execute Final phase;

end
Final phase:8
begin

Wait message;9
if message is Finish then

SendFinish message toPredecessors ETWSws;
Return;10

else
Execute Compensation phase;

end
/* In a shared memory systemPredecessors ETWSws can be
accessed as•(•ws); Successors ETWSws as(ws•)•; and
InputsNeeded ETWSws as(•ws), because all ENGINE THREADS

share the CPN-TCWSQ and none send is necessary */
end

approach. In the first one, nodes interact directly. In the
second one, they use a shared space for coordination. FENE-
CIA framework [8] introduces WS-SAGAS, a transaction
model based on arbitrary nesting, state, vitality degree, and
compensation concepts to specify fault tolerant CWS as
a hierarchy of recursively nested transactions. To ensure a
correct execution order, the execution control of the resulting
CWS is hierarchically delegated to distributed engines that
communicate in a peer-to-peer fashion. FACTS [1], is an-
other framework which extends the FENECIA transactional
model. When a fault occurs at run-time, it first employs
appropriate exception handling strategies to repair it. Ifthe
fault has been fixed, the TCWS continues its execution.
Otherwise, it brings the TCWS back to a consistent termi-
nation state according to the termination protocol. In [9]

Algorithm 3 : Compensation Protocol
begin

EXECUTION ENGINE :1
begin
∀a′ ∈ A′ | •a′ = ∅, M(a′) = 1 ∧ ∀a ∈ •s, M(a′) = 1;
/* Mark the BRCPN-TCWSQ with the Initial Marking*/ Send
compensateto all ENGINE THREADS;
Send control values to•(•ws′EEf

);

Wait control values from((ws′EEi
)•)•;

Return ERROR;
end

ENGINE THREADS:2
begin

ws′ ← WS which compensates its WS;
if ζ(ws′) = A ∨ ζ(ws′) = C then

Send Control tokens toSuccessors ETWSws′ ;
else

InputsNeeded ETWSws′ ←
getInputs(WSDLws′ , OWLSws′);
repeat

Wait Control tokens from
Predecessors ETWSws′ ;
Set Control tokens toInputsNeeded ETWSws′ ;

until (∀a′ ∈ InputsNeeded ETWSws′ ,M(a′) 6= ∅) ;
/* Wait its correspondingws′ becomes fireable:a′ has a
control value and all transition predecessors have finished*/
if ζ(ws′) = I then

ζ(ws′)← A

if ζ(ws′) = R then
Wait ws finishes;
Invoke ws′;
ζ(ws′)← C

;
if ζ(ws′) = E then

Invoke ws′;
ζ(ws′)← C;

Send Control tokens toSuccessors ETWSws′ ;

Return /* ENGINE THREAD finishes */;
end

end

a fault handling and recovery CWSS, in a decentralized
orchestration approach that is based on continuation-passing
messaging, is presented. Nodes interpret such messages
and conduct the execution of services without consulting
a centralized engine. However, this coordination mechanism
implies a tight coupling of services in terms of spatial and
temporal composition. Nodes need to know explicitly which
other nodes they will potentially interact with, and when, to
be active at the same time. They are frameworks to support
users and developers to construct TCWS based on WS-
BPEL, then they are not transparent.

In [10], [11] engines based on a peer-to-peer application
architecture, wherein nodes are distributed across multiple
computer systems, are used. In these architectures the nodes
collaborate, in order to execute a CWS with every node exe-
cuting a part of it. In [10], the execution is controlled by the
component state and routing tables in each node containing
the precondition and postprocessing actions indicating which
components needs to be notified when a state is exited.
In [11], the authors introduce service invocation triggers, a
lightweight infrastructure that routes messages directlyfrom
a producing service to a consuming one, where each service
invocation trigger corresponds to the invocation of a WS.
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Another series of works rely on a shared space to
exchange information between nodes of a decentralized
architecture, more specifically called a tuplespace. Using
tuplespace for coordination, the execution of a (part of a)
workflow within each node is triggered when tuples, match-
ing the templates registered by the respective nodes, are
present in the tuplespace. Thus, the templates a component
uses to consume tuples, together with the tuples it produces,
represent its coordination logic. In [12], [13] is presented
a coordination mechanism where the data is managed us-
ing tuplespace and the control is driven by asynchronous
messages exchanged between nodes. This message exchange
pattern for the control is derived from a Petri net model of
the workflow. In [14], an alternative approach is presented,
based on the chemical analogy. The proposed architecture is
composed by nodes communicating through a shared space
containing both control and data flows, called the multiset.
The chemical paradigm is a programming style based on
the chemical metaphor. Molecules (data) are floating in
a chemical solution, and react according to reaction rules
(program) to produce new molecules (resulting data). As
this approach, in our approach the coordination mechanism
stores both control and data information independent of its
implementation (distributed or shared memory). However,
none of these works manage failures during the execution.

Facing our approach against all these works, we overcome
them because the execution control is distributed and inde-
pendent of the implementation (it can be implemented in dis-
tributed or shared memory platforms), it efficiently executes
TCWSS by invoking parallel WSS according the execution
order specified by theCPN, and it is totally transparent to
users and WS developers, i.e., user only provides its TCWS,
that was automatically generated by the COMPOSER and
no instrumentation/modification/specification is needed for
WSS participating in the TCWS. while most of these works
are based on WS-BPEL and/or some control is sitting closely
to WSS and have to be managed by programmers.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a fault tolerant execution
control mechanism for ensuringcorrect and fault tolerant
execution orderof TCWSS. Our approach ensures that the
deployment of the TCWS will be carried on by following
unfolding algorithms ofCPNs representing the TCWS and
the compensation process. We are currently working on
extending the approach with forward recovery based on WS
substitution. We are also implementing prototype systems
to test the performance of the approach in centralized
and decentralized platforms. Our intention is to compare
both implementations under different scenarios (different
characterizations ofCPNs) and measure the impact of
compensation and substitution onQoS.
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