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Abstract—The modern mobile devices support diverse 
distributed applications. The rapid deployment of these 
applications demands brisk system-level performance 
evaluation. Abstract workload based performance simulation 
(ABSOLUT) has been successfully employed to evaluate the 
performance of non-distributed applications. The main 
advantages of ABSOLUT include the use of standard tools and 
languages for example SystemC and UML2.0. To extend 
ABSOLUT for the system-level performance simulation of 
distributed applications, application workload models executed 
in one device must trigger the execution of corresponding 
workload models in another device. The main contribution of 
this article is the application of Kahn Process networks (KPN) 
model of computation (MOC) to extend ABSOLUT for the 
system-level performance simulation of distributed 
applications. The approach is experimented with a case study 
which employs GENESYS application architecture modelling. 
The GENESYS adopts a service-oriented and component-
based design for distributed applications. The approach is not 
limited to GENESYS and can be used for performance 
evaluation of distributed applications designed via other 
application design approaches. The UML2.0 MARTE profile, 
PapyrusUML2.0 modelling tool and SystemC were used for 
modelling and simulation.  
 

Keywords-ABSOLUT; Kahn Process Networks; GENESYS; 
distributed applications 

I. INTRODUCTION 
The modern mobile handheld multimedia devices 

support diverse distributed applications [1]. These 
applications are often computationally intense and are 
supported by heterogeneous multiprocessor platforms. The 
challenges in the deployment of such applications are 
twofold, i.e., the heterogeneous parallelism in platforms, 
and the performance constraints.  

The abstract workload based performance simulation 
(ABSOLUT) approach has been extensively applied for the 
performance simulation of non-distributed applications 
where all the processes of an application are running on the 
same platform and communicate via an inter-process 
communication (IPC) mechanism.  

So far, ABSOLUT [2] has not been used to evaluate the 
performance of distributed applications, where the use-cases 
span over the multiple devices operating in a ubiquitous 
environment.  In the performance models of such use-cases, 
the application workload models are mapped to the platform 

models of the interacting devices. The execution of these 
workload models must be synchronized to mimic the 
modelled real world use-case.  

A Model of Computation (MOC) is a general way of 
describing the behaviour of a system in an abstract and 
conceptual form, enabling the representation of system 
requirements and constraints at a higher level. In general, 
the MOC is described in a formal manner via mathematical 
functions or set-theoretical notations or a combination of 
them. Kahn Process Network (KPN) MOC is a process 
based MOC [3].  The following properties make KPN a 
suitable MOC for the performance modelling of distributed 
applications [4].  

 The processes in KPN MOC execute in parallel and 
independent of each other. Likewise, in case of 
distributed applications, the processes hosted by 
different devices communicate via transport 
technologies, execute in parallel and are independent 
of each other.  

 Moreover, KPNs are determinate, i.e. irrespective of 
the employed scheduling policy, for a given input 
set, the same results will be obtained. This feature of 
KPN MOC gives a lot of scheduling freedom that 
can be exploited while mapping process networks 
over various platforms in the design space 
exploration process.  

 Another desirable feature of KPN MOC is that the 
control is completely distributed over individual 
processes and no global scheduler is required. As a 
result, distributing KPN for execution on a number 
of processes is simple.  

 The exchange of data is via FIFO buffers, i.e. there is 
no global memory that has to be accessed by 
multiple processes. In this way, the resource 
contention is greatly reduced if the systems with 
distributed memory are considered.  

 The synchronization mechanism is implemented via 
blocking read mechanism on the FIFO channels. It is 
quite simple and can be efficiently realized in both 
hardware and software. 

The main contribution of this paper is the instantiation of 
KPN MOC [5] on top of ABSOLUT performance models to 
extend it for the system-level performance simulation of 
distributed applications. The approach is experimented with 
a case study which elaborates the system-level performance 
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evaluation of distributed GENESYS [5] applications. The 
approach is also applicable to other distributed applications. 

The rest of the paper is organized as follows: Section 2 
gives an overview of landmark system level performance 
simulation techniques and describes the ABSOLUT 
performance simulation approach briefly. Section 3 provides 
an overview of GENESYS application architecture 
modelling. Section 4 explains ABSOLUT performance 
simulation approach. Section 5 lists the properties of KPN 
MOC which must be fulfilled for its correct instantiation 
over ABSOLUT performance models. Section 6 elaborates 
the main contribution of the article by describing the 
instantiation of KPN MOC over ABSOLUT for the 
performance simulation of distributed applications. This 
section clearly illustrates the way KPN MOC properties 
mentioned in Section 5 are fulfilled by the modelled 
components. Section 7 identifies the layers of distributed 
GENESYS applications and mentions the ABSOLUT 
application workload model layers corresponding to each 
layer of the GENESYS application model layer. This 
section also identifies the ABSOLUT workload models that 
correspond to processing nodes in KPN MOC. In Section 8, 
the approach is experimented via a case study. Conclusions 
and future work is elaborated in Section 9.  

II. RELATED WORK 
Performance modelling has been approached in different 

ways. SPADE [7] treats applications and architectures 
separately via a trace-driven simulation approach. Artemis 
[8] extends SPADE by involving virtual processors and 
bounded buffers. The TAPES [9] abstracts functionalities by 
processing latencies which cover the interaction of 
associated sub-functions on the architecture without actually 
running application code. ABSOLUT is a system-level 
performance simulation approach for embedded systems 
and employs abstract primitive instructions based workload 
models and cycle-approximate platform component models. 

To extend ABSOLUT for the performance evaluation of 
distributed applications, the performance model must mimic 
the execution of the use-case. In case of distributed 
applications, after some processing in one device; a message 
is sent to another process hosted by another device (usually 
called a service request) called a server. After processing the 
request, the server possibly sends a reply back to the 
requester (usually called the client). In case of GENESYS 
and other distributed application architectures, this message 
passing between processes (hosted by different devices) 
involves Transport, Data link and Physical layers of the OSI 
model. Therefore the performance models must use either 
abstract model of these layers to reduce the modelling effort 
and increase the simulation scheme or employ some other 
models of communication between these processes.  

The instantiation of Kahn Process Network (KPN) 
Model of Computation (MOC) over ABSOLUT abstracts 
out the OSI model layers (Transport, Data link and Physical 
layers) and the processing nodes (Process workload models 

in ABSOLUT) pass tokens (mimicking passed messages) to 
one another via FIFO channels. This enhances the 
simulation speed and also reduces the modelling effort. 

III. GENESYS APPLICATION MODELLING 
In GENESYS, compliance of architectural views and 

concepts across application domains forms basis of the 
cross-domain architectural style [10]. GENESYS reference 
architecture template provides core and optional services to 
application components. The core services are fundamental 
to any architecture. The optional services, built on top of the 
core services, can be used in applications across multiple 
domains.  

The modelling process starts by describing a set of views 
defined in GENESYS that are sufficient for the modelling 
objective. GENESYS use-case view describes the 
functionality of a system at a higher abstraction level by 
means of use-cases. The structural view defines the interface 
between an application and the sub-systems of the execution 
platform. This interface describes the core and optional 
services which the different sub-systems of the underlying 
platform offer to an application. The syntactical view 
describes the syntax the servers understand in order to 
access their services. Sub-systems together with their 
interfaces (set of services) are conceived as servers that 
admit different messages from the application (client). The 
behavioural view reflects the behavioural aspects of an 
application and its encompassing services.  

IV. PERFORMANCE SIMULATION APPROACH 
The ABSOLUT performance evaluation approach 

follows the Y-chart model [11], consisting of application 
workloads and platform model [2]. After mapping the 
workloads to the platform, the models are combined for 
transaction-level performance simulation in SystemC. Based 
on the simulation results, we can analyse e.g. processor 
utilization, memory traffic and execution time. The 
approach enables early performance evaluation, exhibits 
light modelling effort, allows fast exploration iteration and 
reuses application and platform models [2] .  

A. Application Workload Model 
The application workload model has a layered 

architecture as explained in [2]. The hierarchical structure of 
the application workload model is shown in Figure 1. 

 
Figure 1: Hierarchical structure of application workload model. 
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B. Platform Model 
The platform model is an abstract hierarchical 

representation of actual platform architecture. It is 
composed of three layers: component layer, sub-system 
layer, and platform architecture layer as shown in Figure 9. 
Each layer has its own services, which are abstract views of 
the architecture models. Services in sub-system and 
platform architecture layers are invoked by application 
workload models [2]. 

 
Figure 2: Platform model layers. 

V. PROPERTIES OF KPN MOC 
KPN [2] consists of nodes that represent processes and 

the communication channels (unbounded FIFO channels) 
between these processes. In order to model parallel 
computation, autonomous computing nodes are connected to 
each other in a network by communication lines. A given 
node performs computation on the received data via the 
input lines using some memory of its own, to produce 
output on some or all of its input lines. A communication 
line transmits information within an unpredictable and finite 
time. At any time a node either computes or waits for 
information on one of its input lines. 

KPN MOC has been used for synchronization among 
ABSOLUT process workload models running on different 
platform models (devices in real use-case). In the real use-
cases the software components of a distributed application 
running on different devices pass messages to each other via 
transport API functions over wired or wireless channels. In 
the ABSOLUT performance model, this is abstracted by 
token passing among process workload models over 
unbounded FIFO channels. 

The KPN MOC has a set of properties which must be 
implemented to ensure the correct instantiation of KPN 
MOC over ABSOLUT performance models. These 
properties are listed below.  

a. Read/Write Operations to channels: The 
deterministic behavior of KPNs is mainly caused 
by blocking reads and writes to the FIFO channel 
instances.  

b. FIFO channel read/write operations: A process 
cannot wait for reading/writing of two different 
FIFO channel instances at the same time. 

c. Channel Access: If processes can access different 
FIFO channels and more than one process can run 

on the same ABSOLUT platform model, then it 
must be guaranteed that the platform model only 
allows one process to access a single FIFO channel 
instance for read/write operation at the same time. 
This is important since the access to FIFO channels 
is provided as a service by the ABSOLUT platform 
(Operating System (OS) model) to the hosted 
process workload models and more than one 
process are allowed to access the same platform 
service.  

d. Process code behavior: The process code must be 
blocked of computing while accessing a FIFO 
channel instance. 

e. FIFO channels: FIFO channels cannot be active. In 
SystemC MOC, it means that the FIFO channel 
models cannot contain sc_threads or sc_methods. 

f. Definition of a KPN processes in ABSOLUT 
context: The processes of the KPN network 
formally correspond to software processes. 
Therefore either the same convention should be 
followed or the ABSOLUT workload models 
corresponding to KPN processes must be 
identified. 

The requirements a, b, c and d are fulfilled by 
implementing a general mechanism which allows only one 
process to access an operating system (OS) service at a time 
and also blocks the execution of the requesting process until 
the service request is completely processed. This 
mechanism is modeled as an OS_Service base class. The 
Channel Access services, i.e., token transmission and 
reception are then derived from that base class. These 
models are explained in Section 6. This section also 
elaborate the modeling of KPN FIFO channels and the way 
KPN FIFO channels are accessed, i.e., for read() and write() 
operations for passing synchronization tokens. Section 7 
describes the relationship between ABSOLUT workload 
models and the KPN processes. Therefore, section 6 and 
section 7 clearly illustrate the way requirements a,b,c,d,e 
and f were satisfied by the modeled components. 

VI. INSTANTIATING KPN MOC OVER ABSOLUT 
To fulfil the requirements of KPN MOC stated in 

previous section, the blocking read/write access to FIFO 
channels, FIFO channels and related services must be 
implemented and integrated to ABSOLUT. 

A.  Implementing Operating System Services  
Instantiating KPN MOC over ABSOLUT demands a 

mechanism for instantiating new platform services 
(hardware “HW” and software “SW” platform services). 
This mechanism is implemented as an OS_Service base 
class which ensures blocking behaviour and scheduling of 
the service requests such that only one request is processed 
at any time for a particular service. The derived services 
merely implement the functionality making the process of 
modelling new services straight forward. In this way the 
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required services are easily implemented by deriving them 
from the OS_Service base class as shown in Figure 3. 

 

 
Figure 3: OS_Service base class implementation 

The OS_Service class implements the functionality 
related to scheduling the requests of processes via request 
queues and informs the requesting process on service 
completion after taking it to running state again. At one time 
only one service request is processed. After the processing 
of a service is completed, the requesting process is informed 
and then the next request is taken from the front of the 
request queue for processing. The requesting process is 
blocked (remains in the sleeping queue of the OS model) 
until the execution of the request is completed. 

 More than one processes running on a single platform 
can request the same service at the same time (in SystemC it 
means in the same sequence of delta cycles) and are placed 
in the service request queue of that service. The 
implementation of the service processing ensures that only 
one service is processed at a time and when the processing 
is completed; the next request is fetched for service 
processing. This is shown in Figure 4. 

The three KPN processes (ABSOLUT process-level 
workload models) running on the same platform (scheduled 
by the same OS model) and access the platform services via 
blocking interface are also show in Figure 4. Only one 
request for a particular service is processed at any time and 
a process cannot request more than one service at the same 
time since its execution is blocked until the current request 
is processed which resulted in blocking its execution. 

Three GENESYS Server workload models
Hosted on a platform accessing an OS service.

Serv_1 
Start Processing
End Processing

Serv_N 
Start Processing
End Processing

Serv_1
queue

Serv_2
queue

Serv_N
queue

Serv_(N-1)
queue

GENESYS Server 
Workload Model

SID=Use_Service(”Serv_Name”,Serv_Attributes)Wait_Service(SID)

GENESYS Server 
Workload Model

GENESYS Server 
Workload Model

Operating 
System 
Model

 
Figure 4: Diagram showing the mechanism employed by OS services 

to execute requests of processes. 

The write access to KPN FIFO channels is implemented 
as a derived class of OS_Service class and is called 
“Token_Transmit_Service”. This service is registered to the 
operating system model by the unique service name 
“TokenTxServ”. The Token Passing service is accessed by 
the Process Workload models by using its unique service 
name “TokenTxServ” as shown in    Figure 5. The blocking 
nature of this service (blocks the execution of the requesting 
process) and the scheduling of service requests via queues 
ensures that the properties a, b, c and d of the KPN MOC 
mentioned in Section V are satisfied. The read access to 
KPN FIFO channels is implemented as a class called 
“Token_Receive_Service” and is implemented similarly. 
All the OS_Services are registered to the OS and used via 
the same interface inside ABSOLUT process workload 
models. This implementation guarantees that two or more 
processes cannot access a single FIFO channel instance at 
the same time. It also guarantees that one process cannot 
read and write simultaneously at the same time since the 
execution of the process is blocked until the request is 
processed.  

The read access to the FIFO channels is also 
implemented in the same way and is a derived class of the 
OS_Service base class to ensure that the aforementioned 
properties (a,b,c and d) of the KPN MOC are fulfilled. 

   Figure 5: Using Token_Transmit_Service by an ABSOLUT process 
workload model 

B. KPN FIFO Channels and Token Modelling 
In KPN MOC, the processes communicate via FIFOs 

channels [2]. If a FIFO channel instance is not empty, the 
reading is non-blocking. If a FIFO channel instance is 
empty, the reading process will block. 

The standard SystemC ‘sc_fifo’ channel provides these 
functionalities [4] and we can use them without any 
modification. The ‘sc_fifo’ channel has no sc_threads and 
no sc_methods and hence is not an active channel since 
activity in SystemC is only modelled via sc_threads and 
sc_methods.This fulfils the requirement e Mentioned in 
Section 5.   

C.  Token Passing and Reception  
As shown in    Figure 5, while requesting an OS_Service, 

the requesting process must provide the required service 
attributes. Therefore for accessing the 
“Token_Transmit_Service” and “Token_Receive_Service” 
services, the requesting processes must provide the required 
service attributes. The attributes for both these services are 
modelled as a “KPN_Token_RW_Attributes” class which is 
derived from “Serv_Attributes” base class. 
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 The “KPN_Token_RW_Attributes” class contains a 
reference to the FIFO channel to which a KPN MOC Token 
has to be written or read from. Any two ABSOLUT process 
workload model communicating with each other (running 
on different devices “platform models”) contain a references 
to the same FIFO channel instance. One of them can only 
perform read operations on the FIFO channel instance while 
the other can only perform write operations.  

The Tokens do not represent any data of the real use- 
case since ABSOLUT employs non-functional application 
workload models. Therefore tokens are modelled as integer 
C++ data type, i.e., int. The ‘KPN_FIFO_Ch’ class is 
derived from ‘sc_fifo’ primitive channel ‘class’ and does 
not contain any additional methods or members. The 
KPN_Token_RW_Attributes class is shown in Figure 6. 

 

 
Figure 6: Attributes class for accessing KPN_Token_Transmit and 

KPN_Token_Receive service 
 

The aforementioned modelling of KPN FIFO channels 
and service attributes fulfil the requirement e of the KPN 
MOC mentioned in Section 5.  

VII. A KPN PROCESS IN ABSOLUT CONTEXT 
Seamless integration of distributed GENESYS 

application design phase to ABSOLUT application 
workload modelling phase is conceived as layered 
application architecture. After defining the layers in the 
application model, the corresponding layers in the 
ABSOLUT workload models are identified. In this way, the 
application model acts as a blue print for the application 
workload layers [12]. This reduces the time and effort in 
application workload modelling and speeds up architectural 
exploration phase. 

In GENESYS [10], a distributed use-case can be viewed 
as a controlled collaboration of service providers and 
service requesters (both called Servers in GENESYS instead 

of clients and servers) [5] running on different devices. For 
example, if the use-case involves the collaboration among 
“n” GENESYS Servers, we can write 

  
                Ea= { CE ,Serv1,Serv2,….,Servn},                 (1) 

 
where CE represents the control mimicking the collaboration 
among nodes in order to satisfy the end-user use-case.  

In the second layer each GENESYS Server is defined as 
a process running on a particular platform ,  i.e.,  

 
                                  Serv = { PGENESYS }.                           (2) 
 
where PGENESYS  represents a GENESYS Server  running on 
a particular platform(called sub-system in GENESYS).  
 

In the third layer each running GENESYS server 
(PGENESYS) is represented as a controlled invocation of one 
or more function workload models or platform service 
requests. If a process consists of “k” processes and “l” 
platform service requests, we can write 

 
PGENESYS = {CP,F1, F2,…, Fk, R1, R2, . . . , Rl},             (3) 

 
where CP is control.  

The aforementioned GENESYS application model 
layers are then compared to the ABSOLUT application 
workload model layers as shown in Table 1. 

TABLE 1: COMPARING GENESYS APPLICATION ARCHITECTURE LAYERS TO 
ABSOLUT WORKLOAD MODEL LAYERS 

GENESYS Application 
architecture layers 

Corresponding ABSOLUT 
Workload Model Layers 

Ea={CA,Serv1,Serv2,.,Servn} W={CA ,Servwld1, ,….,Servwldn} 
Serv = { PGENESYS } Servwld = { PGENESYSwld } 
PGENESYS={CP,F1,  F2,…,Fk,R1,  R2, 
. . , Rl} 

PGENESYSwld={CP,Fwld1,Fwld2,.. 
Fwldk,Rwld1, Rwld2,.., Rwldl} 

 
Where Servwld is an ABSOLUT application workload 

model, PGENESYSwld is an ABSOLUT process workload 
model and Fwld is an ABSOLUT function workload model. 
Each ABSOLUT process workload model corresponds to a 
KPN process which invokes the ABSOLUT function 
workload models and platform services in a deterministic 
order.                                                      

Each GENESYS Server Application level workload 
model instantiates the single process workload model 
mimicking the execution of a GENESYS server of a 
distributed GENESYS application in the real use-case. Each 
process workload model (PGENESYSwld in Table 1) 
corresponds to a single KPN processing node in KPN MOC 
since the ABSOLUT processes code behaves in the same 
way as the rules stated in Section 5 by using the 
“Token_Transmit_Service” and “Token_Receive_Service” 
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for FIFO channel access. This observation fulfills the 
requirement f of the KPN MOC mentioned Section V. 

Therefore from KPN MOC viewpoint, each Application 
level workload model instantiates a computing node (in 
ABSOLUT it means a Process-Level Workload models 
which are shown in blue color in Figure 7) of the KPN 
MOC. These computing nodes are connected via unbounded 
FIFO channels for passing tokens in order to ensure 
deterministic behavior as shown in Figure 7. Also one or 
more Process workload models can run on the same 
platform as in real use-cases as shown in Figure 7. In Figure 
7, two nodes are running on the same platform (Platform 2). 
Since the access to FIFO channels is blocking and only one 
process can read or write to a single FIFO instance at a time 
as explained in Section 6, therefore the deterministic 
behavior of KPN MOC is guaranteed. 

 

SID=Use_Service(”Serv_Name”);
Wait_Service(SID);
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Figure 7: KPN Nodes internals and access to KNP FIFO channels for 

token passing. 

VIII. CASE STUDY 
The case study describes the modeling and performance 

evaluation of an Office Security (OS) application hosted on 
a mobile device owned by a member of security staff. The 
application has been previously presented in [7]. The device 
hosting the application, communicates with three other 
devices to avail different services. The 
PersonCounterSubSystem gives the number of occupants in 
the office and provides the video of office entrance. The 
OfficeVideoSubSystem provides high resolution office 
video. The FaceTrackerSubSystem provides the information 
about the number of occupants sitting on the bench and 
video showing the occupants.  

A. Application Model 
The OS application uses services provided by Servers 

running on different devices. Each Server communicates 
with its respective streaming Server. Each device hosting a 
Streaming server is fitted with an integrated camera 
mounted at an appropriate position in office. The streaming 
servers stream video frames to the requesting servers on 
demand as shown in application views. It should be noted 
that in GENESYS terminology, both the service requester 
and provider are termed as Servers instead of client and 
server as in case of internet applications.              

                  
1) Use-case view   

The use-case view shows a system-level capability 
SelectTheSecurityService shown in Figure 8 in terms of 
device services.  

 

 
Figure 8: Use-case view. 

 
2) Behavioral View 

The Behavioral view shows the behavior of an 
application. Application invokes different services as use- 
case evolves. This is shown in Figure 9. 
 

 
Figure 9: Operation of the Office Security Application. 

 
3) Syntactical View 

The syntactical view shows messages admitted by the 
sub-systems as shown in Figure 10 and Figure 11. The 
stereotypes used in syntactical view are described in detail 
in [5]. 
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Figure 10: Sub-systems which serve the application directly. 

 

 
Figure 11: Sub-systems which serve the application indirectly. 

B. ABSOLUT performance model 
In the case of non-distributed applications, the overall 

performance model consists of a single platform model to 
which one or more applications workload models are 
mapped. These application models represent the processing 
load of the whole use-case [2].  

In case of distributed applications, each server and client 
(both called Servers in GENESYS) in real use-case is 
modeled as a separate application-level workload model. 
Each application-level workload model of a GENESYS 
Server instantiates the process workload model mimicking 
application execution in the real use-case. In the case of 
performance models of distributed applications, at least two 
process workload models are hosted on different platform 
instances. The process workload models hosted on different 
platform instances communicate with one another via FIFO 
channels. The blocking read/write access to the channels is 
implemented as platform services as explained in Section 6. 

The process workload models hosted on same platform 
communicate with one another via inter-process 
communication (IPC) ABSOLUT model [13]. 

Therefore, in case of distributed applications, the overall 
performance model consists of more than one  application-
level workload models of clients and servers (both called 

Servers in GENESYS) hosted by at least two different 
platform model instances. In this case, the performance 
results for all the platform models are obtained separately 
and analyzed to perform optimizations if required.  

In the case study, each GENESYS server presented in 
the application model is mapped to a separate multi-core 
based platform model to analyze the performance results 
and identify the potential bottlenecks at the software and 
hardware side. The KPN view of the performance 
simulation model is shown in Figure 12. The direction of 
arrows indicates the direction in which the tokens are 
passed.  

 
Figure 12: Kahn process network model of the performance 

simulation model 
Node 1 and Node 2 represent the PersonCounter and the 

PersonCounterStreamer server.  Node 3 and Node 4 
represent the OfficeVideo and OfficeVideoStreamer server 
whereas Node 5 and Node 6 represent the FaceTracker and 
FaceTrackerStreamer server. Node 7 represents the 
application which is in the form of a control [12]. 
1) ABSOLUT Platform Model 

Each ABSOLUT platform model used in the case study 
is a modified OMAP-44x platform model which consists of 
a single ARM Cortex-A9 multi-core processor [14] model 
consisting of four cores along with SDRAM, a POWERVR 
SGX40 graphics accelerator and an Image signal processor. 
This is shown in Figure 13. These component models are 
connected via an AMBA bus model [15]. 

In ABSOLUT methodology, the application models 
contain approximate timing information. Thus the execution 
platform is modelled at transaction level following OSCI 
TLM2.0 standard [2]. 

The application workload models do not include 
accurate address information and therefore the cache 
architecture is simplified and cache misses are modelled 
statistically [2]. Processor performance is taken into account 
by defining clock frequency of cores. Architecture 
efficiency of cores is modelled as average cycles-per-
instruction (CPI) value. 
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Figure 13: ABSOLUT platform model 

 
Each core of ARM Cortex-A9 MP Core model has an L1 

instruction and L1 data cache as shown in Figure 14. 
 

 
Figure 14: Diagram showing the quad-core processor (ARM Cortex-

A9 multi-core processor) model used in the performance 

2) Application Workload Model 

All the Servers elaborated in the application model were 
programmed using OpenCV library [16]. The tool used for 
the workload extraction is ABSINTH [2]. ABSINTH 
generates one Function workload models for each function 
in the application if the function lies in the user-space code 
or is provided by an external library. The workload models 
of the Transport API functions (mostly system calls) such as 
TCP/IP, Bluetooth and UDP API functions are not extracted 
and instead one stub is generated for each system call.  

The stubs corresponding to message sending and 
receiving API functions, for example send() and receive() 
API function calls in case of TCP/IP are replaced by the 
service requests of “Token_Transmit_Service” and 
“Token_Receive_Service” mimicking the transmission and 
reception of actual message in real use-case.  Any two nodes 
communicating in this way have the reference to the same 
KPN FIFO channel instance.  

C. Co-Simulation and performance results 
During the execution of application, the end-user 

requests the bench occupancy and the video of the 
occupants. The video frames are streamed form the 
FaceTrackerServer to the mobile device of the Security 
Staff member. Then the security staff member invokes other 

services one by one, switching between them after 1 2 
minutes each.  

Each GENESYS Server Application workload model is 
mapped to its respective platforms as shown in Figure 12 
and the resultant performance model is run to obtain 
performance results. The results of all the platforms (called 
Sub-systems in GENESYS) and their hosted Servers are 
written to one text file in the form of different sections, one 
for each platform and its hosted GNESYS servers. In this 
paper we only present the performance results of the 
platform hosting the FaceTrackerStreamerServer. 

The simulation execution can be easily exited after any 
pre-decided simulation time, for example after 20 seconds 
(time in terms of SystemC time model) or another event in 
the simulation for example the number of streamed packets 
from one Server to another or from a Server to the 
Application. When the pre-decided condition is met during 
simulation, the sc_stop() function is called. After that the 
destructor of the results reporting class is called which 
writes the gathered results to a text file for analysis. 
1) Performance Results (Platform)  

Since the FaceTrackerStreamerServer was implemented 
entirely as software, the Graphics Accelerator and Image 
Processor Services available from the platform were not 
used. Therefore only the utilization of the processor cores of 
platform hosting FaceTrackerStreamerServer is shown in 
Figure 15. This platform is called FaceTrackerStreamer-
Sub-system as shown in Figure 11. The simulation was run 
for streaming of 10, 100 and 1000 packets. The solid bar 
corresponds to 10 packets, bar with horizontal pattern shows 
use-case of 100 packets and diagonal pattern corresponds to 
1000 packets.  

 

 
Figure 15: Utilization time of processor cores as compared to overall 

Utilization time of the CPU  

The cache statistics of the platform (FaceTracker-
StreamerSubsystem) are shown below for 1000 video frame 
transmissions. 
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Figure 16: Cache hits miss statistics of the Sub-system (platform 

hosting a server, i.e., FaceTrackerStreamerServer). 
2) Performance Results (Application)  

By analysing the processing times of the application 
source code and the percentage utilization of multi-core 
processor model by different external library and user-space 
code, we can find the potential bottlenecks in the application 
implementation, which will help to perform required 
optimizations. For example, by analysing the processing 
times of the functionalities which can affect a particular 
non-functional property for example frame rate for 
FaceTrackerStreamerServer, we can find out whether the 
implementation of the software components satisfies this 
non-functional property.  

This non-functional property is annotated in the 
application syntactical view. The processing times of the 
functionalities which can affect the Frame Rate are first 
identified. In the next step, their processing times and 
processor utilization percentage with respect to the overall 
utilization by all application software components are 
recorded. The functionalities and the corresponding 
OPENcv library [16] and user space functions which 
provide these functionalities are shown in Table 2. 
DetectAndDrawFaces and SendImage are user space 
functions. SendImage is a wrapper around BSD API send() 
function. 

TABLE 2: SHORTLISTED FUNCTIONS THAT CAN AFFECT THE FRAME RATE (A 
NON-FUNCTIONAL PROPERTY) OF FACETRACKERSTREAMERSERVER 

Functionality Shortlisted 
Function 

Use Camera for frame capture cvCaptureFromCAM 

Get a frame from camera cvQuerryFrame 

Create and store Image cvCreateImage 

Detect and draw faces DetectAndDrawFaces 

Show the result cvShowImage 

Send the Image SendImage 

The operations mentioned in the above table are 
pipelined (except cvCaptureFromCAM which is called just 
once) and are executed in the order shown in the activity 
diagram of Figure 17. 

 

Figure 17: Functionalities and related OPENcv functions that can 
affect non-functional property Frame Rate 

In order to satisfy the required frame rate of 
FaceTrackerStreamerServer, i.e., 25 frames/sec, each of 
these operations must be performed within 1/25 seconds (40 
milliseconds) [6]. The processing times and the percentage 
processor utilization of the aforementioned functions are 
shown in Figure 18 and Figure 19. It is seen that all the 
operations are performed within 22000 microseconds or 22 
milliseconds.   

 
Figure 18: Execution times of functionalities that can affect the                    

non-functional property Frame rate of Face Tracker Streamer Sub-system 

The processor utilization graph shows that drawing and 
detection of faces takes 41% of the CPU time in proportion 
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to the overall CPU time taken by all the application 
functions considered. 

 
Figure 19: Percentage CPU Utilization of the functionalities that can 

affect Frame rate of Face Tracker Streamer Sub-system 
 

The obtained performance results are used to perform 
appropriate changes in the application models by replacing 
the software components with more light weight 
implementations or by making changes in the platform 
model if the performance requirements (non-functional 
properties) are not met. If the performance requirements are 
met by all the platform and software components, the 
architectural exploration stops and the implementation 
phase starts.  

IX. CONCLUSION AND FUTURE WORK 
The KPN MOC was instantiated over ABSOLUT 

performance models to extend it for the performance 
evaluation of distributed applications. The approach was 
experimented with a case study. In the future functional 
MAC, transport and physical layer models will be integrated 
to ABSOLUT along with active channel models. 
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