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Abstract—Ubiquitous computing applications are frequently 
long-running and highly distributed, leading to bugs that 
only become apparent far from and long after their original 
point of appearance.  Such bugs are hard to find.  This paper 
describes the Interaction Analyzer, a debugging tool for 
ubiquitous computing applications that addresses this 
problem.  The Interaction Analyzer uses protocol definitions 
and histories of executions that displayed bad behavior to 
assist developers in quickly finding the original root cause of 
the bug.  We describe the architecture of the tool and the 
methods it uses to rapidly narrow in on bugs.  We also report 
overheads associated with the tool, simulation studies of its 
ability to find bugs rapidly, and case studies of its use in 
finding bugs in a real ubiquitous computing application. 

Keywords-ubiquitous computing; debugging 

I.  INTRODUCTION  
Ubiquitous and pervasive computing systems are often 

complex systems consisting of many different objects, 
components and agents, interacting in complicated and 
unpredictable ways.  The real world frequently intrudes 
into pervasive systems, adding to their unpredictability.  As 
a result, such systems can frequently display unexpected, 
and often erroneous, behaviors.  The size and complexity 
of the systems and their interactions make it difficult for 
developers to determine why these unexpected behaviors 
occurred, which in turn makes it difficult to fix the 
problems [1], [2], [3]. 

We built a system called the Interaction Analyzer to 
help developers of complex ubiquitous computing systems 
understand their systems’ behaviors and find and fix bugs.  
The Interaction Analyzer gathers data from test runs of an 
application.  When unexpected behavior occurs, it uses the 
data from that run and information provided during system 
development to guide developers to the root cause of 
errors.  The Interaction Analyzer carefully selects events in 
the execution and recommends that the human developers 
more carefully examine them.  In real cases, the Interaction 
Analyzer has guided ubiquitous application developers to 
the root cause of system bugs while only requiring them to 
investigate a handful of events.  In one case, the Interaction 
Analyzer helped developers find a race condition that they 
were previously unable to track down; the entire debugging 
process took less than five minutes, while previously 
developers had spent several days unsuccessfully tracking 
the bug using more traditional debugging techniques. 

In this paper, we describe how the Interaction Analyzer 
works and give both simulation results of its efficiency in 
tracking bugs and cases where it found real bugs in a real 
ubiquitous application.  Section II describes the Panoply 
system, for which the Interaction Analyzer was built, and 
introduces the example ubiquitous.  Section III describes 
the Interaction Analyzer’s basic design and architecture.  
Section IV provides simulation results and real case 
studies.  This section also includes basic overhead costs for 
the Interaction Analyzer.  Section V discusses related 
work.  Section VI presents our conclusions. 

II. PANOPLY AND THE SMART PARTY 
The Interaction Analyzer was built as part of the 

Panoply project.  Panoply is a middleware framework to 
support ubiquitous computing applications.  This paper is 
not primarily about Panoply itself, so only issues relevant 
to the Interaction Analyzer will be discussed here.  More 
details on Panoply can be found in [4].   

Panoply enables the simple creation, configuration, and 
discovery of computational contexts that support 
communication-based groups, location-based groups, and 
interest- and task-based groups. These groups, called 
spheres of influence, organize related peers, and scope 
communication and configuration.  Panoply provides 
primitives for setting up controlled communications among 
ubiquitous computing application elements.  For the 
purpose of understanding the Interaction Analyzer, one can 
regard Panoply as a support system for applications made 
up of discrete, but interacting, components at various 
physical locations.  These components communicate by 
message, and generally run code in response to the arrival 
of a message.  Code can also be running continuously or 
periodically, or can be triggered by other events, such as a 
sensor observing a real-world event.   

Several applications have been built for Panoply, and 
the Interaction Analyzer has been used to investigate many 
of them.  Due to space restrictions, we will limit our 
discussion of the Interaction Analyzer’s use to one Panoply 
application, the Smart Party [5]. 

In the Smart Party, a group of people attend a gathering 
hosted at someone’s home. Each person carries a small 
mobile device that stores its owner’s music preferences and 
song collection. The party environment consists of a series 
of rooms, each equipped with speakers. The home is 
covered by one or more wireless access points.  
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As each guest arrives, his mobile device automatically 
associates with the correct network to connect it to the 
Smart Party infrastructure. As party attendees move within 
the party environment, each room programs an audio 
playlist based on the communal music preferences of the 
current room occupants and the content they have brought 
to the party. Guests automatically and dynamically 
collaborate with the host network, which manages their 
collective preferences and steers the music choices.   As 
guests move from room to room, each room’s playlist 
adjusts to the current occupants and their preferences. 

The Smart Party can fail in many ways.  It can overlook 
users, or it can localize them into the wrong rooms.  It can 
fail to obtain preferences from some users.  Its algorithms 
for song selection can be flawed, resulting in endless 
repetitions of the same song.  It can unfairly disadvantage 
some users in the selection.  These are just a few of the 
many possible causes of failures.  Because it must take into 
account user mobility, and even the possibility of users 
leaving the Smart Party in the middle of any operation, 
flawed code to handle dynamics can lead to multiple 
problems.  These characteristics, which caused a good deal 
of difficulty in getting the Smart Party to operate properly, 
are actually likely to be common to a wide range of 
ubiquitous computing applications.  Therefore, the Smart 
Party is a good representative example of the complexities 
of debugging a ubiquitous computing application. 

The problems we actually encountered during the 
development of the Smart Party application included music 
playing in rooms with no occupants, failure of some Smart 
Party components to join the application, and race 
conditions that sometimes caused no music to play when it 
should.  These and other bugs in the Smart Party were 
attacked with the Interaction Analyzer.  The results will be 
presented in Section IV. 

III. THE INTERACTION ANALYZER 

A. Basic Design Assumption 
The Interaction Analyzer was designed to help 

developers debug their applications.  Therefore, it was built 
with certain assumptions: 

• The source code for the application is available 
and can be altered to provide useful information 
that the Interaction Analyzer requires. 

• The system was not for use during actual 
application deployment.  Thus, we could assume 
more capable devices than might be available in 
real use, and did not need to fix problems in 
working environments. 

• Knowledgeable developers would be available to 
use the recommendations of the Interaction 
Analyzer to find bugs.  The Interaction Analyzer 
does not to pinpoint the exact semantic cause of a 
bug, but guides developers in quickly finding the 
element of the system, hardware or software, that 
was the root cause of the observed problem. 

The Interaction Analyzer works on applications that 
have been specially instrumented to gather information that 

will prove useful in the debugging process.  This 
instrumented application is run in a testing environment, 
gathering data as the application runs.  When developers 
observe a bug that they need to diagnose, they stop the 
application and invoke the Interaction Analyzer on the 
information that has been saved during the run. 

The instrumented code is wrapped by a conditional 
statement that checks the value of a predefined boolean 
constant.  By altering this value, the instrumented code can 
be easily removed in the final release of the binary. 

B. Protocol Definitions and Execution Histories 
The Interaction Analyzer is organized around a protocol 

definition (which specifies how the application is expected 
to work) and an execution history (which describes what 
actually happened in the run of the application).  Each of 
these is a directed graph of events, where an event 
corresponds to some interesting activity in the execution of 
the system.  Developers instrument their code to indicate 
when events occur and to store important information 
about those events. An event can be primitive or high-level.  
High-level events are typically composed of one or more 
primitive events, under the control of the developer. 

The Interaction Analyzer uses both temporal order and 
causal order (such as sending a message necessarily 
preceding its receipt) of events to build the execution 
history of an application’s run.  Some of these relationships 
are found automatically by the Interaction Analyzer’s 
examination of the source code, while some must be 
provided explicitly by the developers using instrumentation 
tools. By recording all events and their causal relationships 
that occur during the execution of a system, one can 
reconstruct the image and the detailed behavior of the 
running system at any time [6]. 

The protocol definition describes how the system 
should react and behave in different situations. We store 
the protocol definition in event causality graph format. The 
protocol definition is produced at design time, and the 
execution history is produced at run time. 

C. Creating the Protocol Definition 
The protocol definition is a model of the application’s 

expected behavior.  Such modeling is always an essential 
part of a large software project, and is helpful in smaller 
projects, as well.  Models help software developers ensure 
that the program design supports many desirable 
characteristics, including scalability and robustness [7].  
The Interaction Analyzer requires developers to perform 
such modeling using UML, a popular language for 
program modeling.  We added some additional elements to 
the standard UML to support the Interaction Analyzer’s 
needs, such as definitions of protocol events and relation 
definitions.  We modified a popular graphical UML tool, 
ArgoUML [8], to create a tool called Argo-Analyzer that 
helps developers build their protocol definition. 

The details of Argo-Analyzer are extensive.  Briefly, 
developers use this tool to specify an application’s objects, 
the relationships between them, the context, and the kinds 
of events that can occur in a run of the application.   
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The application is organized into objects.  Object types 
are defined using Argo-Analyzer. For source code written 
in OOP languages (such as Java), the classes correspond to 
the object types.  These object definitions are used to 
organize the protocol definition and describe interactions 
between different application elements.   

Relationship definitions describe relationships between 
objects. Argo-Analyzer supports popular relationships such 
as parent-child, as well as other user-defined relationships. 

Event templates define the properties of an instance of 
an important event in the application.  There must be an 
event template for each type of event in the application.  
The Interaction Analyzer will use these templates to match 
an execution event with an event in the protocol definition.   

The developer uses these and a few other UML-based 
elements to specify the protocol definition, which describes 
how he expects his application to work.  This definition is, 
in essence, a directed graph describing causal chains of 
events that are expected to occur in the application.   

Serious effort is required to create the protocol 
definition, but it is a part of the overall modeling effort that 
well-designed programs should go through.  As with any 
modeling effort, the model might not match the actual 
instantiation of the application.  In such cases, an execution 
history will not match the protocol definition, requiring the 
developer to correct one or the other.  In practice, we found 
that it was not difficult to build protocol definitions for 
applications like the Smart Party, and did not run into 
serious problems with incorrect protocol definitions.  
Mismatches between definitions and executions were 
generally signs of implementation bugs. 

D. Creating the Execution History 
There is one protocol definition for any application, but 

each execution of that application creates its own execution 
history.  The Interaction Analyzer helps direct users to 
bugs by comparing the execution history for the actual run 
to the expected execution.   

The execution history is gathered by instrumenting the 
application.  We provide a library to help with this process.  
This general-purpose Java library provides an interface to 
generate different kinds of events and their important 
attributes and parameters.  An application generates an 
entry in its execution history by calling a method in this 
library.  Doing so logs the entry into a trace file on the local 
machine.  Applications can also define their own kinds of 
events, which the library can also log. 

A typical analyzer record contains several fields, 
including a unique ID for the event being recorded, a 
developer-defined ID, information on the producer and 
consumer of the event (such as the sender and receiver of a 
message for a message-send event), timestamps, and 
various parameters specific to the particular kind of event 
being recorded.  Most of the parameters are defined by the 
application developers, who can also add more parameters 
if the standard set does not meet their needs. 

Adding the code required to record an analyzer event 
costs about the same amount of effort as adding a printf 
statement to a C program.  

Panoply applications run on virtual machines, one or 
more on each participating physical machine.  Each virtual 
machine can run multiple threads, and each thread can 
generate and log execution events to a local repository 
using the Event Analyzer’s Execution History Generator 
component.  When a run is halted, the Log Provider 
component on each participating physical machine gathers 
the portion of the execution history from its local virtual 
machines and sends it to a single Log Collector process 
running on a centralized machine.  When all logs from all 
machines have been collected, the Log Collector collates 
them into a single execution history. 

E. Using the Interaction Analyzer 
After developers have created the protocol definition, 

instrumented their code to build the execution history, and 
run the instrumented application, they may observe bugs or 
unexpected behaviors during testing.  This is when the 
Interaction Analyzer becomes useful.  Upon observing 
behavior of this kind, the developer can halt the 
application, gather the execution logs (with the help of the 
Log Collector), and then feed them into the Interaction 
Analyzer.  This graphical tool will then allow the 
developers to obtain answers to a number of useful 
debugging questions, including: 

1. Why did an event E not occur? 
2. Why did an incorrect event E occur? 
3. What are the differences in behavior between 

objects of the same type? 
4. Why did an interaction take a long time? 

Each of these types of questions requires somewhat 
different support from the Interaction Analyzer.  We will 
concentrate on how it addresses questions of Type 1 and 2. 

1) Type 1 Questions  
Type 1 questions are about why something did not 

happen when it should have.  For example, in the Smart 
Party, if a user is standing in one of the rooms of the party 
and no music is playing there at all, developers want to 
know “why is no music playing in that room?”  There are 
several possible reasons for this bug.  Perhaps the user is 
not recognized as being in that room.  Perhaps the user’s 
device failed to receive a request to provide his music 
preferences.  Perhaps the room was unable to download a 
copy of the chosen song from wherever it was stored.   

The Interaction Analyzer handles Type 1 questions by 
comparing the protocol definition and the execution history 
to generate possible explanations for the missing event.  
The protocol definition describes event sequences that 
could cause an instance of that event.  The execution 
history shows the set of events that actually happened, and 
usually contains partial sequences of events matching the 
sequences derived from the protocol history.  The 
Interaction Analyzer determines which missing event or 
events could have led to the execution of the event that 
should have happened.  These sequences are presented to 
the developer, ordered by a heuristic.  The heuristic 
currently used for presenting possible descriptions of 
missing events is, following Occam’s Razor, to suggest the 
shortest sequence of missing events first.  The developer 
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examines the proposed sequence to determine if it explains 
the missing event.  If not, the Interaction Analyzer suggests 
the next shortest sequence. 

As a simplified example, say that music is not playing 
in a room in the Smart Party when guests are present there.  
The missing event is thus “play music in this room.”  The 
Interaction Analyzer will compare the sequence of events 
in the actual execution where music did not play to the 
protocol definition.  It might come up with several 
hypotheses for why music did not play.  For example, 
perhaps the guest who had selected a song failed to send it 
to the player.  Or the module that gathers suggestions might 
have failed to ask any present guests for recommendations.  
Or the guests might not have been properly recognized as 
being in that room at all.  The first of these three 
explanations requires the fewest “missing events” to serve 
as an explanation, so it would be investigated first. 

The actual methods used by the Interaction Analyzer 
are more complex [9], since links in the protocol definition 
and execution history can have AND and OR relationships.  
Also, the Interaction Analyzer makes use of contextual 
information defined in the protocol definition and recorded 
in the execution history. For example, if a Smart Party 
supports music played in several different rooms, a 
question about why music did not play in the living room 
will not be matched by events that occurred in the kitchen. 

2) Type 2 Questions  
Type 2 questions are about why an incorrect event 

occurred.  In the Smart Party context, such questions might 
be “why was Bill localized in the dining room instead of 
the family room” or “why did music play in the entry hall 
when no one was there?”  Type 2 questions are thus about 
events that appear in the execution history, but are seen by 
the developer to either not belong in the history, or to have 
some incorrect elements about their execution. 

The Interaction Analyzer works on the assumption that 
errors do not arise from nowhere.  At some point, an event 
in the application went awry, due to hardware or software 
failures.  The Interaction Analyzer further assumes that 
incorrectness spreads along causal chains, so the events 
caused by an incorrect event are likely to be incorrect 
themselves.  If a developer determines some event to be 
incorrect, either that event itself created the error or one of 
the events causing it was also erroneous.  Working back, a 
primal incorrect event caused a chain of incorrect events 
that ultimately caused the observed incorrect event.  The 
developer must find that primal cause and fix the bug there. 

Given these assumptions, the job of the Interaction 
Analyzer in assisting with Type 2 questions is to guide the 
developer to the primal source of error as quickly as 
possible.  A standard way in which people debug problems 
in code is to work backwards from the place where the 
error is observed, line by line, routine by routine, event by 
event, until the primal error is found.  However, this 
approach often requires the developer to check the 
correctness of many events.  In situations where the 
execution of the program is distributed and complex (as it 
frequently is for ubiquitous applications), this technique 

may require the developer to analyze a very large number 
of events before he finds the actual cause of the error. 

Is there a better alternative?  If one has the resources 
that the Interaction Analyzer has, there is.  The Interaction 
Analyzer has a complete trace of all events that occurred in 
the application, augmented by various parameter and 
contextual information.  Thus, the Interaction Analyzer can 
quickly prune the execution history graph of all events that 
did not cause the observed erroneous event, directly or 
indirectly, leaving it with a graph of every event in the 
execution history that could possibly have contained the 
primal error.  The question for the Interaction Analyzer is 
now: in what order should these events be analyzed so that 
the developer can most efficiently find that primal error? 

Absent information about which events are more likely 
than others to have run erroneously, any event in this 
pruned graph is equally likely to be the source of the error.  
Assume this graph contains N events.  The final event 
where the error was observed is not necessarily any more 
likely to be the true source of the error than any other, and, 
if the developer examines that event first and it was not the 
source of the error, only one of N possibly erroneous 
events has been eliminated from the graph.  What if, 
instead, the Interaction Analyzer directs the developer to 
analyze some other event E chosen from the middle of the 
graph?  If that event proves correct, then all events that 
caused it can be eliminated as the source of the primal 
error.  Event E was correct, so the observed error could not 
have “flowed through” event E; thus the source of our error 
is not upstream of E.  It must be either downstream or in 
some entirely different branch of the graph.  If event E is 
erroneous, and E is one of the initial events of the 
application (one with no predecessor events in the graph), 
that E is identified as the root cause.  If E is not one of the 
initial nodes, then it is on the path that led to the error, but 
is not necessarily the original cause of the error.  We now 
repeat the algorithm, but with event E as the root of the 
graph, not the event that the developer originally observed, 
and we continue this process until we find the root cause. 

With a little thought, one realizes that the ideal choice 
of the first event to suggest to the developer would be an 
event which, if it proves correct, eliminates half of the 
remaining graph from consideration.  If no such event can 
be found, due to the shape of the graph, then choosing the 
event whose analysis will eliminate as close to half the 
graph as possible is the right choice.  

This is the heuristic that the Interaction Analyzer uses.  
It prunes irrelevant events from the execution history graph 
and finds the event node in that graph whose elimination 
would most nearly divide the remaining graph in half.  It 
then directs the developer to investigate that event.  If the 
event proves correct, half the graph is eliminated, and the 
Interaction Analyzer then chooses another event using the 
same heuristic.  If the event that the developer examines is 
erroneous, the Interaction Analyzer prunes the graph to use 
this erroneous event as the new root, and finds an event in 
the new graph to examine.  Eventually, the highest 
erroneous event in the graph is identified as the root cause. 
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At each step, the developer manually investigates one 
event and tells the Interaction Analyzer whether that event 
is correct.  But by using this technique, the developer need 
not work his way entirely up the whole execution history 
graph until he finds the problem.  In general, the 
Interaction Analyzer allows the developer to perform the 
debugging with few human analysis steps.  (In four real 
cases, using the Analyzer required 4-12 events to be 
examined, out of 200-21,000 total events, depending on the 
case.) As long as the Interaction Analyzer’s automated 
activities (building the graph, analyzing it to find the next 
event to recommend, etc.) are significantly cheaper than a 
human analysis step, this process is much faster and 
cheaper than a more conventional debugging approach. 

IV. USING THE INTERACTION ANALYZER 
Here we present simulation results indicating how well 

the Interaction Analyzer would perform when working 
with execution graphs of different sizes.  We also present 
case studies involving the actual use of the Interaction 
Analyzer in finding bugs in the Smart Party application, 
and data on the performance overheads of the system. 

A. Simulation Results 
To determine how the Interaction Analyzer would 

perform when handling large execution graphs, we 
generated artificial execution graphs of varying sizes and 
properties (such as the branching factors in the graph).  
Erroneous events and their root causes were generated 
randomly. The results are too extensive to report here (see 
[9] for full results), but one graph will give an enlightening 
picture of the actual benefits of using this tool, and the 
value of the algorithms it uses to find events for developers 
to examine.   

When looking for a Type 2 error (“why did this 
incorrect event occur?”), one could examine the graph of 
all events that directly or indirectly caused the erroneous 
event and randomly choose one to examine.  Unless some 
nodes are more likely to be erroneous than others, 
randomly selecting one of the nodes to examine is no more 
or no less likely to pinpoint the root case than walking back 
step-by-step from the observed error, which is a traditional 
debugging approach.  For reasons not important to this 
discussion, we have termed the algorithm that randomly 
selects a node from the graph “Terminal-Walk.” 

The algorithm that the Interaction Analyzer actually 
uses (see Section III.E.2) analyzes the portion of the 
execution graph associated with the erroneous event and 
directs the developer to an event whose correctness status 
will essentially eliminate half the nodes in this graph.  We 
term this approach the “Half-Walk” algorithm.   

Figure 1 shows the performance of these algorithms for 
event graphs of different sizes.  The x-axis parameter refers 
to the number of nodes in the causal graph rooted at the 
observed erroneous event, any one of which could be the 
root cause of the observed error.  The x-axis is a log scale.  
The “Validation Cost” is in number of events, on average, 
that the developer will need to examine by hand to find the 
error.   The graphs analyzed here have uniform branching 

factors and a uniform probability that any event in the 
graph rooted at the observed erroneous event (including 
that event itself) is the root cause of the error. 

 
Figure 1.  Terminal-Walk vs. Half-Walk Algorithm 

The Terminal-Walk algorithm becomes expensive as 
the number of potential causes of the observed error 
grows.  Each validation represents a human developer 
examining code and state information for an event in the 
system, which is likely to take at least a few minutes.  The 
Half-Walk algorithm, on the other hand, is well behaved, 
displaying log2 behavior. 

In some situations, the probability of failure in each 
event is known.  For example, the system may consist of 
sensors with a known rate of reporting false information.  
Even if event failure probabilities are not perfectly known, 
an experienced developer’s may have a sense of which 
events are likeliest to be the root cause of errors. If the 
developer has perfect knowledge of this kind, he will be 
able to instantly assign a probability of being erroneous to 
all events in the system.  He might use an algorithm that 
first examines the event with the highest probability of 
being correct.  If that event is indeed correct, he could 
eliminate from further consideration all events that caused 
that event.  He could then move down the list of 
probabilities as candidates are eliminated.  We term this 
algorithm the Highest-Walk algorithm. 

 
Figure 2.  Highest-Walk Algorithm vs. Half-Walk Algorithm 

Figure 2 shows the relative performance for the 
Highest-Walk algorithm vs. the Half-Walk algorithm 
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(which the Interaction Analyzer actually uses) for graphs 
and root causes of the same kind shown in Figure 1.  
Highest-Walk is, unlike Terminal-Walk, competitive with 
Half-Walk, but Half-Walk is clearly better.   For 200,000 
events in an execution graph, Half-Walk will require the 
developer to examine less than half as many events as 
Highest-Walk would. The probability of being incorrect is 
propagated down the event path, and thus the event with 
highest probability of being incorrect is normally very far 
from the root cause.  Thus, the Highest-Walk does not 
perform as well as Half-Walk. 

B. Case Studies Using the Interaction Analyzer 
Simulation studies are helpful in understanding the 

Interaction Analyzer’s behavior in many different 
circumstances, but ultimately the point of a debugging tool 
is to prove helpful in debugging real problems.  In this 
section we describe how the Interaction Analyzer helped us 
find real bugs in a real application, the Smart Party 
application we introduced in Section II.  This application 
was not written to help us investigate the behavior of the 
Interaction Analyzer.  On the contrary, the Interaction 
Analyzer was built to help us debug problems with the 
Smart Party and other Panoply applications. 

1) Music Playing in the Wrong Room 
This bug occurred in the Smart Party when a party was 

run with three rooms and one user.  Music played in a 
room where no user was present.  Before availability of 
the Interaction Analyzer, the developers of the Smart Party 
had used traditional methods to find the root cause of this 
problem, which proved to be that the module that 
determined a user’s location had put him in the wrong 
room.  We did not keep records of how long the 
debugging process took before the Interaction Analyzer 
was available, but it was far from instant. 

This was a Type 2 error, an event occurring 
incorrectly.  As mentioned in Section III, the Interaction 
Analyzer uses contextual information when available to 
guide the process of finding root causes.  We investigated 
this bug both with and without contextual information.  
Without contextual information, the Analyzer had to 
suggest six events (out of a possible 8000 in the execution 
history) to pinpoint the problem.  With contextual 
information (the developer indicating which room he was 
concerned about, which was not difficult to obtain), the 
Interaction Analyzer found the problem in one step. 

2) No Music Playing 
This bug occurred in some, but not all, runs of the 

Smart Party.  A user would join the Smart Party, but no 
music would play anywhere.  Since this bug was non-
deterministic, it was extremely hard to find using standard 
methods.  In fact, the Smart Party developers were unable 
to find the bug that way. 

Once the Interaction Analyzer was available, it found 
the bug the first time it occurred.  This was a Type 1 error, 
an event that did not occur when it should have.  The 
Interaction Analyzer found the root cause by comparing 

the protocol definition to the execution history and noting 
a discrepancy.  The Interaction Analyzer made use here of 
its ability to deal with events at multiple hierarchical 
levels.  At the high level, it noted that music did not play 
and that the high-level protocol definition said it should.  
The Analyzer determined that the failure was due to not 
responding to a request by the user for a localization map.  
To further determine why that request wasn’t honored, the 
Analyzer suggested to the developer that he dive down to 
a lower protocol level, and, eventually, to an even lower 
level.  The bug ultimately proved to be in the code related 
to how Panoply routed messages.   

The Interaction Analyzer found this bug in three 
queries, a process that took less than five minutes, 
including the time required by the developers to examine 
the code the Analyzer recommended they look at.  The 
developers had been unable to find this bug without the 
Analyzer over the course of several weeks. 

TABLE 1.  INTERACTION ANALYZER COSTS 
Operation Example Cost Average Cost 
Import Exec Hist. 3.5 seconds .35 msec/event 
Preprocessing .3 seconds .03 msec/event 
Load Prot. Def. 7 seconds .82 msec/element 
Matching 12.2 seconds 1.18 msec/event 
Total Time 23.0 seconds 2.48 msec/event 

 
3) Interaction Analyzer Overheads 
Table 1 shows some of the overheads associated with 

using the Interaction Analyzer.  The Example Cost column 
shows the actual total elapsed times for handling all events 
in a sample 11,000 event execution history.  The Average 
Cost column shows the normalized costs averaged over 20 
real execution histories.  These costs are paid every time a 
developer runs the Interaction Analyzer, and essentially 
represent a startup cost.  For an 11,000 event run, then, the 
developer needs to wait a bit less than half a minute before 
his investigations can start. 

 
Figure 3.  Time to Pick Validation Node 

The other major overhead is the cost for the Interaction 
Analyzer to respond to a user query.  For queries of Types 
1, 3, and 4, this cost is less than a second.  For queries of 
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Type 2, it depends on the size of the portion of the 
execution history that is rooted at the event the developer 
needs to investigate, not the size of the entire history.  Any 
event that exerted a causal influence on the event under 
investigation must be considered.  Figure 3 shows the time 
required to choose an event for the developer to evaluate 
for causal graphs of different sizes. If there are 100,000 
events in the causal graph of the investigated event, it 
takes around 17 seconds to recommend one to the 
developer.  This graph is log scale on the x-axis, so the 
time is roughly linear as the number of events grows.  The 
Interaction Analyzer chooses an event for validation such 
that its examination will eliminate around half of the 
graph, so if the event in question is not the root cause, the 
second recommendation will be made on a graph of half 
the size of the original, and thus half the cost.   

V. RELATED WORK 
Several systems have supported debugging problems in 

complex distributed systems.  The most closely related are 
those that build execution graphs based on data gathered 
during a run.  RAPIDE [10] was an early system that used 
this approach, which was extended to build an execution 
architecture that captured causal relationships between 
runtime components [11].  The developers must manually 
examine the graph to identify the causes. 

The Event Recognizer [12] matches actual system 
behavior from event stream instances to user-defined 
behavior models to assist in debugging.  The goal is to find 
the mismatch and present it to the developers.  Poutakidis 
et al. [13] uses interaction protocol specifications and Petri 
nets to detect interactions that do not follow the protocol. 

Other approaches use non-graph-based methods to find 
root causes.  Yemini and Kliger [14] treat a set of bad 
events as a code defining the problem, and uses decoding 
methods to match it to known problems.  Piao [15] uses 
Bayesian network techniques to determine root causes of 
errors in ubiquitous systems.  Ramanathan [16] and 
Urteaga [17] proposed systems for finding root causes of 
errors in sensor networks based on examining various 
metrics in those networks. 

VI. CONCLUSIONS 
Ubiquitous systems are complex, consisting of many 

different components.  Their dynamic nature makes it hard 
to develop and debug them.  Bugs often become evident 
long after and far away from their actual cause.  The 
Interaction Analyzer provides quick, precise determination 
of root causes of bugs in such systems.  While developed 
for Panoply, it can be adapted for many ubiquitous 
computing environments.  The Interaction Analyzer has 
been demonstrated to have good performance by 
simulation, and has been used to find actual bugs in real 
ubiquitous computing environments, including cases 
where more traditional debugging methods failed.   
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