
The Interaction Analyzer: A Tool for Debugging Ubiquitous Computing
Applications

Nam Nguyen, Leonard Kleinrock, Peter Reiher
Computer Science Department, UCLA

Los Angeles, CA, USA
songuku@cs.ucla.edu, lk@cs.ucla.edu, reiher@cs.ucla.edu

Abstract—Ubiquitous computing applications are frequently
long-running and highly distributed, leading to bugs that
only become apparent far from and long after their original
point of appearance. Such bugs are hard to find. This paper
describes the Interaction Analyzer, a debugging tool for
ubiquitous computing applications that addresses this
problem. The Interaction Analyzer uses protocol definitions
and histories of executions that displayed bad behavior to
assist developers in quickly finding the original root cause of
the bug. We describe the architecture of the tool and the
methods it uses to rapidly narrow in on bugs. We also report
overheads associated with the tool, simulation studies of its
ability to find bugs rapidly, and case studies of its use in
finding bugs in a real ubiquitous computing application.

Keywords-ubiquitous computing; debugging

I. INTRODUCTION
Ubiquitous and pervasive computing systems are often

complex systems consisting of many different objects,
components and agents, interacting in complicated and
unpredictable ways. The real world frequently intrudes
into pervasive systems, adding to their unpredictability. As
a result, such systems can frequently display unexpected,
and often erroneous, behaviors. The size and complexity
of the systems and their interactions make it difficult for
developers to determine why these unexpected behaviors
occurred, which in turn makes it difficult to fix the
problems [1], [2], [3].

We built a system called the Interaction Analyzer to
help developers of complex ubiquitous computing systems
understand their systems’ behaviors and find and fix bugs.
The Interaction Analyzer gathers data from test runs of an
application. When unexpected behavior occurs, it uses the
data from that run and information provided during system
development to guide developers to the root cause of
errors. The Interaction Analyzer carefully selects events in
the execution and recommends that the human developers
more carefully examine them. In real cases, the Interaction
Analyzer has guided ubiquitous application developers to
the root cause of system bugs while only requiring them to
investigate a handful of events. In one case, the Interaction
Analyzer helped developers find a race condition that they
were previously unable to track down; the entire debugging
process took less than five minutes, while previously
developers had spent several days unsuccessfully tracking
the bug using more traditional debugging techniques.

In this paper, we describe how the Interaction Analyzer
works and give both simulation results of its efficiency in
tracking bugs and cases where it found real bugs in a real
ubiquitous application. Section II describes the Panoply
system, for which the Interaction Analyzer was built, and
introduces the example ubiquitous. Section III describes
the Interaction Analyzer’s basic design and architecture.
Section IV provides simulation results and real case
studies. This section also includes basic overhead costs for
the Interaction Analyzer. Section V discusses related
work. Section VI presents our conclusions.

II. PANOPLY AND THE SMART PARTY
The Interaction Analyzer was built as part of the

Panoply project. Panoply is a middleware framework to
support ubiquitous computing applications. This paper is
not primarily about Panoply itself, so only issues relevant
to the Interaction Analyzer will be discussed here. More
details on Panoply can be found in [4].

Panoply enables the simple creation, configuration, and
discovery of computational contexts that support
communication-based groups, location-based groups, and
interest- and task-based groups. These groups, called
spheres of influence, organize related peers, and scope
communication and configuration. Panoply provides
primitives for setting up controlled communications among
ubiquitous computing application elements. For the
purpose of understanding the Interaction Analyzer, one can
regard Panoply as a support system for applications made
up of discrete, but interacting, components at various
physical locations. These components communicate by
message, and generally run code in response to the arrival
of a message. Code can also be running continuously or
periodically, or can be triggered by other events, such as a
sensor observing a real-world event.

Several applications have been built for Panoply, and
the Interaction Analyzer has been used to investigate many
of them. Due to space restrictions, we will limit our
discussion of the Interaction Analyzer’s use to one Panoply
application, the Smart Party [5].

In the Smart Party, a group of people attend a gathering
hosted at someone’s home. Each person carries a small
mobile device that stores its owner’s music preferences and
song collection. The party environment consists of a series
of rooms, each equipped with speakers. The home is
covered by one or more wireless access points.

138Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

As each guest arrives, his mobile device automatically
associates with the correct network to connect it to the
Smart Party infrastructure. As party attendees move within
the party environment, each room programs an audio
playlist based on the communal music preferences of the
current room occupants and the content they have brought
to the party. Guests automatically and dynamically
collaborate with the host network, which manages their
collective preferences and steers the music choices. As
guests move from room to room, each room’s playlist
adjusts to the current occupants and their preferences.

The Smart Party can fail in many ways. It can overlook
users, or it can localize them into the wrong rooms. It can
fail to obtain preferences from some users. Its algorithms
for song selection can be flawed, resulting in endless
repetitions of the same song. It can unfairly disadvantage
some users in the selection. These are just a few of the
many possible causes of failures. Because it must take into
account user mobility, and even the possibility of users
leaving the Smart Party in the middle of any operation,
flawed code to handle dynamics can lead to multiple
problems. These characteristics, which caused a good deal
of difficulty in getting the Smart Party to operate properly,
are actually likely to be common to a wide range of
ubiquitous computing applications. Therefore, the Smart
Party is a good representative example of the complexities
of debugging a ubiquitous computing application.

The problems we actually encountered during the
development of the Smart Party application included music
playing in rooms with no occupants, failure of some Smart
Party components to join the application, and race
conditions that sometimes caused no music to play when it
should. These and other bugs in the Smart Party were
attacked with the Interaction Analyzer. The results will be
presented in Section IV.

III. THE INTERACTION ANALYZER

A. Basic Design Assumption
The Interaction Analyzer was designed to help

developers debug their applications. Therefore, it was built
with certain assumptions:

• The source code for the application is available
and can be altered to provide useful information
that the Interaction Analyzer requires.

• The system was not for use during actual
application deployment. Thus, we could assume
more capable devices than might be available in
real use, and did not need to fix problems in
working environments.

• Knowledgeable developers would be available to
use the recommendations of the Interaction
Analyzer to find bugs. The Interaction Analyzer
does not to pinpoint the exact semantic cause of a
bug, but guides developers in quickly finding the
element of the system, hardware or software, that
was the root cause of the observed problem.

The Interaction Analyzer works on applications that
have been specially instrumented to gather information that

will prove useful in the debugging process. This
instrumented application is run in a testing environment,
gathering data as the application runs. When developers
observe a bug that they need to diagnose, they stop the
application and invoke the Interaction Analyzer on the
information that has been saved during the run.

The instrumented code is wrapped by a conditional
statement that checks the value of a predefined boolean
constant. By altering this value, the instrumented code can
be easily removed in the final release of the binary.

B. Protocol Definitions and Execution Histories
The Interaction Analyzer is organized around a protocol

definition (which specifies how the application is expected
to work) and an execution history (which describes what
actually happened in the run of the application). Each of
these is a directed graph of events, where an event
corresponds to some interesting activity in the execution of
the system. Developers instrument their code to indicate
when events occur and to store important information
about those events. An event can be primitive or high-level.
High-level events are typically composed of one or more
primitive events, under the control of the developer.

The Interaction Analyzer uses both temporal order and
causal order (such as sending a message necessarily
preceding its receipt) of events to build the execution
history of an application’s run. Some of these relationships
are found automatically by the Interaction Analyzer’s
examination of the source code, while some must be
provided explicitly by the developers using instrumentation
tools. By recording all events and their causal relationships
that occur during the execution of a system, one can
reconstruct the image and the detailed behavior of the
running system at any time [6].

The protocol definition describes how the system
should react and behave in different situations. We store
the protocol definition in event causality graph format. The
protocol definition is produced at design time, and the
execution history is produced at run time.

C. Creating the Protocol Definition
The protocol definition is a model of the application’s

expected behavior. Such modeling is always an essential
part of a large software project, and is helpful in smaller
projects, as well. Models help software developers ensure
that the program design supports many desirable
characteristics, including scalability and robustness [7].
The Interaction Analyzer requires developers to perform
such modeling using UML, a popular language for
program modeling. We added some additional elements to
the standard UML to support the Interaction Analyzer’s
needs, such as definitions of protocol events and relation
definitions. We modified a popular graphical UML tool,
ArgoUML [8], to create a tool called Argo-Analyzer that
helps developers build their protocol definition.

The details of Argo-Analyzer are extensive. Briefly,
developers use this tool to specify an application’s objects,
the relationships between them, the context, and the kinds
of events that can occur in a run of the application.

139Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The application is organized into objects. Object types
are defined using Argo-Analyzer. For source code written
in OOP languages (such as Java), the classes correspond to
the object types. These object definitions are used to
organize the protocol definition and describe interactions
between different application elements.

Relationship definitions describe relationships between
objects. Argo-Analyzer supports popular relationships such
as parent-child, as well as other user-defined relationships.

Event templates define the properties of an instance of
an important event in the application. There must be an
event template for each type of event in the application.
The Interaction Analyzer will use these templates to match
an execution event with an event in the protocol definition.

The developer uses these and a few other UML-based
elements to specify the protocol definition, which describes
how he expects his application to work. This definition is,
in essence, a directed graph describing causal chains of
events that are expected to occur in the application.

Serious effort is required to create the protocol
definition, but it is a part of the overall modeling effort that
well-designed programs should go through. As with any
modeling effort, the model might not match the actual
instantiation of the application. In such cases, an execution
history will not match the protocol definition, requiring the
developer to correct one or the other. In practice, we found
that it was not difficult to build protocol definitions for
applications like the Smart Party, and did not run into
serious problems with incorrect protocol definitions.
Mismatches between definitions and executions were
generally signs of implementation bugs.

D. Creating the Execution History
There is one protocol definition for any application, but

each execution of that application creates its own execution
history. The Interaction Analyzer helps direct users to
bugs by comparing the execution history for the actual run
to the expected execution.

The execution history is gathered by instrumenting the
application. We provide a library to help with this process.
This general-purpose Java library provides an interface to
generate different kinds of events and their important
attributes and parameters. An application generates an
entry in its execution history by calling a method in this
library. Doing so logs the entry into a trace file on the local
machine. Applications can also define their own kinds of
events, which the library can also log.

A typical analyzer record contains several fields,
including a unique ID for the event being recorded, a
developer-defined ID, information on the producer and
consumer of the event (such as the sender and receiver of a
message for a message-send event), timestamps, and
various parameters specific to the particular kind of event
being recorded. Most of the parameters are defined by the
application developers, who can also add more parameters
if the standard set does not meet their needs.

Adding the code required to record an analyzer event
costs about the same amount of effort as adding a printf
statement to a C program.

Panoply applications run on virtual machines, one or
more on each participating physical machine. Each virtual
machine can run multiple threads, and each thread can
generate and log execution events to a local repository
using the Event Analyzer’s Execution History Generator
component. When a run is halted, the Log Provider
component on each participating physical machine gathers
the portion of the execution history from its local virtual
machines and sends it to a single Log Collector process
running on a centralized machine. When all logs from all
machines have been collected, the Log Collector collates
them into a single execution history.

E. Using the Interaction Analyzer
After developers have created the protocol definition,

instrumented their code to build the execution history, and
run the instrumented application, they may observe bugs or
unexpected behaviors during testing. This is when the
Interaction Analyzer becomes useful. Upon observing
behavior of this kind, the developer can halt the
application, gather the execution logs (with the help of the
Log Collector), and then feed them into the Interaction
Analyzer. This graphical tool will then allow the
developers to obtain answers to a number of useful
debugging questions, including:

1. Why did an event E not occur?
2. Why did an incorrect event E occur?
3. What are the differences in behavior between

objects of the same type?
4. Why did an interaction take a long time?

Each of these types of questions requires somewhat
different support from the Interaction Analyzer. We will
concentrate on how it addresses questions of Type 1 and 2.

1) Type 1 Questions
Type 1 questions are about why something did not

happen when it should have. For example, in the Smart
Party, if a user is standing in one of the rooms of the party
and no music is playing there at all, developers want to
know “why is no music playing in that room?” There are
several possible reasons for this bug. Perhaps the user is
not recognized as being in that room. Perhaps the user’s
device failed to receive a request to provide his music
preferences. Perhaps the room was unable to download a
copy of the chosen song from wherever it was stored.

The Interaction Analyzer handles Type 1 questions by
comparing the protocol definition and the execution history
to generate possible explanations for the missing event.
The protocol definition describes event sequences that
could cause an instance of that event. The execution
history shows the set of events that actually happened, and
usually contains partial sequences of events matching the
sequences derived from the protocol history. The
Interaction Analyzer determines which missing event or
events could have led to the execution of the event that
should have happened. These sequences are presented to
the developer, ordered by a heuristic. The heuristic
currently used for presenting possible descriptions of
missing events is, following Occam’s Razor, to suggest the
shortest sequence of missing events first. The developer

140Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

examines the proposed sequence to determine if it explains
the missing event. If not, the Interaction Analyzer suggests
the next shortest sequence.

As a simplified example, say that music is not playing
in a room in the Smart Party when guests are present there.
The missing event is thus “play music in this room.” The
Interaction Analyzer will compare the sequence of events
in the actual execution where music did not play to the
protocol definition. It might come up with several
hypotheses for why music did not play. For example,
perhaps the guest who had selected a song failed to send it
to the player. Or the module that gathers suggestions might
have failed to ask any present guests for recommendations.
Or the guests might not have been properly recognized as
being in that room at all. The first of these three
explanations requires the fewest “missing events” to serve
as an explanation, so it would be investigated first.

The actual methods used by the Interaction Analyzer
are more complex [9], since links in the protocol definition
and execution history can have AND and OR relationships.
Also, the Interaction Analyzer makes use of contextual
information defined in the protocol definition and recorded
in the execution history. For example, if a Smart Party
supports music played in several different rooms, a
question about why music did not play in the living room
will not be matched by events that occurred in the kitchen.

2) Type 2 Questions
Type 2 questions are about why an incorrect event

occurred. In the Smart Party context, such questions might
be “why was Bill localized in the dining room instead of
the family room” or “why did music play in the entry hall
when no one was there?” Type 2 questions are thus about
events that appear in the execution history, but are seen by
the developer to either not belong in the history, or to have
some incorrect elements about their execution.

The Interaction Analyzer works on the assumption that
errors do not arise from nowhere. At some point, an event
in the application went awry, due to hardware or software
failures. The Interaction Analyzer further assumes that
incorrectness spreads along causal chains, so the events
caused by an incorrect event are likely to be incorrect
themselves. If a developer determines some event to be
incorrect, either that event itself created the error or one of
the events causing it was also erroneous. Working back, a
primal incorrect event caused a chain of incorrect events
that ultimately caused the observed incorrect event. The
developer must find that primal cause and fix the bug there.

Given these assumptions, the job of the Interaction
Analyzer in assisting with Type 2 questions is to guide the
developer to the primal source of error as quickly as
possible. A standard way in which people debug problems
in code is to work backwards from the place where the
error is observed, line by line, routine by routine, event by
event, until the primal error is found. However, this
approach often requires the developer to check the
correctness of many events. In situations where the
execution of the program is distributed and complex (as it
frequently is for ubiquitous applications), this technique

may require the developer to analyze a very large number
of events before he finds the actual cause of the error.

Is there a better alternative? If one has the resources
that the Interaction Analyzer has, there is. The Interaction
Analyzer has a complete trace of all events that occurred in
the application, augmented by various parameter and
contextual information. Thus, the Interaction Analyzer can
quickly prune the execution history graph of all events that
did not cause the observed erroneous event, directly or
indirectly, leaving it with a graph of every event in the
execution history that could possibly have contained the
primal error. The question for the Interaction Analyzer is
now: in what order should these events be analyzed so that
the developer can most efficiently find that primal error?

Absent information about which events are more likely
than others to have run erroneously, any event in this
pruned graph is equally likely to be the source of the error.
Assume this graph contains N events. The final event
where the error was observed is not necessarily any more
likely to be the true source of the error than any other, and,
if the developer examines that event first and it was not the
source of the error, only one of N possibly erroneous
events has been eliminated from the graph. What if,
instead, the Interaction Analyzer directs the developer to
analyze some other event E chosen from the middle of the
graph? If that event proves correct, then all events that
caused it can be eliminated as the source of the primal
error. Event E was correct, so the observed error could not
have “flowed through” event E; thus the source of our error
is not upstream of E. It must be either downstream or in
some entirely different branch of the graph. If event E is
erroneous, and E is one of the initial events of the
application (one with no predecessor events in the graph),
that E is identified as the root cause. If E is not one of the
initial nodes, then it is on the path that led to the error, but
is not necessarily the original cause of the error. We now
repeat the algorithm, but with event E as the root of the
graph, not the event that the developer originally observed,
and we continue this process until we find the root cause.

With a little thought, one realizes that the ideal choice
of the first event to suggest to the developer would be an
event which, if it proves correct, eliminates half of the
remaining graph from consideration. If no such event can
be found, due to the shape of the graph, then choosing the
event whose analysis will eliminate as close to half the
graph as possible is the right choice.

This is the heuristic that the Interaction Analyzer uses.
It prunes irrelevant events from the execution history graph
and finds the event node in that graph whose elimination
would most nearly divide the remaining graph in half. It
then directs the developer to investigate that event. If the
event proves correct, half the graph is eliminated, and the
Interaction Analyzer then chooses another event using the
same heuristic. If the event that the developer examines is
erroneous, the Interaction Analyzer prunes the graph to use
this erroneous event as the new root, and finds an event in
the new graph to examine. Eventually, the highest
erroneous event in the graph is identified as the root cause.

141Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

At each step, the developer manually investigates one
event and tells the Interaction Analyzer whether that event
is correct. But by using this technique, the developer need
not work his way entirely up the whole execution history
graph until he finds the problem. In general, the
Interaction Analyzer allows the developer to perform the
debugging with few human analysis steps. (In four real
cases, using the Analyzer required 4-12 events to be
examined, out of 200-21,000 total events, depending on the
case.) As long as the Interaction Analyzer’s automated
activities (building the graph, analyzing it to find the next
event to recommend, etc.) are significantly cheaper than a
human analysis step, this process is much faster and
cheaper than a more conventional debugging approach.

IV. USING THE INTERACTION ANALYZER
Here we present simulation results indicating how well

the Interaction Analyzer would perform when working
with execution graphs of different sizes. We also present
case studies involving the actual use of the Interaction
Analyzer in finding bugs in the Smart Party application,
and data on the performance overheads of the system.

A. Simulation Results
To determine how the Interaction Analyzer would

perform when handling large execution graphs, we
generated artificial execution graphs of varying sizes and
properties (such as the branching factors in the graph).
Erroneous events and their root causes were generated
randomly. The results are too extensive to report here (see
[9] for full results), but one graph will give an enlightening
picture of the actual benefits of using this tool, and the
value of the algorithms it uses to find events for developers
to examine.

When looking for a Type 2 error (“why did this
incorrect event occur?”), one could examine the graph of
all events that directly or indirectly caused the erroneous
event and randomly choose one to examine. Unless some
nodes are more likely to be erroneous than others,
randomly selecting one of the nodes to examine is no more
or no less likely to pinpoint the root case than walking back
step-by-step from the observed error, which is a traditional
debugging approach. For reasons not important to this
discussion, we have termed the algorithm that randomly
selects a node from the graph “Terminal-Walk.”

The algorithm that the Interaction Analyzer actually
uses (see Section III.E.2) analyzes the portion of the
execution graph associated with the erroneous event and
directs the developer to an event whose correctness status
will essentially eliminate half the nodes in this graph. We
term this approach the “Half-Walk” algorithm.

Figure 1 shows the performance of these algorithms for
event graphs of different sizes. The x-axis parameter refers
to the number of nodes in the causal graph rooted at the
observed erroneous event, any one of which could be the
root cause of the observed error. The x-axis is a log scale.
The “Validation Cost” is in number of events, on average,
that the developer will need to examine by hand to find the
error. The graphs analyzed here have uniform branching

factors and a uniform probability that any event in the
graph rooted at the observed erroneous event (including
that event itself) is the root cause of the error.

Figure 1. Terminal-Walk vs. Half-Walk Algorithm

The Terminal-Walk algorithm becomes expensive as
the number of potential causes of the observed error
grows. Each validation represents a human developer
examining code and state information for an event in the
system, which is likely to take at least a few minutes. The
Half-Walk algorithm, on the other hand, is well behaved,
displaying log2 behavior.

In some situations, the probability of failure in each
event is known. For example, the system may consist of
sensors with a known rate of reporting false information.
Even if event failure probabilities are not perfectly known,
an experienced developer’s may have a sense of which
events are likeliest to be the root cause of errors. If the
developer has perfect knowledge of this kind, he will be
able to instantly assign a probability of being erroneous to
all events in the system. He might use an algorithm that
first examines the event with the highest probability of
being correct. If that event is indeed correct, he could
eliminate from further consideration all events that caused
that event. He could then move down the list of
probabilities as candidates are eliminated. We term this
algorithm the Highest-Walk algorithm.

Figure 2. Highest-Walk Algorithm vs. Half-Walk Algorithm

Figure 2 shows the relative performance for the
Highest-Walk algorithm vs. the Half-Walk algorithm

142Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

(which the Interaction Analyzer actually uses) for graphs
and root causes of the same kind shown in Figure 1.
Highest-Walk is, unlike Terminal-Walk, competitive with
Half-Walk, but Half-Walk is clearly better. For 200,000
events in an execution graph, Half-Walk will require the
developer to examine less than half as many events as
Highest-Walk would. The probability of being incorrect is
propagated down the event path, and thus the event with
highest probability of being incorrect is normally very far
from the root cause. Thus, the Highest-Walk does not
perform as well as Half-Walk.

B. Case Studies Using the Interaction Analyzer
Simulation studies are helpful in understanding the

Interaction Analyzer’s behavior in many different
circumstances, but ultimately the point of a debugging tool
is to prove helpful in debugging real problems. In this
section we describe how the Interaction Analyzer helped us
find real bugs in a real application, the Smart Party
application we introduced in Section II. This application
was not written to help us investigate the behavior of the
Interaction Analyzer. On the contrary, the Interaction
Analyzer was built to help us debug problems with the
Smart Party and other Panoply applications.

1) Music Playing in the Wrong Room
This bug occurred in the Smart Party when a party was

run with three rooms and one user. Music played in a
room where no user was present. Before availability of
the Interaction Analyzer, the developers of the Smart Party
had used traditional methods to find the root cause of this
problem, which proved to be that the module that
determined a user’s location had put him in the wrong
room. We did not keep records of how long the
debugging process took before the Interaction Analyzer
was available, but it was far from instant.

This was a Type 2 error, an event occurring
incorrectly. As mentioned in Section III, the Interaction
Analyzer uses contextual information when available to
guide the process of finding root causes. We investigated
this bug both with and without contextual information.
Without contextual information, the Analyzer had to
suggest six events (out of a possible 8000 in the execution
history) to pinpoint the problem. With contextual
information (the developer indicating which room he was
concerned about, which was not difficult to obtain), the
Interaction Analyzer found the problem in one step.

2) No Music Playing
This bug occurred in some, but not all, runs of the

Smart Party. A user would join the Smart Party, but no
music would play anywhere. Since this bug was non-
deterministic, it was extremely hard to find using standard
methods. In fact, the Smart Party developers were unable
to find the bug that way.

Once the Interaction Analyzer was available, it found
the bug the first time it occurred. This was a Type 1 error,
an event that did not occur when it should have. The
Interaction Analyzer found the root cause by comparing

the protocol definition to the execution history and noting
a discrepancy. The Interaction Analyzer made use here of
its ability to deal with events at multiple hierarchical
levels. At the high level, it noted that music did not play
and that the high-level protocol definition said it should.
The Analyzer determined that the failure was due to not
responding to a request by the user for a localization map.
To further determine why that request wasn’t honored, the
Analyzer suggested to the developer that he dive down to
a lower protocol level, and, eventually, to an even lower
level. The bug ultimately proved to be in the code related
to how Panoply routed messages.

The Interaction Analyzer found this bug in three
queries, a process that took less than five minutes,
including the time required by the developers to examine
the code the Analyzer recommended they look at. The
developers had been unable to find this bug without the
Analyzer over the course of several weeks.

TABLE 1. INTERACTION ANALYZER COSTS
Operation Example Cost Average Cost
Import Exec Hist. 3.5 seconds .35 msec/event
Preprocessing .3 seconds .03 msec/event
Load Prot. Def. 7 seconds .82 msec/element
Matching 12.2 seconds 1.18 msec/event
Total Time 23.0 seconds 2.48 msec/event

3) Interaction Analyzer Overheads
Table 1 shows some of the overheads associated with

using the Interaction Analyzer. The Example Cost column
shows the actual total elapsed times for handling all events
in a sample 11,000 event execution history. The Average
Cost column shows the normalized costs averaged over 20
real execution histories. These costs are paid every time a
developer runs the Interaction Analyzer, and essentially
represent a startup cost. For an 11,000 event run, then, the
developer needs to wait a bit less than half a minute before
his investigations can start.

Figure 3. Time to Pick Validation Node

The other major overhead is the cost for the Interaction
Analyzer to respond to a user query. For queries of Types
1, 3, and 4, this cost is less than a second. For queries of

143Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Type 2, it depends on the size of the portion of the
execution history that is rooted at the event the developer
needs to investigate, not the size of the entire history. Any
event that exerted a causal influence on the event under
investigation must be considered. Figure 3 shows the time
required to choose an event for the developer to evaluate
for causal graphs of different sizes. If there are 100,000
events in the causal graph of the investigated event, it
takes around 17 seconds to recommend one to the
developer. This graph is log scale on the x-axis, so the
time is roughly linear as the number of events grows. The
Interaction Analyzer chooses an event for validation such
that its examination will eliminate around half of the
graph, so if the event in question is not the root cause, the
second recommendation will be made on a graph of half
the size of the original, and thus half the cost.

V. RELATED WORK
Several systems have supported debugging problems in

complex distributed systems. The most closely related are
those that build execution graphs based on data gathered
during a run. RAPIDE [10] was an early system that used
this approach, which was extended to build an execution
architecture that captured causal relationships between
runtime components [11]. The developers must manually
examine the graph to identify the causes.

The Event Recognizer [12] matches actual system
behavior from event stream instances to user-defined
behavior models to assist in debugging. The goal is to find
the mismatch and present it to the developers. Poutakidis
et al. [13] uses interaction protocol specifications and Petri
nets to detect interactions that do not follow the protocol.

Other approaches use non-graph-based methods to find
root causes. Yemini and Kliger [14] treat a set of bad
events as a code defining the problem, and uses decoding
methods to match it to known problems. Piao [15] uses
Bayesian network techniques to determine root causes of
errors in ubiquitous systems. Ramanathan [16] and
Urteaga [17] proposed systems for finding root causes of
errors in sensor networks based on examining various
metrics in those networks.

VI. CONCLUSIONS
Ubiquitous systems are complex, consisting of many

different components. Their dynamic nature makes it hard
to develop and debug them. Bugs often become evident
long after and far away from their actual cause. The
Interaction Analyzer provides quick, precise determination
of root causes of bugs in such systems. While developed
for Panoply, it can be adapted for many ubiquitous
computing environments. The Interaction Analyzer has
been demonstrated to have good performance by
simulation, and has been used to find actual bugs in real
ubiquitous computing environments, including cases
where more traditional debugging methods failed.

ACKNOWLEDGMENT
This work was supported in part by the U.S. National

Science Foundation under Grant CNS 0427748.

REFERENCES
[1] W. Edwards and R. Grinter, “At Home With Ubiquitous

Computing: Seven Challenges,” LNCS, Vol. 2201/2001,
2001, pp. 256-272.

[2] J. Bruneau, W. Jouve, and C. Counsel,”DiaSim: A
Parameterized Simulator for Pervasive Computing
Applications,” Mobiquitous 2009, pp. 1-3.

[3] T. Hansen, J. Bardram, and M. Soegaard, “Moving Out of
the Lab: Deploying Pervasive Technologies in a Hospital,”
Pervasive Computing, Vol. 45, Issue 3, July-Sept. 2006, pp.
24-31.

[4] K. Eustice, Panoply: Active Middleware for Managing
Ubiquitous Computing Interactions, Ph.D. dissertation,
UCLA Computer Science Department, 2008.

[5] K. Eustice, V. Ramakrishna, N. Nguyen, and P. Reiher,
The Smart Party: A Personalized Location-Aware
Multimedia Experience, Consumer Communications and
Networking Conference, January 2008, pp. 873-877.

[6] P. Bates, “Debugging Heterogeneous Distributed Systems
Using Event-Based Models of Behavior,” ACM TOCS,
Vol. 13, No. 1, February 1995, pp. 1-31.

[7] The Object Management Group, http://www.omg.org, Sept.
2011.

[8] ArgoUML, the UML Modeling Tool.
http://argouml.tigris.org, Sept. 2011.

[9] N. Nguyen, Interaction Analyzer: A Framework to Analyze
Ubiquitous Systems, Ph.D. dissertation, UCLA Computer
Science Department, 2009.

[10] D. Luckman and J. Vera, “An Event-Based Architecture
Definition Language,” IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 2005, pp. 717-734.

[11] J. Vera, L. Perrochon, and D. Luckham, “Event Based
Execution Architectures for Dynamic Software Systems,”
IFIP Conference on Software Architecture, 1999, pp. 303-
308

[12] P. Bates, “Debugging Heterogeneous Distibuted Systems
Using Event-Based Models of Behaviors, ACM
Transactions on Computer Systems, Vol. 13, No. 1,
February 1995, pp. 1-31.

[13] D. Poutakidis, L. Padgham, and M. Winikoff, “Debugging
Multi-Agent Systems Using Design Artifacts: The Case of
Interaction Protocols, 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, 2002, pp.
960-967.

[14] A. Yemini and S. Kliger, “High Speed and Robust Event
Correlation,” IEEE Communications Magazine, Vol. 34,
No. 5, May 1996, pp. 82-90.

[15] S. Piao, J. Park, and E. Lee, “Root Cause Analysis and
Proactive Problem Prediction for Self-Healing,” Int’l
Conference on Convergence Information Technology, 2007,
pp. 2085-2090.

[16] N. Ramanathan, et al., “Sympathy for the Sensor Network
Debugger,” Int’l Conference on Embedded Networked
Sensor Systems, 2005, pp. 255-267.

[17] I. Urteaga, K. Barnhart, and Q. Han, “REDFLAG: A
Runtime, Distributed, Flexible, Lightweight, and Generic
Fault Detection Service for Data Driven Wireless Sensor
Applications, Percom 2009, pp. 432-446.

144Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

