
Performance Evaluation of Distributed Applications
via Kahn Process Networks and ABSOLUT

Suabyal Khan, Jukka Saastamoinen, Jyrki Huusko
VTT Technical research Center of Finland,

FI-90570, Oulu, Finland
e-mail:{subayal.khan,jukka.saastamoinen,

jyrki.huusko }@vtt.fi

Jari Nurmi
Tampere University of Technology,
Department of Computer Systems

 P.O. Box 553, Korkeakoulunkatu 1,
FIN-33101 Tampere, FINLAND

jari.nurmi@tut.fi

Abstract—The modern mobile devices support diverse
distributed applications. The rapid deployment of these
applications demands brisk system-level performance
evaluation. Abstract workload based performance simulation
(ABSOLUT) has been successfully employed to evaluate the
performance of non-distributed applications. The main
advantages of ABSOLUT include the use of standard tools and
languages for example SystemC and UML2.0. To extend
ABSOLUT for the system-level performance simulation of
distributed applications, application workload models executed
in one device must trigger the execution of corresponding
workload models in another device. The main contribution of
this article is the application of Kahn Process networks (KPN)
model of computation (MOC) to extend ABSOLUT for the
system-level performance simulation of distributed
applications. The approach is experimented with a case study
which employs GENESYS application architecture modelling.
The GENESYS adopts a service-oriented and component-
based design for distributed applications. The approach is not
limited to GENESYS and can be used for performance
evaluation of distributed applications designed via other
application design approaches. The UML2.0 MARTE profile,
PapyrusUML2.0 modelling tool and SystemC were used for
modelling and simulation.

Keywords-ABSOLUT; Kahn Process Networks; GENESYS;
distributed applications

I. INTRODUCTION
The modern mobile handheld multimedia devices

support diverse distributed applications [1]. These
applications are often computationally intense and are
supported by heterogeneous multiprocessor platforms. The
challenges in the deployment of such applications are
twofold, i.e., the heterogeneous parallelism in platforms,
and the performance constraints.

The abstract workload based performance simulation
(ABSOLUT) approach has been extensively applied for the
performance simulation of non-distributed applications
where all the processes of an application are running on the
same platform and communicate via an inter-process
communication (IPC) mechanism.

So far, ABSOLUT [2] has not been used to evaluate the
performance of distributed applications, where the use-cases
span over the multiple devices operating in a ubiquitous
environment. In the performance models of such use-cases,
the application workload models are mapped to the platform

models of the interacting devices. The execution of these
workload models must be synchronized to mimic the
modelled real world use-case.

A Model of Computation (MOC) is a general way of
describing the behaviour of a system in an abstract and
conceptual form, enabling the representation of system
requirements and constraints at a higher level. In general,
the MOC is described in a formal manner via mathematical
functions or set-theoretical notations or a combination of
them. Kahn Process Network (KPN) MOC is a process
based MOC [3]. The following properties make KPN a
suitable MOC for the performance modelling of distributed
applications [4].

 The processes in KPN MOC execute in parallel and
independent of each other. Likewise, in case of
distributed applications, the processes hosted by
different devices communicate via transport
technologies, execute in parallel and are independent
of each other.

 Moreover, KPNs are determinate, i.e. irrespective of
the employed scheduling policy, for a given input
set, the same results will be obtained. This feature of
KPN MOC gives a lot of scheduling freedom that
can be exploited while mapping process networks
over various platforms in the design space
exploration process.

 Another desirable feature of KPN MOC is that the
control is completely distributed over individual
processes and no global scheduler is required. As a
result, distributing KPN for execution on a number
of processes is simple.

 The exchange of data is via FIFO buffers, i.e. there is
no global memory that has to be accessed by
multiple processes. In this way, the resource
contention is greatly reduced if the systems with
distributed memory are considered.

 The synchronization mechanism is implemented via
blocking read mechanism on the FIFO channels. It is
quite simple and can be efficiently realized in both
hardware and software.

The main contribution of this paper is the instantiation of
KPN MOC [5] on top of ABSOLUT performance models to
extend it for the system-level performance simulation of
distributed applications. The approach is experimented with
a case study which elaborates the system-level performance

128Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

evaluation of distributed GENESYS [5] applications. The
approach is also applicable to other distributed applications.

The rest of the paper is organized as follows: Section 2
gives an overview of landmark system level performance
simulation techniques and describes the ABSOLUT
performance simulation approach briefly. Section 3 provides
an overview of GENESYS application architecture
modelling. Section 4 explains ABSOLUT performance
simulation approach. Section 5 lists the properties of KPN
MOC which must be fulfilled for its correct instantiation
over ABSOLUT performance models. Section 6 elaborates
the main contribution of the article by describing the
instantiation of KPN MOC over ABSOLUT for the
performance simulation of distributed applications. This
section clearly illustrates the way KPN MOC properties
mentioned in Section 5 are fulfilled by the modelled
components. Section 7 identifies the layers of distributed
GENESYS applications and mentions the ABSOLUT
application workload model layers corresponding to each
layer of the GENESYS application model layer. This
section also identifies the ABSOLUT workload models that
correspond to processing nodes in KPN MOC. In Section 8,
the approach is experimented via a case study. Conclusions
and future work is elaborated in Section 9.

II. RELATED WORK
Performance modelling has been approached in different

ways. SPADE [7] treats applications and architectures
separately via a trace-driven simulation approach. Artemis
[8] extends SPADE by involving virtual processors and
bounded buffers. The TAPES [9] abstracts functionalities by
processing latencies which cover the interaction of
associated sub-functions on the architecture without actually
running application code. ABSOLUT is a system-level
performance simulation approach for embedded systems
and employs abstract primitive instructions based workload
models and cycle-approximate platform component models.

To extend ABSOLUT for the performance evaluation of
distributed applications, the performance model must mimic
the execution of the use-case. In case of distributed
applications, after some processing in one device; a message
is sent to another process hosted by another device (usually
called a service request) called a server. After processing the
request, the server possibly sends a reply back to the
requester (usually called the client). In case of GENESYS
and other distributed application architectures, this message
passing between processes (hosted by different devices)
involves Transport, Data link and Physical layers of the OSI
model. Therefore the performance models must use either
abstract model of these layers to reduce the modelling effort
and increase the simulation scheme or employ some other
models of communication between these processes.

The instantiation of Kahn Process Network (KPN)
Model of Computation (MOC) over ABSOLUT abstracts
out the OSI model layers (Transport, Data link and Physical
layers) and the processing nodes (Process workload models

in ABSOLUT) pass tokens (mimicking passed messages) to
one another via FIFO channels. This enhances the
simulation speed and also reduces the modelling effort.

III. GENESYS APPLICATION MODELLING
In GENESYS, compliance of architectural views and

concepts across application domains forms basis of the
cross-domain architectural style [10]. GENESYS reference
architecture template provides core and optional services to
application components. The core services are fundamental
to any architecture. The optional services, built on top of the
core services, can be used in applications across multiple
domains.

The modelling process starts by describing a set of views
defined in GENESYS that are sufficient for the modelling
objective. GENESYS use-case view describes the
functionality of a system at a higher abstraction level by
means of use-cases. The structural view defines the interface
between an application and the sub-systems of the execution
platform. This interface describes the core and optional
services which the different sub-systems of the underlying
platform offer to an application. The syntactical view
describes the syntax the servers understand in order to
access their services. Sub-systems together with their
interfaces (set of services) are conceived as servers that
admit different messages from the application (client). The
behavioural view reflects the behavioural aspects of an
application and its encompassing services.

IV. PERFORMANCE SIMULATION APPROACH
The ABSOLUT performance evaluation approach

follows the Y-chart model [11], consisting of application
workloads and platform model [2]. After mapping the
workloads to the platform, the models are combined for
transaction-level performance simulation in SystemC. Based
on the simulation results, we can analyse e.g. processor
utilization, memory traffic and execution time. The
approach enables early performance evaluation, exhibits
light modelling effort, allows fast exploration iteration and
reuses application and platform models [2] .

A. Application Workload Model
The application workload model has a layered

architecture as explained in [2]. The hierarchical structure of
the application workload model is shown in Figure 1.

Figure 1: Hierarchical structure of application workload model.

129Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

B. Platform Model
The platform model is an abstract hierarchical

representation of actual platform architecture. It is
composed of three layers: component layer, sub-system
layer, and platform architecture layer as shown in Figure 9.
Each layer has its own services, which are abstract views of
the architecture models. Services in sub-system and
platform architecture layers are invoked by application
workload models [2].

Figure 2: Platform model layers.

V. PROPERTIES OF KPN MOC
KPN [2] consists of nodes that represent processes and

the communication channels (unbounded FIFO channels)
between these processes. In order to model parallel
computation, autonomous computing nodes are connected to
each other in a network by communication lines. A given
node performs computation on the received data via the
input lines using some memory of its own, to produce
output on some or all of its input lines. A communication
line transmits information within an unpredictable and finite
time. At any time a node either computes or waits for
information on one of its input lines.

KPN MOC has been used for synchronization among
ABSOLUT process workload models running on different
platform models (devices in real use-case). In the real use-
cases the software components of a distributed application
running on different devices pass messages to each other via
transport API functions over wired or wireless channels. In
the ABSOLUT performance model, this is abstracted by
token passing among process workload models over
unbounded FIFO channels.

The KPN MOC has a set of properties which must be
implemented to ensure the correct instantiation of KPN
MOC over ABSOLUT performance models. These
properties are listed below.

a. Read/Write Operations to channels: The
deterministic behavior of KPNs is mainly caused
by blocking reads and writes to the FIFO channel
instances.

b. FIFO channel read/write operations: A process
cannot wait for reading/writing of two different
FIFO channel instances at the same time.

c. Channel Access: If processes can access different
FIFO channels and more than one process can run

on the same ABSOLUT platform model, then it
must be guaranteed that the platform model only
allows one process to access a single FIFO channel
instance for read/write operation at the same time.
This is important since the access to FIFO channels
is provided as a service by the ABSOLUT platform
(Operating System (OS) model) to the hosted
process workload models and more than one
process are allowed to access the same platform
service.

d. Process code behavior: The process code must be
blocked of computing while accessing a FIFO
channel instance.

e. FIFO channels: FIFO channels cannot be active. In
SystemC MOC, it means that the FIFO channel
models cannot contain sc_threads or sc_methods.

f. Definition of a KPN processes in ABSOLUT
context: The processes of the KPN network
formally correspond to software processes.
Therefore either the same convention should be
followed or the ABSOLUT workload models
corresponding to KPN processes must be
identified.

The requirements a, b, c and d are fulfilled by
implementing a general mechanism which allows only one
process to access an operating system (OS) service at a time
and also blocks the execution of the requesting process until
the service request is completely processed. This
mechanism is modeled as an OS_Service base class. The
Channel Access services, i.e., token transmission and
reception are then derived from that base class. These
models are explained in Section 6. This section also
elaborate the modeling of KPN FIFO channels and the way
KPN FIFO channels are accessed, i.e., for read() and write()
operations for passing synchronization tokens. Section 7
describes the relationship between ABSOLUT workload
models and the KPN processes. Therefore, section 6 and
section 7 clearly illustrate the way requirements a,b,c,d,e
and f were satisfied by the modeled components.

VI. INSTANTIATING KPN MOC OVER ABSOLUT
To fulfil the requirements of KPN MOC stated in

previous section, the blocking read/write access to FIFO
channels, FIFO channels and related services must be
implemented and integrated to ABSOLUT.

A. Implementing Operating System Services
Instantiating KPN MOC over ABSOLUT demands a

mechanism for instantiating new platform services
(hardware “HW” and software “SW” platform services).
This mechanism is implemented as an OS_Service base
class which ensures blocking behaviour and scheduling of
the service requests such that only one request is processed
at any time for a particular service. The derived services
merely implement the functionality making the process of
modelling new services straight forward. In this way the

130Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

required services are easily implemented by deriving them
from the OS_Service base class as shown in Figure 3.

Figure 3: OS_Service base class implementation

The OS_Service class implements the functionality
related to scheduling the requests of processes via request
queues and informs the requesting process on service
completion after taking it to running state again. At one time
only one service request is processed. After the processing
of a service is completed, the requesting process is informed
and then the next request is taken from the front of the
request queue for processing. The requesting process is
blocked (remains in the sleeping queue of the OS model)
until the execution of the request is completed.

 More than one processes running on a single platform
can request the same service at the same time (in SystemC it
means in the same sequence of delta cycles) and are placed
in the service request queue of that service. The
implementation of the service processing ensures that only
one service is processed at a time and when the processing
is completed; the next request is fetched for service
processing. This is shown in Figure 4.

The three KPN processes (ABSOLUT process-level
workload models) running on the same platform (scheduled
by the same OS model) and access the platform services via
blocking interface are also show in Figure 4. Only one
request for a particular service is processed at any time and
a process cannot request more than one service at the same
time since its execution is blocked until the current request
is processed which resulted in blocking its execution.

Three GENESYS Server workload models
Hosted on a platform accessing an OS service.

Serv_1
Start Processing
End Processing

Serv_N
Start Processing
End Processing

Serv_1
queue

Serv_2
queue

Serv_N
queue

Serv_(N-1)
queue

GENESYS Server
Workload Model

SID=Use_Service(”Serv_Name”,Serv_Attributes)Wait_Service(SID)

GENESYS Server
Workload Model

GENESYS Server
Workload Model

Operating
System
Model

Figure 4: Diagram showing the mechanism employed by OS services

to execute requests of processes.

The write access to KPN FIFO channels is implemented
as a derived class of OS_Service class and is called
“Token_Transmit_Service”. This service is registered to the
operating system model by the unique service name
“TokenTxServ”. The Token Passing service is accessed by
the Process Workload models by using its unique service
name “TokenTxServ” as shown in Figure 5. The blocking
nature of this service (blocks the execution of the requesting
process) and the scheduling of service requests via queues
ensures that the properties a, b, c and d of the KPN MOC
mentioned in Section V are satisfied. The read access to
KPN FIFO channels is implemented as a class called
“Token_Receive_Service” and is implemented similarly.
All the OS_Services are registered to the OS and used via
the same interface inside ABSOLUT process workload
models. This implementation guarantees that two or more
processes cannot access a single FIFO channel instance at
the same time. It also guarantees that one process cannot
read and write simultaneously at the same time since the
execution of the process is blocked until the request is
processed.

The read access to the FIFO channels is also
implemented in the same way and is a derived class of the
OS_Service base class to ensure that the aforementioned
properties (a,b,c and d) of the KPN MOC are fulfilled.

 Figure 5: Using Token_Transmit_Service by an ABSOLUT process
workload model

B. KPN FIFO Channels and Token Modelling
In KPN MOC, the processes communicate via FIFOs

channels [2]. If a FIFO channel instance is not empty, the
reading is non-blocking. If a FIFO channel instance is
empty, the reading process will block.

The standard SystemC ‘sc_fifo’ channel provides these
functionalities [4] and we can use them without any
modification. The ‘sc_fifo’ channel has no sc_threads and
no sc_methods and hence is not an active channel since
activity in SystemC is only modelled via sc_threads and
sc_methods.This fulfils the requirement e Mentioned in
Section 5.

C. Token Passing and Reception
As shown in Figure 5, while requesting an OS_Service,

the requesting process must provide the required service
attributes. Therefore for accessing the
“Token_Transmit_Service” and “Token_Receive_Service”
services, the requesting processes must provide the required
service attributes. The attributes for both these services are
modelled as a “KPN_Token_RW_Attributes” class which is
derived from “Serv_Attributes” base class.

131Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

 The “KPN_Token_RW_Attributes” class contains a
reference to the FIFO channel to which a KPN MOC Token
has to be written or read from. Any two ABSOLUT process
workload model communicating with each other (running
on different devices “platform models”) contain a references
to the same FIFO channel instance. One of them can only
perform read operations on the FIFO channel instance while
the other can only perform write operations.

The Tokens do not represent any data of the real use-
case since ABSOLUT employs non-functional application
workload models. Therefore tokens are modelled as integer
C++ data type, i.e., int. The ‘KPN_FIFO_Ch’ class is
derived from ‘sc_fifo’ primitive channel ‘class’ and does
not contain any additional methods or members. The
KPN_Token_RW_Attributes class is shown in Figure 6.

Figure 6: Attributes class for accessing KPN_Token_Transmit and

KPN_Token_Receive service

The aforementioned modelling of KPN FIFO channels
and service attributes fulfil the requirement e of the KPN
MOC mentioned in Section 5.

VII. A KPN PROCESS IN ABSOLUT CONTEXT
Seamless integration of distributed GENESYS

application design phase to ABSOLUT application
workload modelling phase is conceived as layered
application architecture. After defining the layers in the
application model, the corresponding layers in the
ABSOLUT workload models are identified. In this way, the
application model acts as a blue print for the application
workload layers [12]. This reduces the time and effort in
application workload modelling and speeds up architectural
exploration phase.

In GENESYS [10], a distributed use-case can be viewed
as a controlled collaboration of service providers and
service requesters (both called Servers in GENESYS instead

of clients and servers) [5] running on different devices. For
example, if the use-case involves the collaboration among
“n” GENESYS Servers, we can write

 Ea= { CE ,Serv1,Serv2,….,Servn}, (1)

where CE represents the control mimicking the collaboration
among nodes in order to satisfy the end-user use-case.

In the second layer each GENESYS Server is defined as
a process running on a particular platform , i.e.,

 Serv = { PGENESYS }. (2)

where PGENESYS represents a GENESYS Server running on
a particular platform(called sub-system in GENESYS).

In the third layer each running GENESYS server
(PGENESYS) is represented as a controlled invocation of one
or more function workload models or platform service
requests. If a process consists of “k” processes and “l”
platform service requests, we can write

PGENESYS = {CP,F1, F2,…, Fk, R1, R2, . . . , Rl}, (3)

where CP is control.

The aforementioned GENESYS application model
layers are then compared to the ABSOLUT application
workload model layers as shown in Table 1.

TABLE 1: COMPARING GENESYS APPLICATION ARCHITECTURE LAYERS TO
ABSOLUT WORKLOAD MODEL LAYERS

GENESYS Application
architecture layers

Corresponding ABSOLUT
Workload Model Layers

Ea={CA,Serv1,Serv2,.,Servn} W={CA ,Servwld1, ,….,Servwldn}
Serv = { PGENESYS } Servwld = { PGENESYSwld }
PGENESYS={CP,F1, F2,…,Fk,R1, R2,
. . , Rl}

PGENESYSwld={CP,Fwld1,Fwld2,..
Fwldk,Rwld1, Rwld2,.., Rwldl}

Where Servwld is an ABSOLUT application workload

model, PGENESYSwld is an ABSOLUT process workload
model and Fwld is an ABSOLUT function workload model.
Each ABSOLUT process workload model corresponds to a
KPN process which invokes the ABSOLUT function
workload models and platform services in a deterministic
order.

Each GENESYS Server Application level workload
model instantiates the single process workload model
mimicking the execution of a GENESYS server of a
distributed GENESYS application in the real use-case. Each
process workload model (PGENESYSwld in Table 1)
corresponds to a single KPN processing node in KPN MOC
since the ABSOLUT processes code behaves in the same
way as the rules stated in Section 5 by using the
“Token_Transmit_Service” and “Token_Receive_Service”

132Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

for FIFO channel access. This observation fulfills the
requirement f of the KPN MOC mentioned Section V.

Therefore from KPN MOC viewpoint, each Application
level workload model instantiates a computing node (in
ABSOLUT it means a Process-Level Workload models
which are shown in blue color in Figure 7) of the KPN
MOC. These computing nodes are connected via unbounded
FIFO channels for passing tokens in order to ensure
deterministic behavior as shown in Figure 7. Also one or
more Process workload models can run on the same
platform as in real use-cases as shown in Figure 7. In Figure
7, two nodes are running on the same platform (Platform 2).
Since the access to FIFO channels is blocking and only one
process can read or write to a single FIFO instance at a time
as explained in Section 6, therefore the deterministic
behavior of KPN MOC is guaranteed.

SID=Use_Service(”Serv_Name”);
Wait_Service(SID);

A
BS

O
LU

T
C

O
M

PO
N

EN
T

LIBR
AR

Y
A

BS
O

LU
T A

pplication M
odels

U
sing

P
latform

 S
ervices

Synchronization,
P

acket Transm
ission/

R
eception

S
ystem

C
 M

O
C

KP
N

 M
O

C
A

BS
O

LU
T

FIFO Channels for passing tokens

Platform 1 Platform 2

SID=Use_Service(”Serv_Name”);

Wait_Service(SID);

Processing
Workload

GENESYS
SERVER
Workload

GENESYS
SERVER
Workload

GENESYS
SERVER
Workload

Application level workload model Process level workload model

Processing
Workload

Processing
Workload

Figure 7: KPN Nodes internals and access to KNP FIFO channels for

token passing.

VIII. CASE STUDY
The case study describes the modeling and performance

evaluation of an Office Security (OS) application hosted on
a mobile device owned by a member of security staff. The
application has been previously presented in [7]. The device
hosting the application, communicates with three other
devices to avail different services. The
PersonCounterSubSystem gives the number of occupants in
the office and provides the video of office entrance. The
OfficeVideoSubSystem provides high resolution office
video. The FaceTrackerSubSystem provides the information
about the number of occupants sitting on the bench and
video showing the occupants.

A. Application Model
The OS application uses services provided by Servers

running on different devices. Each Server communicates
with its respective streaming Server. Each device hosting a
Streaming server is fitted with an integrated camera
mounted at an appropriate position in office. The streaming
servers stream video frames to the requesting servers on
demand as shown in application views. It should be noted
that in GENESYS terminology, both the service requester
and provider are termed as Servers instead of client and
server as in case of internet applications.

1) Use-case view

The use-case view shows a system-level capability
SelectTheSecurityService shown in Figure 8 in terms of
device services.

Figure 8: Use-case view.

2) Behavioral View

The Behavioral view shows the behavior of an
application. Application invokes different services as use-
case evolves. This is shown in Figure 9.

Figure 9: Operation of the Office Security Application.

3) Syntactical View

The syntactical view shows messages admitted by the
sub-systems as shown in Figure 10 and Figure 11. The
stereotypes used in syntactical view are described in detail
in [5].

133Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 10: Sub-systems which serve the application directly.

Figure 11: Sub-systems which serve the application indirectly.

B. ABSOLUT performance model
In the case of non-distributed applications, the overall

performance model consists of a single platform model to
which one or more applications workload models are
mapped. These application models represent the processing
load of the whole use-case [2].

In case of distributed applications, each server and client
(both called Servers in GENESYS) in real use-case is
modeled as a separate application-level workload model.
Each application-level workload model of a GENESYS
Server instantiates the process workload model mimicking
application execution in the real use-case. In the case of
performance models of distributed applications, at least two
process workload models are hosted on different platform
instances. The process workload models hosted on different
platform instances communicate with one another via FIFO
channels. The blocking read/write access to the channels is
implemented as platform services as explained in Section 6.

The process workload models hosted on same platform
communicate with one another via inter-process
communication (IPC) ABSOLUT model [13].

Therefore, in case of distributed applications, the overall
performance model consists of more than one application-
level workload models of clients and servers (both called

Servers in GENESYS) hosted by at least two different
platform model instances. In this case, the performance
results for all the platform models are obtained separately
and analyzed to perform optimizations if required.

In the case study, each GENESYS server presented in
the application model is mapped to a separate multi-core
based platform model to analyze the performance results
and identify the potential bottlenecks at the software and
hardware side. The KPN view of the performance
simulation model is shown in Figure 12. The direction of
arrows indicates the direction in which the tokens are
passed.

Figure 12: Kahn process network model of the performance

simulation model
Node 1 and Node 2 represent the PersonCounter and the

PersonCounterStreamer server. Node 3 and Node 4
represent the OfficeVideo and OfficeVideoStreamer server
whereas Node 5 and Node 6 represent the FaceTracker and
FaceTrackerStreamer server. Node 7 represents the
application which is in the form of a control [12].
1) ABSOLUT Platform Model

Each ABSOLUT platform model used in the case study
is a modified OMAP-44x platform model which consists of
a single ARM Cortex-A9 multi-core processor [14] model
consisting of four cores along with SDRAM, a POWERVR
SGX40 graphics accelerator and an Image signal processor.
This is shown in Figure 13. These component models are
connected via an AMBA bus model [15].

In ABSOLUT methodology, the application models
contain approximate timing information. Thus the execution
platform is modelled at transaction level following OSCI
TLM2.0 standard [2].

The application workload models do not include
accurate address information and therefore the cache
architecture is simplified and cache misses are modelled
statistically [2]. Processor performance is taken into account
by defining clock frequency of cores. Architecture
efficiency of cores is modelled as average cycles-per-
instruction (CPI) value.

134Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 13: ABSOLUT platform model

Each core of ARM Cortex-A9 MP Core model has an L1

instruction and L1 data cache as shown in Figure 14.

Figure 14: Diagram showing the quad-core processor (ARM Cortex-

A9 multi-core processor) model used in the performance

2) Application Workload Model

All the Servers elaborated in the application model were
programmed using OpenCV library [16]. The tool used for
the workload extraction is ABSINTH [2]. ABSINTH
generates one Function workload models for each function
in the application if the function lies in the user-space code
or is provided by an external library. The workload models
of the Transport API functions (mostly system calls) such as
TCP/IP, Bluetooth and UDP API functions are not extracted
and instead one stub is generated for each system call.

The stubs corresponding to message sending and
receiving API functions, for example send() and receive()
API function calls in case of TCP/IP are replaced by the
service requests of “Token_Transmit_Service” and
“Token_Receive_Service” mimicking the transmission and
reception of actual message in real use-case. Any two nodes
communicating in this way have the reference to the same
KPN FIFO channel instance.

C. Co-Simulation and performance results
During the execution of application, the end-user

requests the bench occupancy and the video of the
occupants. The video frames are streamed form the
FaceTrackerServer to the mobile device of the Security
Staff member. Then the security staff member invokes other

services one by one, switching between them after 1 2
minutes each.

Each GENESYS Server Application workload model is
mapped to its respective platforms as shown in Figure 12
and the resultant performance model is run to obtain
performance results. The results of all the platforms (called
Sub-systems in GENESYS) and their hosted Servers are
written to one text file in the form of different sections, one
for each platform and its hosted GNESYS servers. In this
paper we only present the performance results of the
platform hosting the FaceTrackerStreamerServer.

The simulation execution can be easily exited after any
pre-decided simulation time, for example after 20 seconds
(time in terms of SystemC time model) or another event in
the simulation for example the number of streamed packets
from one Server to another or from a Server to the
Application. When the pre-decided condition is met during
simulation, the sc_stop() function is called. After that the
destructor of the results reporting class is called which
writes the gathered results to a text file for analysis.
1) Performance Results (Platform)

Since the FaceTrackerStreamerServer was implemented
entirely as software, the Graphics Accelerator and Image
Processor Services available from the platform were not
used. Therefore only the utilization of the processor cores of
platform hosting FaceTrackerStreamerServer is shown in
Figure 15. This platform is called FaceTrackerStreamer-
Sub-system as shown in Figure 11. The simulation was run
for streaming of 10, 100 and 1000 packets. The solid bar
corresponds to 10 packets, bar with horizontal pattern shows
use-case of 100 packets and diagonal pattern corresponds to
1000 packets.

Figure 15: Utilization time of processor cores as compared to overall

Utilization time of the CPU

The cache statistics of the platform (FaceTracker-
StreamerSubsystem) are shown below for 1000 video frame
transmissions.

135Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 16: Cache hits miss statistics of the Sub-system (platform

hosting a server, i.e., FaceTrackerStreamerServer).
2) Performance Results (Application)

By analysing the processing times of the application
source code and the percentage utilization of multi-core
processor model by different external library and user-space
code, we can find the potential bottlenecks in the application
implementation, which will help to perform required
optimizations. For example, by analysing the processing
times of the functionalities which can affect a particular
non-functional property for example frame rate for
FaceTrackerStreamerServer, we can find out whether the
implementation of the software components satisfies this
non-functional property.

This non-functional property is annotated in the
application syntactical view. The processing times of the
functionalities which can affect the Frame Rate are first
identified. In the next step, their processing times and
processor utilization percentage with respect to the overall
utilization by all application software components are
recorded. The functionalities and the corresponding
OPENcv library [16] and user space functions which
provide these functionalities are shown in Table 2.
DetectAndDrawFaces and SendImage are user space
functions. SendImage is a wrapper around BSD API send()
function.

TABLE 2: SHORTLISTED FUNCTIONS THAT CAN AFFECT THE FRAME RATE (A
NON-FUNCTIONAL PROPERTY) OF FACETRACKERSTREAMERSERVER

Functionality Shortlisted
Function

Use Camera for frame capture cvCaptureFromCAM

Get a frame from camera cvQuerryFrame

Create and store Image cvCreateImage

Detect and draw faces DetectAndDrawFaces

Show the result cvShowImage

Send the Image SendImage

The operations mentioned in the above table are
pipelined (except cvCaptureFromCAM which is called just
once) and are executed in the order shown in the activity
diagram of Figure 17.

Figure 17: Functionalities and related OPENcv functions that can
affect non-functional property Frame Rate

In order to satisfy the required frame rate of
FaceTrackerStreamerServer, i.e., 25 frames/sec, each of
these operations must be performed within 1/25 seconds (40
milliseconds) [6]. The processing times and the percentage
processor utilization of the aforementioned functions are
shown in Figure 18 and Figure 19. It is seen that all the
operations are performed within 22000 microseconds or 22
milliseconds.

Figure 18: Execution times of functionalities that can affect the

non-functional property Frame rate of Face Tracker Streamer Sub-system

The processor utilization graph shows that drawing and
detection of faces takes 41% of the CPU time in proportion

136Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

to the overall CPU time taken by all the application
functions considered.

Figure 19: Percentage CPU Utilization of the functionalities that can

affect Frame rate of Face Tracker Streamer Sub-system

The obtained performance results are used to perform
appropriate changes in the application models by replacing
the software components with more light weight
implementations or by making changes in the platform
model if the performance requirements (non-functional
properties) are not met. If the performance requirements are
met by all the platform and software components, the
architectural exploration stops and the implementation
phase starts.

IX. CONCLUSION AND FUTURE WORK
The KPN MOC was instantiated over ABSOLUT

performance models to extend it for the performance
evaluation of distributed applications. The approach was
experimented with a case study. In the future functional
MAC, transport and physical layer models will be integrated
to ABSOLUT along with active channel models.

ACKNOWLEDGEMENT
This work was performed the Artemis SOFIA project

partially funded by Tekes and the European Union. The
authors would like to thank also the colleagues at VTT and
Future Internet program of TIVIT (Finnish Strategic Centre
for Science, Technology and Innovation in the field of ICT)
for discussion and support.

REFERENCES
[1] T. Noergaard. Embedded Systems Architecture. A Comprehensive

Guide for Engineers and Programmers. ELSEVIER, UK; 2005, 640 p.
[2] Jari Kreku, Mika Hoppari, Tuomo Kestila, Yang Qu, Juha-Pekka

Soininen, and Kari Tiensyrja. Combining UML2 and SystemC
Application Platform Modelling for Performance Evaluation of Real-

Time Systems, EURASIP Journal on Embedded Systems, volume
2008, ARTICLE ID 712329.

[3] G. Kahn. The Semantics of a simple Language for Parallel
Programming. Proc. of the IFIP Congress 74, North-Holland, 1974.

[4] F. Herrera, P. Sánchez, and E. Villar. Modeling of CSP, KPN and SR
Systems with SystemC. In Proc. FDL, 2003, pp.572-583.

[5] Valentina Zadrija. Survey of Formal Models of Computation for
Multi-Core Systems. Technical Report 03/31/2009, Department of
Electronics, Microelectronics, Computer and Intelligent Systems,
Faculty of Electrical Engineering and Computing, University of
Zagreb, Croatia.

[6] Subayal Khan and Kari Tiensyrjä. Instantiating GENESYS
Application Architecture Modeling via UML 2.0 constructs and
MARTE Profile. In Proceedings of 13th Euromicro Conference on
Digital System Design (2010), September 1-3, Lille, France, 2010.

[7] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. A
methodology for architecture exploration of heterogeneous signal
processing systems. Kluwer Journal of VLSI Signal Processing 29 (3),
2001, pp. 197-207.

[8] A. Pimentel and C. Erbas. A Systematic Approach to Exploring
Embedded System Architectures at Multiple Abstraction Levels.
IEEE Transactions on Computers, vol. 55, no. 2, Feb. 2006, pp.99 –
112.

[9] T. Wild, A. Herkersdorf and G.-Y. Lee. TAPES—Trace-based
architecture performance evaluation with SystemC. Design
Automation for Embedded Systems, Vol. 10, Numbers 2-3, Special
Issue on SystemC-based System Modeling, Verification and
Synthesis, 2006, pp 157-179.

[10] http://www.genesys-platform.eu/genesys_book.pdf
[11] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf.

Approach for quantitative analysis of application-specific dataflow
architectures. The IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP ’97), pp. 338–
349, Zurich, Switzerland. July 1997.

[12] Subayal Khan, Susanna Pantsar-Syväniemi, Jari Kreku, Kari
Tiensyrjä, and Juha-Pekka Soininen. Linking GENESYS Application
Architecture Modelling with Platform Performance Simulation. In
Proceedings of the 12th Forum on Specification and Design
Languages (FDL 2009), September 22-24, Sophia Antipolis, France,
2009.

[13] Jukka Saastamoinen, Khan, Subayal, Tiensyrjä, Kari and Tapio
Taipale. Multi-threading support for system-level performance
simulation of multi-core architectures. 24th International Conference
on Architecture of Computing Systems, ARCS 2011. 02/22/2011-
02/23/2011. Como, Italy.

[14] Texas instruments. Retrieved June 01, 2011 from www.ti.com
[15] Transaction-Level Models for AMBA Bus Architecture Using

SystemC 2.0.M. Caldari, M. Conti, M. Coppola, S. Curaba, L.
Pieralisi, C. Turchetti. 2003 Design, Automation and Test in Europe
Conference and Exposition (DATE 2003), 3-7 March 2003, Munich,
Germany.

[16] OpenCV (Open Source Computer Vision) library. Retrieved June 11,
2011 from http://opencv.willowgarage.com/wiki/

137Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

